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ANISOTROPIC-VISCOELASTIC RHEOLOGIES VIA EIGENSTRAINS

J. M. CARCIONE and F. CAVALLINI
Osservatorio Geofisico Sperimentale

P. O. Boz 2011, 34016 Opicina, Trieste, Italy

Each eigenvalue (cigenstiffiness) and eigenvector (cigenstrain) of the stiffness tensor
of an anisotropic solid defines a fundamental deformation state of the medium. The six
cigenvalues represent the genuine elastic parameters. From this fact and the correspon-
dence principle we infer that in a real medium there exist no more than six relaxation
functions, which are the generalization of the cigenstiffnesses to the viscoelastic case. The
existence of six or less complex moduli depends on the symmetry class of the medium.
Then, we obtain a new stress-strain relation and probe it with homogenecous viscoclas-
tic plane waves, giving 3-D representations of the quality factor and energy velocity
(wavefront) of the different wave modes.

1. Introduction

As Lord Kelvin wrote in his Encyclopaedia Britannica article on Elasticity [15]: a
single system of siz mutually orthogonal (strain) types may be determined for any
homogeneous elastic solid, so that its potential energy when homogeneously strained
in any way is ezpressed by the sum of the products of the squares of the compo-
nents of the sirain, according to those types, respectively multiplied by siz determi-
nate coefficients. The siz sirain-types thus determined are called ihe Siz Principal
Strain-types of the body. Few paragraphs later he refers to the coefficients as the
siz Principal Elasticities of the body. The equations of equilibrium imply that: If o
body be strained to any of its siz Principal Types, the stress required to hold it so is
directly concurrent with (proportional to) the strain. These concepts were reinter-
preted by Pipkin [13], Rychlewski [14], Walpole [16] and recently by Mehrabadi and
Cowin [12] by using fourth-rank and second-rank tensor algebra, respectively. The
Siz Principal Strains in which any arbitrary strain can be decomposed are the eigen-
vectors of the elasticity tensor in 6-dimensional space, or the eigenstrains when
working in 3-dimensional space. The Siz Principal Elasticities are the eigenvalues of
the second-rank elasticity tensor referred here as the eigenstiffnesses after Helbig
[10], who recently investigated the relation between the eigensystems and the mate-

rial symmetry, and identified the wave-compatible isochoric (deformation without
change of volume) eigenstrains.

The additive decomposition of the total strain energy into a sum of six, or fewer,
terms represents energy modes which are not interactive each other. These modes,
‘together with their eigenstiffnesses, determine the complete set of fundamental] de-
formations of a material body including those compatible with wave propagation.
The effective stiffness of an arbitrary strain compatible with wave propagation can
be expressed as a linear combination of the eigenstiffnesses, expansion that seems to
take a simple form along longitudinal (pure mode) directions. This decomposition
implies that of the 21 parameters of the elasticity tensor, six are genuine stiffnesses
describing the mechanical properties of the medium, and the other fifteen are geo-
metrical parameters required to define the shape and orientation of the eigenstrains
in 6-dimensional space.

The conventions in the next sections are that ’tr’ takes the trace ofa 3 x3
matrix; ® and § take real and imaginary parts, respectively; ’diag’ denotes a
diagonal matrix; and the superscript ’ * ’ indicates complex conjugation.

2. Hooke’s law in tensorijal form

By the generalized Hooke’s law, it is assumed that stress o and strain € are
linearly related by a symmetric stiffness operator c. In other words, there exists a
symmetric linear operator

c: L,(R?) —L,(R}):e—no= cle] (2.1)

where L,(V) is the subspace of symmetric linear maps over V.

The second-rank Cartesian tensor formulation of Hooke’s law in six dimensions
is introduced by Mehrabadi and Cowin [12]. If the Cartesian basis vectors in three
dimensions are denoted by e; (i = 1,2, 3) and those in six dimensions by ér
(I =1,...,6), the canonical basis in L,(R®) is given by the following set of
tensors: ¢

€1 =e;®e;, &4 HQAmu®mm+mu®muv
©2=e20e, € =ale1Res+ezQe) (2.2)

e3®es, € =ale;Re;+e, ®ey)

®
w
I

where ® denotes the tensor product and o = H\z\m This is an orthonormal
basis, namely: &; . &, = 617, where the point denotes scalar product in I, (R3).
Explicitly, Hooke’s law in the second-rank tensor notation reads

Ozz c11 C12 €13 V2c14 V2ess V2c16 €zz
Oyy C12 €22 Ca3 V2c34 V2e3s V2¢36 €yy
s | _ | e 23 33 V234 V2c3s V2css €2z

a\me.f T V2cis V2cas V2ea4 2cq4 2¢4s 2¢46 V2e,, 28]
V20., V2c1s  V2cas V2cas 245 2cs5 2cs6 V2.,
V2o., V2ei6 V2ee 2eas 2ca6  2c56  2cq6 V2ezy
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and & coincide, indicating that both the elastic and the viscoelastic rheologies pos-
sess the same eigenstrains. Each complex eigenstiffness Ar™) defines a fundamental
deformation state of the solid, associated with a set of dissipation mechanisms.

