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Abstract 

We investigate the analogy between electromagnetic and acoustic waves, considering the kinematics and the energy balance 
of wave propagation. It is shown that the propagation of the TEM mode (transverse electric and magnetic) is completely 
analogous, from the mathematical point of view, to the propagation of viscoelastic SH waves in the plane of symmetry of a 
monoclinic medium. The viscoelastic model corresponding to the electromagnetic equations is the 3D Maxwell constitutive 
law. The analogy identifies particle velocity with magnetic field, stresses with electric field, compliance with permittivity, 
inverse of the viscosity with conductivity, and density with permeability. Therefore, it is possible to compute simultaneously 
the phase velocity, the slowness, the attenuation, the quality factor and the energy velocity of both wave phenomena. The 
dissipation effects due to anisotropic viscosity and conductivity are verified by numerical experiments performed with spectral 
time-domain techniques, which have been chosen because accuracy is very important when there are physical dispersion and 
anisotropic dissipation. An analytical solution is found for elastic anisotropic media, and extended to the viscoelastic and 
electromagnetic cases by using the correspondence principle. Finally, two corresponding examples are worked out numerically, 
and an electromagnetic problem is solved with a computer code originally designed for solving viscoelastic wave propagation. 

1. Introduction 

Electromagnetic waves have been used by a wide 

variety of probing techniques designed to study the 
electrical properties of the earth. It is well known that 
the conductivity strongly depends on the rock charac- 
teristics such as pore geometry, clay content and water 

conductivity. In particular, in coal mining it is of in- 
terest to locate areas of geological disturbance such as 

sand channels or faults (e.g., Ref. [ 1 ] ) . On the other 
hand, acoustic waves are the main tool in geophysical 
prospecting of hydrocarbons. The seismic method is 
based on the reflection of acoustic waves from inho- 
mogeneities and interfaces separating the geological 
formations. 

* Corresponding author. 

As early as the 17th century it was known that 

light and acoustic waves are of similar nature. Hooke 
believed light to be a vibratory displacement of a 

medium, through which it propagates at finite speed. 

Later, in the 19th century, Maxwell and Lord Kelvin 
made extensive use of physical and mathematical 
analogies to study wave phenomena in acoustics 

and electromagnetism [ 21. In fact, the displacement 
current term introduced by Maxwell into the elec- 
tromagnetic equations arises from the analogy with 
elastic displacements. It is possible to recast the vis- 
coelastodynamic equations into a form that closely 
parallels Maxwell’s equation. In many cases, this 
formal analogy becomes a complete mathematical 
equivalence such that the problems in both fields can 
be solved by using the same analytical (or numerical) 
methodology. 

0165-2125/95/$X39.50 @ 1995 Elsevier Science B.V. All rights reserved 

SSDIO165-2125(94)00047-6 



150 J.M. Carcione. E Cavallini/Wave Motion .?I (1995) 149-162 

In this work, it is shown that the 2D Maxwell 
equations describing propagation of the TEM mode 

in anisotropic media is completely analogous to 

the SH wave equation in a Maxwell anisotropic- 

viscoelastic solid. This equivalence was probably 

known to Maxwell, who was aware of the analogy 

between the process of conduction (static induction 
through dielectrics) and viscosity (elasticity). Ac- 

tually, Maxwell’s electromagnetic theory of light, 

including the conduction and displacement currents, 
was already completed in his paper “On physical lines 

of force” published in two parts in 1861 and 1862 [ 31. 
On the other hand, the viscoelastic model was pro- 
posed in 1867 (see Refs. [Is] and [ 51). He seems to 

have arrived to the viscoelastic rheology from a com- 

parison with Thomson’s telegraphy equations (e.g., 

Ref. [ 61)) which describe the process of conduction 

and dissipation of electric energy through cables [ 21. 
The analogy can be exploited in several ways. 

In first place, existing viscoelastodynamic modeling 

codes can be easily modified to simulate electromag- 
netic wave propagation. Secondly, the set of solutions 

of the viscoelastic SH problem, obtained from the cor- 
respondence principle, can be used to test the electro- 
magnetic codes. Moreover, the theory of propagation 
of plane harmonic waves in anisotropic-viscoelastic 

media applies also to electromagnetic anisotropic 

wave propagation. In particular, the introduction of 
anisotropic effects is relevant in the study of sedi- 

mentary formations in which oil and gas are stored. 

