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We prove a theorem of power and energy for the solutions of the linear equations of
a viscoelastic material, whose rheology may be described in terms of lumped elements
having the behaviour of either an elastic solid or a viscous fluid. The assumed anisotropy
ensures that this class of constitutive laws is wide enough for describing most of geophys-
ical media; yet, its a priori physical interpretation permits to avoid the mathematical
ambiguities arising, in the definition of potential energy, with constitutive laws of ab-
stract hereditary type. Moreover, sharper results for time-averaged energies are obtained
by assuming a time-harmonic displacement. Finally, fundamental relations for phase-,
energy- and dissipation-velocity are derived in the framework of plane inhomogeneous
waves. As case studies, the Kelvin-Voigt, Maxwell and standard linear solid rheolo-
gies are worked out in detail. The use of coordinate-free notation permits to perform
computations in a clean and rigorous way.

1. Introduction

The theory of mechanical waves in solid dissipative media is a classical topic: for
background information on the physical and mathematical aspects, we refer to the
books by Auld [1] and Caviglia and Morro [6], respectively. Fundamental papers on
the energy balance for these waves are those by Buchen [3] and Borcherdt [2]. How-
ever, most of the results that can be found in the literature were proven assuming
isotropy, which is a too restrictive assumption for geophysical purposes [12]. Hence
Carcione and Cavallini [5] reviewed the subject in a fully anisotropic framework, us-
ing a component notation. The ideas in [5] are developed here with applications to
specific case-studies, using a component-free notation [8]; indeed, the latter is more
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suitable to theoretical investigations, whereas a component notation is unavoidable
in numerical modelling.

2. Waves with Arbitrary Time-Dependence

2.1. Hereditary-Elastic Media

2.1.1. Equations of Motion. Firstly, the dynamic equation is the continuum version

of Newton’s second law:
. 8%u

Secondly, the kinematic equation expresses the strain-displacement relationship as
E = (Vu+ Vu7T)/2. Here, as in the book by Gurtin [8]: S is stress, b is body
force, p is density, ¢ is time, u is displacement and E is strain.

Finally, the constitutive equationis S = R+E, where R][t] is a linear symmetric
operator Sym — Sym, with Sym the space of linear symmetric operators over the
3-D euclidean space; moreover, the asterisk indicates time convolution: (R*E)[t] =
J R[t — 7][E[r]]dT, where the integral is meant in the sense of naive distribution
theory.

2.1.2. Kinetic Energy Theorem. Taking the scalar product of the particle velocity
with the dynamic equation (2.1) and rearranging, we get the kinetic energy theorem

€
a—f = —Div[J] + 11, — I, (2.2)
where v = du/dt is particle velocity, £k = (1/2)pv.v is kynetic energy density,
J = —S[v] is energy flux density, II; = v.b is the power density expended by body
forces, and IIs = S.Vv = S.(0E/8t) is stress power density ( [8], p.111).

2.2. Visco-Elastic Media

In this paper, we call ”visco-elastic” those hereditary-elastic media whose con-
stitutive law may be modelled in terms of m elastic springs and n viscous dash-
pots, connected in series or in parallel [11]. The elastic elements are described by the
generalized Hooke’s law S; = C;[E;], where C;: Sym — Sym for i =1,...,m.
Analogously, the viscous elements are described by the generalized Newton’s dissi-
pation law S; = D;[0E;/dt], where D; : Sym — Sym for j =1,...,n.

2.2.1. Potential Energy. Here, by analogy with the elastic case, the potential energy
is defined as:

1 m
&p =3 ;1 E.Ci[Ei]. (2.3)

Thus, the dissipated power may be defined as

0€p
IIp =g — —— 2




and hence the kinetic energy theorem (2.2) yields the following energy balance
equation:

0 )

E(EK + gp) = —DZ'U[J] +II, — IIp.

2.2.2. Ezample: Kelvin-Voigt Rheology. The constitutive equation is S = C[E] +
D[OE/8t], where C and D are linear symmetric operators Sym — Sym . Then

1 oE JE
Ep = §EC[E] and IIp = —.D[—

ot ot ] (2:5)

are the potential energy density and the power density dissipated because of vis-
cosity, respectively.

2.2.3. Ezample: Mazwell Rheology. The constitutive equation is given by 6E /8t =
C~1[6S/8t] + D7[S], where C and D are (linear, symmetric and invertible)
operators Sym — Sym . Then

i 1
Ep = 5s.c—l[S] and IIp = ES.D“I[S] (2.6)

are the potential energy density and the power density dissipated because of vis-
cosity, respectively.