A given wave mode is characterized by its proper complex effective stiffness
that can be expressed in terms of the complex eigenstiffnesses. For example, let us
consider an isotropic viscoelastic solid. We have seen that the total strain can be
decomposed into the dilatational and deviatoric eigenstrains, whose eigenstiffnesses
are related to the compressibility and the shear moduli, respectively, the last with
multiplicity five. Therefore, there are only two relaxation functions (or two complex
eigenstiffnesses) in an isotropic medium, one describing pure dilatational anelastic
behaviour, and the other describing pure shear anelastic behaviour. Every eigen-
stress is directly proportional to its eigenstrain of identical form, the proportionality
constant being the complex eigenstiffness. As is well known, the properties of the
shear waves are described by the shear relaxation function, and the properties of the
compressional wave by a linear combination of the dilatational and shear relaxation
functions.

Quality factor (20 Hz)

Clayshale

Quality factor (qSV) - clayshale

Figure 1. Sections of the quality factor surfaces (left) and quality factor surface of the
gSV wave (right).

5. Example

The theory of propagation of viscoelastic waves in isotropic media has been
investigated by several researchers, notably Buchen (3], Borcherdt [2], Krebes [11]
and Caviglia et al. [8]. Modeling results can be found, for instance, in Carcione et
al., [7]. However, research in the framework of anisotropic media is relatively recent.
Carcione [4] and Carcione and Cavallini [6] obtained the expressions of the phase,
group and energy velocities, and quality factors for homogeneous viscoelastic plane
waves in a transversely-isotropic medium. Results for inhomogeneous viscoelastic
waves in general anisotropic media were recently published by Carcione and Cav-
allini [5].

In this work, we assume that the wavefront is the locus of the end of the energy
velocity vector multiplied by one unit of propagation time. We consider Mesaverde
clayshale, a material of hexagonal symmetry. The medium possesses four distinct
eigenstiffnesses [12], and therefore four complex moduli: one quasi-dilatational,
one quasi-isochoric and two isochoric of multiplicity two. In the isotropic limit,
these eigenstiffnesses relax to a pure dilatational and five isochoric complex moduli,
respectively. Each modulus represents a dissipation mechanism modeled by the
standard linear solid with minimum quality factors of 30 and 20 for the quasi-
dilatational and quasi-isochoric eigenstrains, respectively, and 15 and 10 for the
isochoric eigenstrains, at a frequency of 20 Hz.

Energy Velocity (20 Hz)

Clayshale

Figure 2. Sections of the energy velocity surfaces.
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where ¢y are the elasticities in the Voigt bases [1]. The convention will be to use
the symbol / */ over the elasticity matrix, and stress and strain vectors, when these
quantities are expressed in the tensorial basis. It is convenient to express (2.3) in
compact notation as

T==¢eS. (2.4)
where the dot indicates ordinary matrix multiplication. Actually, the interpretation
of stress and strain as vectors is not physically essential but simplifies the mathe-
matical treatment of the problem. Indeed, in this way the elasticity tensor ¢ has
order two instead of four and hence may be considered as a matrix: its eigenvalues
and eigenvectors are then well defined.

3. Eigenstiffnesses and eigenstrains in elastic media

The siz orthogonal strain types and the siz principal elasticities referred by
Lord Kelvin can be found by seeking those strain states ¢ for which € and o are
parallel in 6-dimensional Cartesian space, i.e.

o = c[e] = Ag, (3.1)

where A is a scalar quantity. This is mathematically equivalent to diagonalizing
the stiffness matrix €:
(€—Al)eS =0, (3.2)

where 1 is the 6 x 6 identity matrix. Hence, the eigenstiffnesses and eigenstrains
are the eigenvalues and eigenvectors of &, respectively. Matrix ¢ can be expressed
as

e=ATeAcA, (3.3)

where A is the matrix formed with the eigenstrains; more precisely, with the
columns of the right (orthonormal) eigenvectors of € (note that the symmetry of
¢ implies that A~ = AT ). The eigenvalues of the elasticity matrix are invariant
with respect to any change of basis (or coordinate system): this confers the eigen-
stiffnesses an intrinsic character. To illustrate the usefulness of the decomposition
(3.3), we consider briefly the isotropic case. An isotropic medium is characterized

by a stiffness operator ¢ defined by
cle] = 2pe+ A(tr €)I, e, c=2pl+ A RI, (3.4)

where ) and p are the Lame constants, and I is the identity map in R3. The
characteristic equation for the stiffness operator is then

2ue + A(tr €)I = Ae. (3.5)

Taking the trace of this equation, we see that a strain with nonzero trace is an
eigenstrain if and only if it is proportional to I and the corresponding eigenvalue

is then A; = 2p+ 3), with multiplicity 1. Moreover, all nonzero strains with zero
trace are eigenstrains corresponding to the eigenstiffness A = 2p, with multiplicity
5. No other eigenstiffnesses or eigenstrains are possible. It is clear that eigenstrains
and eigenstresses are related by

tr o =Ay(tre), and & =A1§, I =2,..,6, (3.6)
where the tilde denotes the deviatoric tensors. Then, in unbounded and homoge-
neous isotropic media, the total stress can be decomposed in pure dilatational and
shear stresses, and these produce pure deformations that are not interactive each
other.