Indeed, it is well known that velocity and attenuation 
anisotropy of acoustic waves are important in cracked 
limestones and thin saturated sandstones layers em- 

bedded in anisotropic shales. Moreover, the value of 
the electrical conductivity has a wide range (it may 

vary from lo-t4 to lo6 S/m) and may present a high 

coefficient of anisotropy. In some cases, like interbed- 
ded shales and sandstones, the longitudinal conduc- 

tivity can be as far as nine times the transverse con- 
ductivity. In this sense, electromagnetic attenuation 
effects can be very important hydrocarbon indicators. 

The paper is organized as follows. Sections 2 and 3 
introduce the electromagnetic and acoustic equations. 
The analogy is established in Section 4, including the 
correspondence with electric circuits. The kinematic 
and energy quantities describing wave propagation are 
obtained in Section 5. Finally, in Section 6 we solve 
numerically the field equations and compare the re- 

sults with the theoretical predictions. In addition, the 
numerical modeling algorithm is tested with the prob- 

lem of anisotropic electromagnetic propagation. 

2. Maxwell’s equations 

In 3D vector notation, the Maxwell equations are 
(e.g., Ref. [ 71) 

VxE=-$+M, 

VxH=T+J, 

(1) 

(2) 

where E, B, H and D are the electric intensity, the 
magnetic flux density, the magnetic intensity and the 

electric flux density, respectively, and J and M are the 

electric and magnetic current densities, respectively. 

In general, they depend on x = (x, y, z ) , the Cartesian 
coordinates, and 1, the time variable. Equations ( 1) 
and (2) constitute six scalar equations with 12 scalar 

unknowns, since M is assumed to be given and 3 is a 
known function of the electric field as stated explicitly 

by Eq. (5) below. The six additional scalar equations 
are the constitutive reIations, which far isotropic media 

can be written as 

D=E .E, (3) 

B=p .H, (4) 

where E and p are the permittivity and permeability 

matrices, respectively. The dot in the r.h.s. of (3) and 

(4) denotes ordinary matrix multiplication. Moreover, 

the current density is 

J=oeE+Js, (5) 

where u is the conductivity matrix and J, is the given 
contribution of the sources, taken as zero in Section 
4. The first term of the r.h.s. of (5) is the conduction 
current density. Substituting the constitutive relations 
and the current density into Eqs. ( 1) and (2) gives 

8H 
WE=-pdt+M, 

VxH=a.E+r$+J.. 
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3. The acoustic field equations 

The fundamental equations of acoustics, when writ- 
ten in terms of particle velocity and stress, can be ex- 
pressed in terms of first order time derivatives. Fol- 
lowing Auld [ 81, Cauchy’s equations can be written 
as 

V.T= 2-F 
Pat * 

T = [0xXx 7 uyy 1 (+a 9 gyz , ~xz , cy] T (9) 

is the stress vector, v is the particle velocity vector, p 
is the density, F is the body force vector, and, from 
now on, 

v= 

[ 

a/ax 0 0 0 a/a2 a/ay 
0 alay 0 a/a2 0 a/ax . (10) 
0 0 a/az a/ay a/ax 0 1 

The strain is given in terms of the displacement u = 

[u,,+ uz IT by 

s = [ Em Eyy 9 Ezz 9 2gyz v 2Exz 7 2Exy 1 T, (11) 

where l xX = au,/ax, E,~ = caux/ay + au,/ax) /2, etc. 
The relation between strain and particle velocity is 

VT “,s .v=-_. 