3. Time-Harmonic Waves

By definition, a time-harmonic wave has the form:
u[x, t] = R[d[x] exp[—iwt]] = G1[x] cos[wt] + G2 [x] sin[wi],
where 1; = R[4] and Gy = S[q).

3.1. Hereditary-Elastic Media

3.1.1. FEquations of Motion. The kinematic equation implies that the strain is
a time-harmonic field E[x,t] = R[E[x]exp[—wwt]] related to the complex veloc-
ity ¥[x] by E[x] = (3/2w)(V¥[x] + V¥[x]T). The constitutive equation implies
that the stress is a time-harmonic field S[x,t] = R[S[x] exp[—iwt]] related to the
complex strain E[x] by S[x] = Ro[E[x]], where Ry = [R[r]exp[iwr]dr. The
dynamic equation implies that the body force is a time-harmonic field b[x,t] =
R[b[x] exp[—iwt]] whose complex amplitude is related to the velocity and stress by

b[x] = —ipw¥[x] — Div[S[x]]. (3.1)

3.1.2. Time-Average Kinetic Energy Theorem. The time average, over one period,
of the scalar product of two time-harmonic waves a and b is given by

(R[5 expl—iwt]] R[bexp|—iat]} = %m[s.f)*].



Then, it follows that
1 ., . 1o~ 1 oy
() = g9, (3)=R[P], (L) = ;BB (Is) = —wofS.5), (32)

where P = —(1/2)S[¥*] is the complex Poynting vector, by analogy with the

electromagnetic case [7]. Now, taking the scalar product of the dynamic equation

(3.1) with v*, rearranging, and separating the real and the imaginary parts, we
get

Di[(3)] = (I;) — (IIs) and —2w(€x) = —Dw[S[P]] + = S[b.v"] —w%%[é.f}*].

(3.3)

The stress power density may be expanded, in the time-harmonic regime, as

IIg = (IIg) + %w%[g.ﬁe_%“t]. The second term of the r.h.s. of this equation is a

periodic function of time with zero mean: it corresponds to the completely reversible

N

work done by the elastic forces. Hence we are led to infer that a good definition
of dissipated power implies that its average value must coincide with the average
stored power. This argument is a 3D anisotropic generalization of the 1D treatment
in Sec. 17 of the book by Rabotnov [11]; equation (3.4) below shows that this view
is correct, at least in the case of viscoelastic media.

3.2. Visco-Elastic Media: Time-Average Energy Balance

The average time rates of kinetic and potential energies result to be zero:
(0€k /0ty = (8€p /L) = 0; hence equation (2.4) yields

(Ils) = (Ilp). (3.4)

Therefore, using the first equation in (3.3), we get the following mean energy flux
equation:

Div[(J)] = (1) — (Ip).

3.2.1. Ezample: Kelvin-Voigt Rheology. In this case, equations (2.5) yield (£p) =
(1/4)E.C[E*] and (IIp) = (IIs) = (1/2)w*E.D[E*]. Therefore R[S.E*] = 4(&p)
and hence, substituting into the second equation in (3.3), we get the energy balance
equation

2w((Ep) — (€k)) = —Div[S[P]] + =S[b.v*]. (3.5)

N =

3.2.2. Ezample: Mazwell Rheology. In this case, equations (2.6) yield (£p) =
(1/4)S.C~1[S*] and (IIp) = (IIs) = (1/2)S.D~1[S*]. Therefore, as in the case of
the just seen Kelvin-Voigt rheology, §R[§E~)*] = 4(€p) and hence, substituting into
the second equation in (3.3), we obtain again the energy balance equation (3.5).

3.2.8. Ezample: Standard Linear Solid Rheology. The rheological model called
standard linear solid results from connecting in series an elastic element, C;, with
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a Kelvin-Voigt element, formed by a spring C and a dashpot D connected in
parallel. The corresponding constitutive law is

AS]+ B2 = el + D[Z—}f

51 1, (3.6)

where, for simplicity, we have put
A=14+CoC;' and B=DoCj}, (3.7)

the symbol o denoting map composition. If, instead of equation (3.7), we take
A =1 and B = 0, then we get from (3.6) the Kelvin-Voigt model. Analogously,
for C =0, equations (3.6) and (3.7) yield Maxwell’s rheology.

In the case of a time-harmonic wave, equations (2.3) and (2.4) yield (€p) =
(E1.C[E?] + E2.C[E}]))/4 and (IIp) = (IIs) = (1/2)w?E.D[E*], where E; =
C;'[S] and E; = E — E;. Therefore, as in the preceding examples, R[S.E*] =
4(£p) and hence, substituting into the second equation in (3.3), we obtain again
the energy balance equation (3.5).

