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Forbidden directions for inhomogeneous pure
shear waves in dissipative anisotropic media

 M. Carcione* and Fabio Cavallini*

ABSTRACT

In this work we investigate the wave-propagation
properties of pure shear, inhomogeneous, viscoelastic
plane waves in the symmetry plane of a monoclinic
medium. In terms of seismic propagation, the problem
is to describe SH-waves traveling through a fractured
transversely isotropic formation where we assume that
the waves are inhomogeneous with amplitudes varying
across surfaces of constant phase. This assumption is
widely supported by theoretical and experimental ev-
idence.

The results are presented in terms of polar diagrams
of the quality factor, attenuation, slowness, and en-
ergy velocity curves. Inhomogeneous waves are more
anisotropic and dissipative than homogeneous vis-
coelastic plane waves, for which the wavenumber and

attenuation directions coincide. Moreover, the theory
predicts, beyond a given degree of inhomogeneity, the
existence of “stop bands” where there is no wave
propagation. This phenomenon does not occur in
dissipative isotropic and elastic anisotropic media.
The combination of anelasticity and anisotropy acti-
vates these bands. They exist even in very weakly
anisotropic and quasi-elastic materials; only a finite
value of Q is required. Weaker anisotropy does not
affect the width of the bands, but increases the thresh-
old of inhomogeneity above which they appear; more-
over, near the threshold, lower attenuation implies
narrower bands. A numerical simulation suggests that,
in the absence of material interfaces or heterogene-
ities, the wavefield is mainly composed of homoge-
neous waves.

INTRODUCTION contrasts in the quality factor at an interface produce trans-

Inhomogeneous anelastic plane waves have the property
mitted inhomogeneous waves with an inhomogeneity angle

of 90 for almost all andnearly degrees propagation
that the wavenumber and attenuation vectors do not point in
the same direction. This implies that equiphase planes (nor-
mal to the wavenumber vector, see Figure 1) do not coincide
with equiamplitude planes (normal to the attenuation). The
theory of propagation of plane inhomogeneous waves in
viscoelastic isotropic media has been investigated by several
researchers, notably Buchen (1971), Borcherdt (1977), and
Krebes (1984). Hosten et al. (1987) compared theoretical and
experimental results of inhomogeneous waves generated at a
liquid/solid interface where the solid is a low-loss hexagonal
medium, and the’ equiamplitude planes are parallel to the
interface. At anelastic (elastic)-anelastic interfaces separat-
ing isotropic media, an  incident at an angle of 30
degrees produces an inhomogeneous transmitted wave with
an inhomogeneity angle  of 60 degrees or more, depending
on the material properties (Borcherdt et al., 1986). Similarly,
Winterstein (1987) shows (e.g., in his Figure 4) that strong

directions in the incidence layer. Inhomogeneous waves are
also part of interface waves (Carcione, 1992a).

A transversely isotropic formation with an embedded set
of inclined parallel fractures can be represented by a mono-
clinic medium. When the plane of mirror symmetry of this
medium is vertical, the pure antiplane strain waves are
SE&waves. The fractures induce intrinsic attenuation when
they are filled with fluids. The result is that velocity disper-
sion alters the shape of the wavefront (an ellipse in the
elastic case), and that the amplitude of the signal is not
isotropic along the wavefront as a result of anisotropic
dissipation. For shortness, here and below the term “wave-
front” indicates the intersection of the 3-D wavefront with
the plane of symmetry. In this work, part of which has
already been presented as an expanded abstract (Carcione
and Cavallini, 1993c), we consider pure shear-wave propa-
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gation in the mirror symmetry plane of a monoclinic me-
dium. Propagation in this plane is the most general situation
for which antiplane strain motion exists at all propagation
angles. On the other hand, pure shear-wave propagation in
transversely isotropic media is a degenerate case. Our main
result is that, beyond a given threshold of inhomogeneity
angle, there exist stop bands in the propagation angle. The
assumptions in the geological model are not crucial. Indeed,
the stop bands are expected also for waves propagating
outside planes of symmetry. However, this is the simplest
such case (apart from the transversely isotropic, correspond-
ing to = 0); and, very often, a deep understanding of a
phenomenon requires disregarding realistic, but somewhat
secondary, details.