Auld (see Ref. [ 8, p. 1011) establishes the 
acoustic-electromagnetic analogy by using a 3D 
Kelvin-Voigt model: 

as 
T=cK.S+IJK-~, (13) 

where eK and rh< are the (Kelvin-Voigt) elasticity 
and viscosity matrices, respectively. Compare this re- 
lation to the 1D Kelvin-Voigt stress-strain relation in, 
e.g., Ref. [ 9, equation ( 10.43) 1. Eliminating the time 
derivative of the strain by using Eq. ( 12), and defin- 
ing the matrix 

we get 

VT. 
av 

v+T1(‘vT~ = CK 
-, dT 

(14) 

Auld establishes the analogy of (8) and ( 14) with 
Maxwell’s equations (6) and (7), where T corre- 
sponds to E and v corresponds to H. 

A better correspondence can be obtained by intro- 
ducing, instead of ( 13), the 3D Maxwell constitutive 
relation [ lo] : 

as 
Yg=cM 

-* aT 
.~fr)~-*.T, (15) 

where Q and qM are the (Maxwell) elasticity and the 
viscosity matrices, respectively. Compare this relation 
to the ID Maxwell stress-strain relation ( [ 9, equation 
( 10.34) ] ). Eliminating the strain, by using Eq. ( 12)) 
gives the equation analogous to (7) : 

VT.v=qM-‘.T+& .$_ (16) 

Defining the compliance matrix 

sM = e$ (17) 

and the matrix 

rM = %,,& 

Eq. ( 16) becomes 

(18) 

aT 
VT.v=rM.T+sM.---. 

at 
(19) 

In general, the analogy does not mean that acous- 
tic and electromagnetic equations represent the same 
mathematical problem. In fact, T is a 6D vector and E 
is a 3D vector. Moreover, acoustics involves 6 x 6 ma- 
trices (for material properties) and electromagnetism 
3 x 3 matrices. However, the complete equivalence can 
be established in the 2D case by using the Maxwell 
model, as can be seen in the next section. 

4. Acoustic-electromagnetic analogy 

In general, a realistic medium is described by sym- 
metric anisotropic permittivity and conductivity ten- 
sors. Assume, for instance, that El1 0 El3 

&T= 

[ 1 0 E22 0 (20) 

El3 0 c33 
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and WI 0 Cl3 

0= 

[ 1 0 a22 0 . (21) 
m3 0 fl33 

Tensors (20) and (21) correspond to a monoclinic 
medium with the y-axis perpendicular to the plane 
of symmetry. There always exists a coordinate trans- 
formation that diagonalizes these symmetric matri- 
ces. This transformation is called the principal system 
of the medium, and gives the three principal compo- 
nents of these tensors. In cubic and isotropic media 
the principal components are all equal. In tetragonal 
and hexagonal materials two of the three parameters 
are equal. In orthorhombic, monoclinic, and triclinic 
media, all three components are unequal. The perme- 
ability tensor is, for most materials, isotropic. In this 
case, we have J.J = pl; here, IC. is the permeability and 
1 is the 3 x 3 identity matrix. 

Now, assume that the propagation is in the (x, z ) - 
plane, and that the material properties are invariant in 
the y-direction. Then, E,, E, and HY are decoupled 
from E,,, H, and H, . In the absence of electric source 
currents, the first three fields obey the TEM (trans- 
verse electric and magnetic fields) differential equa- 
tions: 

(22) 
aE, aE, ---_= 
ax a2 

a HY - az =(TIIE~+cTI~E~ +c+ +~13%, (23) 

aH,_ aE, aE, 

ax - 
m3& + us& + ~13~ + ~3377 (24) 

These anisotropic equations generalize the isotropic 
model used by Greenfield and Wu [ 11. On the other 
hand, in acoustics, uniform properties in the y direc- 
tion imply that one of the shear waves has its own 
(decoupled) differential equation, known in the liter- 
ature as the SH wave equation (e.g., Ref. [ 111) . This 
is strictly true in the plane of mirror symmetry of a 
monoclinic medium. Propagation in this plane implies 
pure anti-plane strain motion, and is the most general 
situation for which pure shear waves exist at all prop- 
agation angles, On the other hand, pure shear wave 
propagation in hexagonal media are a degenerate case. 
A set of parallel fractures embedded in a transversely 
isotropic formation can be represented by a monoclinic 

medium. When the plane of mirror symmetry of this 
medium is vertical, the pure anti-plane strain waves 
are SH waves. Moreover, monoclinic media include 
many other cases of higher symmetry. Weak tetrag- 
onal media, strong trigonal media and orthorhombic 
media are subsets of the set of monoclinic media. 