4. Inhomogeneous Plane Waves
By definition, an inhomogeneous plane wave has the form
ufx,t] = R[ug exp[i(k.x — wt)]] = exp[—ka.x](uo1 cos[¢] — uozsin[¢]),

where k; = R[k] is the propagation vector, ¢ = k;.x — wt and ky; = S[k] is
the attenuation vector. In other words, an inhomogeneous plane wave is a time-
harmonic wave whose complex amplitude is given by 1[x] = ug exp[ik.x].

4.1. Equations of Motion

The kinematic equation implies that the strain is an inhomogeneous plane wave
E[x,t] = R[Eq exp[i(k.x — wt)]] whose complex amplitude is given by

-1
Eo: z(Vo@k—i—k@Vo) (41)

The constitutive equation implies that the stress is an inhomogeneous plane wave
S[x,t] = R[So exp[i(k.x —wt)]] whose complex amplitude is given by So = Ro[Eo],
where Ro = [R[r]exp[iwr]dr. The dynamic equation implies that the body force
is an inhomogeneous plane wave b[x,t] = R[boexp[i(k.x — wt)]] whose complex
amplitude is given by

bo = ——ipva = ZSg[k] (42)

4.2. Energies via Poynting Vector

We first note that, for inhomogeneous plane waves, the Poynting vector and
the average kinetic energy are given by

1 1
P= —ESO[VS]e_zk"x and (&k) = vas.voe—?’k"x, (4.3)
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respectively.

Taking the scalar product of v§ with the dynamic equation (4.2) yields, as-
suming zero body forces and using the second of equations (4.3), that the average
kinetic energy can be obtained from the Poynting vector through

(€x) = %k.P. (4.4)

Likewise, the scalar product of the stress So with the complex conjugate of
the kinematic equation (4.1) gives

2
So.Ef = —k*.Pe?kax, (4.5)

T w
where the symmetry of So and the first equation in (4.3) have been used. Let’s

assume that, as in the examples of Section 3.2, R[S.E*] = 4(€p) holds; then, by
equation (3.4), (4.5) and the last of equations (3.2), we get

k*.P = 2w(Ep) — i(llp). (4.6)

Moreover, equations (4.4) and (4.6) yield
1
(Ep) + (€k) = ;kl.i}%[P] and (IIp) = —2k,.S[P]. (4.7)

These equations show that the knowledge of the Poynting vector permits to compute
the total average stored energy as well as the average dissipated power.

Finally, we note that, by equation (4.4), the scalar product between the prop-
agation vector and the Poynting vector is real; therefore k;.§[P] = —k;.R[P] and
this implies, by the second of equations (4.7),

(Ilp) = 2ks.R[P],

which is an alternative way of expressing the dissipated power in terms of the
Poynting vector.

4.3. Fundamental Relations for Phase-, Energy- and Dissipation-Velocity
The phase velocity is defined as

1
=k,
ks |

w

= —121 , where 121 =
[[fea |

Von

while the energy velocity and the dissipation velocity are defined as

1 2w
Ve=-——+——-(J) and Vz3=-—25[P],
e+ @) =g
respectively. Using the second of equations (3.2) and equations (4.7), it is readily
shown that

ki.V. =|[Vpu| and ky.Va=—|| Vil
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5. Conclusions

The classical theory of the energy balance for viscoelastic inhomogeneous waves has
been reviewed here, and somewhat generalized by dropping any isotropy assump-
tion. A kinetic energy theorem has been obtained for general linear-hereditary
materials, whose rheology is described by Boltzmann’s superposition principle.

But the concept of dissipated power and its role in the energy balance have
been considered under the assumption of viscoelasticity in the strict sense, namely
the constitutive relation can be described in terms of (3-D anisotropic) springs and
dashpots modelled by generalized Hooke’s and Newton’s law, respectively. In this
way, the a priori physical insight permits to overcome the ambiguities arising with
a general hereditary-elastic law [9].

The results in Sections 4.2 and 4.3 have been obtained under the seemingly
awkward assumption §R[§E*] = 4(Ep). However, it is straightforward to check
that this condition is fulfilled by a (3-D anisotropic) generalized standard linear
solid, namely by a class of constitutive laws large enough to capture the main
rheological features of materials of interest in seismology and mantle composition
studies [10], as well as in exploration geophysics [4].

It should be interesting to clarify the theory in the general framework of linear
hereditary media: perhaps the variational principles underlying the dynamics might
be helpful in the formulation of a physically justified definition of dissipated power.
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