DISPERSION RELATION

The stress-strain relation for a linear anisotropic and
viscoelastic medium can be expressed as (Carcione and
Cavallini, 1993a; Carcione, 1994)

where

        

is the stress vector,

        

is the strain vector, and  is the symmetric stiffness matrix
whose components are complex and frequency-dependent.
The dot denotes ordinary matrix multiplication, and the
superscript T indicates the transpose.

e q u i p h a s e  p l a n e s

Pl a n e s

FIG. 1. Wavenumber and attenuation vectors of an 
geneous viscoelastic plane wave. The angle  defines the
propagation direction and  the degree of inhomogeneity of
the wave.

A general solution for the displacement field can be
represented as a superposition of viscoelastic plane waves of
the form

    l 

where  =   is the angular frequency, and  is a
constant complex vector. The wavenumber k is in general
complex and can be written as

k = K  

where K and  are the real wavenumber and attenuation
vectors, indicating the directions and magnitudes of propa-
gation and attenuation, respectively. In general, these direc-
tions are different (Figure 1) and the plane wave is termed
inhomogeneous. If the directions of propagation and atten-
uation coincide, the wave is called homogeneous. As we
shall see in the next section, an alternative 
of the 2-D plane wave is through the magnitude of the
propagation and attenuation vectors, and their respective
direction angles. When the propagation vector is the plane of
mirror symmetry of a monoclinic medium, the global disper-
sion relation separates into a quadratic factor and a linear
factor representing the dispersion relation of the antiplane
shear wave with displacement field

u = 

where  and  are complex quantities. That k is in the
 z)-plane is supported by the fact that any kind of

symmetry possessed by the attenuation follows the symme-
try of the crystallographic form of the material. These
statements are derived from an empirical law known as
Neumann’s principle (Neumann, 1885). This implies that the
symmetries of any property must be higher or equal to the
intrinsic symmetries of the solid. The dispersion relation of
the viscoelastic shear wave is similar to that of the corre-
sponding elastic wave   but the stiffnesses and
wavenumber components are complex and frequency-de-
pendent, leading to

 +     = 

where p is the material density.

SLOWNESS, PHASE VELOCITY, AND ATTENUATION
VECTORS

The wavenumber components can be written as

=  and  =   mm,,

where  =   and  = (m,, m,) are unit vectors
defining the propagation and attenuation directions, respec-
tively. As illustrated in Figure 1, they can be expressed in
terms of  and  as

and

= sin = cos 

= sin  +  = cos  + 

where  = l  We consider here that -90” 
   i.e., the amplitude decreases in equiphase planes,

although in the dissipative isotropic case  =  degrees is
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forbidden (Buchen, 1971). It is important to note that  is a
free parameter of the theory, in the sense that arbitrary
values of  are possible depending on the incident wave and
the material properties of the media.

The problem is now to express the real wavenumber K and
the real attenuation  in terms of the angular frequency 
and the directions  and  Substituting the wavenumber
components [equation  into the dispersion relation (7) and
reordering terms gives

   = 

where

and

  +  

    

   +  

The imaginary part of equation (11) yields the following
relationship between K and a:

where

 =  +  + 

with the subscripts  and 3 denoting real and imaginary
parts, respectively. Substituting relation (16) into the real
part of equation (11) gives the expression for the real
wavenumberi

K =    

Note that   +   is the square of the
phase velocity and must be a positive quantity. Therefore,
the real wavenumber and attenuation vectors are

and

K = 

 = 

The slowness vector and the phase velocity are

K
S

and

respectively. If  = 0, then  =  and c = b = a  
where  is the complex velocity of homogeneous waves
introduced in Carcione (1990) and Carcione (1992b) for a
transversely isotropic medium, and in Carcione (1994) for an
orthorhombic medium.

ENERGY BALANCE EQUATION

The Umov-Poynting theorem, or energy balance equation,
for inhomogeneous plane waves in the absence of body
forces (Carcione and Cavallini,  is

l P +      = 0,

where P is the complex Umov-Poynting vector defined as

P   

with  the stress tensor given by

 
 
 

The asterisk used as superscript denotes complex conjuga-
tion. The real part of the Umov-Poynting vector gives the
average power flow density over a cycle. The quantities

 

and

   

are the time average strain and kinetic energy densities, and

 

is the dissipated energy density, where  and  take the
real and the imaginary part, respectively. The 
Poynting vector and energy densities for shear waves in the
plane of mirror symmetry of a monoclinic medium are
calculated in Appendix A. These quantities are used in the
following sections to compute the energy velocity vector and
the quality factor.