The eigenstiffness and eigenstrains of materials of lower symmetry are given by
Mehrabadi and Cowin [12]. The eigentensors are 3 x 3 symmetric matrices in 3-D
space. Their eigenvalues are invariant under rotations and describe the magnitude
of the deformation. On the other hand, the eigenvectors describe the orientation of
the eigentensor in a given coordinate system. For instance, pure volume dilatations
correspond to three equal eigenvalues, and the sum of the eigenvalues of an isochoric
eigenstrain is zero. Isochoric strains with two equal eigenvalues but opposite sign
and a third eigenvalue zero, are plane shear tensors. To summarize, the eigentensors
identify preferred modes of deformation associated with the particular symmetry of
the material. An illustrative pictorial representation of these modes or eigenstrains
was designed by Helbig [10].

4. The viscoelastic constitutive law

The above discussion of the elastic case lead us to infer that in a viscoelastic
material there exist no more than six relaxation functions describing the de-
formation and anelastic properties of the medium. These six, or less, relaxation
functions (complex moduli in the frequency-domain) are the generalization of
the eigenstiffnesses, by using the correspondence principle, to appropriate complex
moduli satisfying the Kramers-Kronig dispersion relations (causality principle). The
existence of six or less complex eigenstiffnesses depends on the symmetry class of
the medium.

Hence, in virtue of the correspondence principle and its application to (3.3),
we introduce the viscoelastic stiffness tensor

p(w) = AT e AV (w) ¢ A, (4.1)
where w is the angular frequency, and A®) is a diagonal matrix with entries
A = A Mp(w), I=1,...,6.  (a2)

The quantities M; are complex and frequency-dependent dimensionless moduli. It
can be easily shown that the viscoelastic stiffness tensor is symmetric, in agreement
with the result obtained by Gurtin and Hrusa [9]. Moreover, the eigenvectors of p
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These values define the quality factor along the principal axes as can be ob-
served in Figure 1, where sections across three mutually orthogonal planes are
represented. The broken lines correspond to the quasi-compressional wave and the
quality factor of the SH mode is the outer continuous curve. Only one octant of
the space is displayed, from symmetry considerations. The right picture illustrates
the 3-D surface corresponding to the ¢SV quality factor.

Finally, Figure 2 represents sections of the energy velocity curves. As before,
the broken line is the gP wave. The polarization of the different modes are plotted
in the energy velocity curves; when not plotted, polarizations are normal to the
planes.
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ENERGY BALANCE AND INHOMOGENEOUS
PLANE-WAVE ANALYSIS OF A CLASS OF
ANISOTROPIC VISCOELASTIC CONSTITUTIVE LAWS *

F. CAVALLINI and J. M. CARCIONE
Osservatorio Geofisico Sperimentale

P. O. Boz 2011, 1-34016 Trieste, Italy

We prove a theorem of power and energy for the solutions of the linear equations of
a viscoelastic material, whose rheology may be described in terms of lumped elements
having the behaviour of either an elastic solid or a viscous fluid. The assumed anisotropy
ensures that this class of constitutive laws is wide enough for describing most of geophys-
ical media; yet, its a priori physical interpretation permits to avoid the mathematical
ambiguities arising, in the definition of potential energy, with constitutive laws of ab-
stract hereditary type. Moreover, sharper results for time-averaged energies are obtained
by assuming a time-harmonic displacement. Finally, fundamental relations for phase-,
energy- and dissipation-velocity are derived in the framework of plane inhomogeneous
waves. As case studies, the Kelvin-Voigt, Maxwell and standard linear solid rheolo-
gies are worked out in detail. The use of coordinate-free notation permits to perform
computations in a clean and rigorous way.

1. Introduction

The theory of mechanical waves in solid dissipative media is a classical topic: for
background information on the physical and mathematical aspects, we refer to the
books by Auld [1] and Caviglia and Morro [6], respectively. Fundamental papers on
the energy balance for these waves are those by Buchen [3] and Borcherdt [2]. How-
ever, most of the results that can be found in the literature were proven assuming
isotropy, which is a too restrictive assumption for geophysical purposes [12]. Hence
Carcione and Cavallini [5] reviewed the subject in a fully anisotropic framework, us-
ing a component notation. The ideas in [5] are developed here with applications to
specific case-studies, using a component-free notation [8]; indeed, the latter is more

*Helpful discussions with professor A. Morro are gratefully acknowledged. This work has been
supported in part by the Commission of the European Communities under the GEOSCIENCE

project.