ENERGY VELOCITY AND WAVEFRONT

The energy velocity is the ratio of the average power 
density  to the mean energy density (E) =  + 
Hence

 =
 +  

Substitution of the Umov-Poynting vector (A-5), and the
energy densities (A-6) and (A-10) into equation (28) gives the
energy velocity for inhomogeneous shear waves:

 =
 +   +  +   

 1 +  + 

where equation (21) has been used.

QUALITY FACTOR

Roughly speaking, the quality factor is the ratio of stored
energy to dissipated energy. In mathematical terms, two
alternative definitions are found in the literature:

 
Q

 peak
Q

 

where angular bracketsindicate time averaging over a cycle.
Whenthe plane wave is homogenous, the two definitions are
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equivalent, but for inhomogeneous waves they differ.
the averagestrain energy, the quality factor reads

Q
  + 

 +  

Using

by virtue of equations (A-10) and (A-11). The calculation of
the peak strain energy density for inhomogeneous waves is
carried out in Appendix B for a general anisotropic medium.
For the antiplane shear wave in a monoclinic medium, it is
given by

  peak    1 l  l     

 = +  + 

+        

+  

    

with  and  the arguments of  and  respectively.
Note that, from equations (A-l) and (A-2),  = -n/2 + arg

 + arg  K l X and  =  + arg  + arg  
K l x. Hence, the peak value depends on the phase difference

  = arg (k,) arg  only. Substituting the strains
(A-l) and (A-2) into equation (33) gives

 =   

+      +     

     +    

     

The quality factor is then given by

 
Q

 peak  + 
.

We demonstrate in Appendix B that when the wave is
homogeneous, A=  and Q =  It can be seen that, if

= 0, then  and Q reduce to the respective correct
expressions for homogeneous waves (Carcione  1994).
Moreover, it can be shown that K,   P,   and

 satisfy certain fundamental relations found by Carcione
and Cavallini  for general wave propagation in 
tropic-viscoelastic media.

EXAMPLES

We consider a monoclinic medium with  = 
P66    and    where

 =
  

1 +  
 2,

and where  and are the material relaxation times
characterizing the dissipation mechanisms of the shear
wave. The quality factors for homogeneous waves  = 0)
along the  and  axes are

1 + 
 =    2,

r e s   w h e r e   =     and   =
(Carcione, 1994). The curve Q,,(o) has its peak at

=  and the value of  at the peak is  . The values
of the low-frequency elasticities are  = 10.0   =
22.5  and = 5 .O  The relaxation peaks of both
dissipation mechanisms are centered at  =  (the
numerical value of  being immaterial), and the values of
the peak quality factors are  = 5 and  = 10. As
mentioned before, they correspond to the quality factors of
the homogeneous plane wave along the  and x-directions,
respectively. Figure 2 displays polar diagrams of the quality
factor, attenuation, slowness, and energy velocity for an
inhomogeneous wave with  = 60 degrees. The curves
correspond to a frequency of  with the broken lines
representing the properties of the homogeneous wave. The
orientation and shape of the curves depend, first, on the
propagation direction, magnitude, and sign of  which are
characteristics of the wave, and, second, on the elasticities
and dissipation mechanisms, which are intrinsic properties
of the medium. As can be observed, the inhomogeneous wave
is more strongly attenuated than the homogeneous wave. Also,
it can be inferred that the curves deviate more strongly from
the isotropic shape for increasing values of  and along certain
directions of propagation. This effect is noticeable in the
attenuation curve. Figure 3a and 3b represent  as a function
of  the propagation angle, where the broken line corresponds
to the homogeneous wave = 0). Figure 3b corresponds to
vertical and horizontal quality factors of  =  = 100.
Observe that in the transition from  = 60 degrees to  = 68
degrees, two “stops bands” develop (for     64 degrees)
where the wave does not propagate (Figure 3a). These bands,
corresponding to  0, occur exclusively in dissipative
anisotropic media; they do not exist in dissipative isotropic or
elastic anisotropic materials. Note that the stop bands exist
even for high values of Q, as is the case in Figure  The
behavior is such that they exist for any finite value of Q, with
their width decreasing with increasing Q. This phenomenon is
not to be confused with the stop bands considered by, e.g.,
Silva (1992), since in that case the band is in the frequency
domain, and for layered structures.

Our results are somewhat similar to the so-called Rayleigh
windows observed by Borcherdt et al. (1986) in anelastic-
anelastic interfaces separating isotropic media. In that win-
dow, close to the critical angle, the reflection amplitude is
reduced considerably. The differences from our problem is
that here the medium is anisotropic and there is no material
interface. Moreover, propagation is forbidden within the stop
bands. For illustration, Figure 4 shows the quality factor and
the energy velocity, for =  These curves correspond to
the material whose properties are represented in Figures 2 and
3a. For this material, other results (not plotted here) are that:
(1) the bands also exist for transversely isotropic media (i.e.,

 = 0); (2) for higher Q they appear before (lower values of 
they do for lower Q (although there is a lower limit for  below
which the bands do not exist, see Figure 3b); (3) weaker
anisotropy does not imply narrower bands but yields a higher
inhomogeneity threshold; (4) for very low and very high
frequencies the bands appear in correspondence to lower
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values of  and, for a given  the bandwidth is larger for very
low frequencies; (5) when   0 the location and shapes of the
bands are symmetric (mirror symmetry) with respect to the
principal axes (e.g., a symmetry axis in a transversely isotropic
solid), compared to   0; and (6) when  = 90 degrees, each
band covers a solid angle of  The existence of inhomoge-
neous body waves for  = 90” is forbidden in isotropic media
(Winterstein, 198’7). Let us consider, for instance, the case

=  = 0 degrees, and  =  It can be readily verified
that

   

  l

FIG. 2. Polar representations of (a) attenuation, (b) slowness, (c) quality factor, and (d) energy velocity for an inhomogeneous
wave  = 60 degrees) in the symmetry plane of a monoclinic medium. The curves correspond to a frequency  , where the
quality factor takes the minimum value. The broken lines represent the properties of the homogeneous wave  = 0).
Differences between the homogeneous and inhomogeneous waves are evident along certain directions.
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Thus, for   there is propagation and attenuation
(it can be easily shown that   0). Conversely, for

= 90” and  = 90°, the wave exists for    In
isotropic media ( =  there is no propagation. A
forward modeling code has been developed to simulate
anelastic waves in the symmetry plane of a monoclinic
medium (Carcione and Cavallini, 1993b). This code is
based on the generalized version of the SH-wave equation
and uses the rheological relation previously introduced
in the time-domain. The results of the simulations are shown
in Figure 5 by snapshots of the elastic and anelastic wave-
fields produced by a line source normal to the symmetry
plane of the monoclinic medium. The source is a Ricker
wavelet with a central frequency of  The wavefield
attenuates more in the vertical direction, as indicated
by the quality factor and attenuation curves in Figure 2.
Besides the anisotropic attenuation effect, strong velocity
dispersion is seen since the anelastic wavefront is larger
than the elastic wavefront. From a comparison of the snap-
shot in Figure 5b with the energy velocity polar plots
represented in Figure 26, the wavefield seems mostly a
superposition of homogeneous plane waves. This is a
result of the fact that the medium is homogeneous. When
interfaces or inhomogeneities are present, inhomogeneous

FIG. 3. Square of the phase velocity,  as a function of the
propagation angle  for different values of  In (a), the
medium has vertical and horizontal quality factors of  =
5 and = 10, respectively; and in (b)  =  = 100.
Stop bands exist where there is no propagation. For higher
values of Q the bands are narrower.

waves are the rule, not the exception. These snapshots were
successfully tested with an analytical solution found by
Carcione and Cavallini (1993d).

CONCLUSIONS

Increasing values of  the angle between the propagation
and attenuation directions, increase the dissipation and
anisotropy of a medium beyond values calculated for
homogeneous waves. In fact, while wavefronts based on
the homogeneity assumption may appear isotropic, wave-
fronts composed of inhomogeneous waves can deviate
considerably from a circle. Furthermore, beyond a given
inhomogeneity angle, the combined anelastic-anisotropic
properties of the medium give rise to stop bands where
there is no propagation at all. The location and width of
the bands depend on the material properties, more pre-
cisely on the degree of anelasticity and anisotropy. In
contrast, they exist even for very weak anisotropy and very
low-loss anelastic solids. A physical interpretation seems
to be in order here. The bands correspond to nonphysical
solutions since the phase velocity vanishes or is purely
imaginary. A zero phase velocity corresponds to an in-
finite slowness, but the generation of a wave with such
slowness is precluded. The same applies when the slow-
ness takes an imaginary value. However, the effects of
the bands should be observable near the threshold, that
is when the value of the inhomogeneity angle is such
that the phase velocity is small and the slowness is high
along a given direction. Indeed, this is combined with a
high attenuation that produces a substantial dissipation
of the wavefield along the band directions, and this anoma-
lous highly anisotropic attenuation is really an observable
effect.

It is also remarkable that, contrary to the isotropic case,
inhomogeneous body waves can propagate even for perpen-
dicular propagation and attenuation directions. Numerical
simulations in unbounded media confirm the validity of the
theory in the framework of homogeneous viscoelastic plane
waves. The discovery of the stop bands is likely to impact
amplitude versus offset techniques (AVO) since, as with the
Rayleigh window phenomenon, the bands can produce sub-
stantial variations in the recorded amplitudes. In fact, the
existence of a stop band acting on inhomogeneous waves
traveling between two interfaces will produce a variation in
the reflected wavefield that might be confused with a varia-
tion in the reflectivity of the lower interface. Further work
involves Snell’s law for inhomogeneous waves in material
interfaces separating dissipative anisotropic materials, the
expressions for the reflection and transmission coefficients,
and the investigation of the stop bands for qP and qSV
waves. For this purpose, numerical modeling based on the
full wave equation is essential to verify the theoretical
assumptions.
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FIG. 4. Quality factor Q and energy velocity  are plotted versus propagation angle O-in Cartesian form-in (a) and (b),
respectively. The corresponding polar plots are shown in (c) and (d). The material properties are those of Figure 3a, and the
inhomogeneity angle is  = 68 degrees.
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FIG. 3. Snapshots of (a) the elastic, and (b) the anelastic wavefields produced by aline sourcenormal to the symmetry plane
of a monoclinic medium. The source is a Ricker wavelet with central frequency of  (Figure 2). The resulting wavefield is
composed mostly of homogeneous waves.
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APPENDIX A
UMOV-POYNTING VECTOR AND ENERGY DENSITIES FOR INHOMOGENEOUS SHEAR WAVES IN THE PLANE

OF SYMMETRY OF A MONOCLINIC MEDIUM

The nonzero strain components associated with the anti-
plane shear wave [equation (6)] are

The nonzero stress components are, from equations (1) and
(6),

    l (A-1)    =

(A-3)
 l x) .

ax (A-2)
   =  
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(A-4)  =   l   I  + P66   

From equation (23), the Umov-Poynting vector is +  (A-8)

P        
 =    +  

   +  (A-5) +  +   +  (A-9)

From equation (26), the average kinetic energy density is
where equations (8) and relation (15) have been used.

         (A-6) Reordering terms, and using equations (11)-(13), the average
strain energy density is

From equation (25), the average potential energy density is

 =    + 
 =  + (A-10)

Similarly, the average dissipated energy density over a cycle
(A-7) is

which, after substitution of the strains (A-l) and (A-2),
becomes  =  + (A-l 1)

APPENDIX B

PEAK STRAIN ENERGY DENSITY FOR HARMONIC FIELDS IN A GENERAL ANISOTROPIC MEDIUM

The strain energy density is given by implies that

 =    l  l (B-1)  =     (B-10)

    + (B-11)

 =    + (B-12)

The quantity  is four times the time average strain energy
density [equation  In fact,

For a time harmonic field, the strain vector has the form

S = s = (B-2)

where  depends on the spatial coordinates. Then

 =  cos S   sin (B-3)

For clarity, we redefine

      

Substituting these expressions into equation (B-l), the strain
energy takes the form

=  + V cos S  T sin (B-4)

where

As can be seen by differentiating equation (B-4) with respect
to t, the strain energy has a maximum at tan  =  
Replacing this value into equation (B-4) gives

 s   + peak  

Writing the strain as

(B-8)

 =    =   

 = 1, . . . , 6, (B-9)

 =  l   = 

(B-13)

or

     = (B-14)

since the second term of the right-hand side vanishes (be-
cause of the symmetry of the stiffness matrix and the
properties of the sine function). On the other hand,

 +  =  

x cos  +       (B-15)

Finally, the peak strain energy density for harmonic fields in
a general anisotropic medium takes the form

 s peak=  + A.

When all the strain components are in phase,

 =  = 

and

(B-16)

(B-17)

 s peak= 

as is the case for homogeneous plane waves.

(B-18)