In a monoclinic medium, the elasticity and viscosity 
matrices and their inverses have the following form 

[81 

a11 a12 a13 0 a15 0 

aI2 a22 a23 0 a25 0 

aI3 a23 a33 0 a35 0 

0 0 0 &,4 0 a46 

a15 a25 a35 0 a55 0 

0 0 0 a46 0 U66 

(25) 

It is assumed that any kind of symmetry possessed by 
the attenuation follows the symmetry of the crystal- 
lographic form of the material. This statement can be 
supported by an empirical law known as Neumann’s 
principle [ 121. 

The relevant components describing the motion of 
the SH wave are 

W-3 

Then, the differential equations are obtained from the 
second row of (8) and the fourth and sixth rows of 
(19): 

aax, aa,, -- 
ax + a2 

=p% -Fy, 

_au,-_ 
a2 - 

r44uyz - 746uxy 

au,, aax, -- - 
w4 at 

s46 at 9 

dv,_ 
ax 

- r46uyz + 766uxy 

aa,, 
+s46- 

* 

at + s66 at ’ 

(27) 

(28) 

(29) 

where 

r44 = 766/f. 766 = 7744/q, 746 = -?&6/q, 

rs = 77441366 - &’ (30) 

and 
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.w = C66/C, S66 = w/c, s46 = +46/c, 

c = c44c66 - c;,, (31) 

where the stiffnesses CIJ and the viscositiesql~, (I, J = 
4,6) are the (I, J) -components of the matrices CM 
and qM, respectively. 

Note that Eqs. (22)-( 24) are converted into Eqs. 
(27) -( 29)) and vice versa, under the following sub- 
stitutions: 

V= [;;;I e [ -;I] t (32) 

F? -3 My, (33) 

P - Pu, (36) 

where s and T are redefined here as 2 x 2 matrices for 
simplicity. Introducing the 2 x 2 stiffness and viscosity 
matrices 

(37) 

we can get the 2D identities s = c-l and r = q-i, 
which are similar to the 3D equations ( 17) and ( 18), 
respectively. Then, the anisotropic SH wave equation 
based on a Maxwell rheology is mathematically equiv- 
alent to the anisotropic Maxwell equations whose forc- 
ing term is a magnetic current. 

To get a more intuitive idea of our field equations, 
and to introduce the concept of quality factor, we de- 
velop the following considerations, which lead to Fig- 
sures 1 and 2. It is well known that the mechanical 
representation of the Maxwell rheological model is a 
series connection of a spring and a dashpot. For in- 
stance, Eq. (29) with c46 = r]46 = 0 can be constructed 
from the model displayed in Figure 1, where yi and 
y2 are the strains on the dashpot and on the spring, 
respectively. In fact, 

@l 
(+xy = 7744,t and uxy = ~44~2, 

and 

f-----l UXY 

y, 
I T 

r-l 7144 

Y2 r----i c44 

--I uXY 

Fig. 1. Maxwell viscoelastic model corresponding to the xy com- 
ponent of the stress-strain constitutive relation, with ce = 77~ = 0. 
The strains acting on the dashpot and spring am yt and ~2, re- 
spectively. 

Fig. 2. Electric circuit equivalent to the viscoelastic model shown 
in Figure 1. where R and C am the resistance and capacitance, V 
is the voltage, and It and 12 are the electric currents. The analogy 
implies that the energy dissipated in the resistor is equivalent to the 
loss energy in the dashpot, and the energy stored in the capacitor 
is equivalent to the potential energy stored in the spring. On the 
other hand, the magnetic energy is equivalent to the elastic kinetic 
energy. 

imply (29) ; indeed, if c46 = 746 = 0, then su = 1 /CM 
and 744 = l/vu. 

Obtaining a pictorial representation of the elec- 
tromagnetic field equations is not so easy. However, 
if, instead of the distributed-parameter system (23) 
and (24), we consider the corresponding lumped- 
parameter system (electric circuit), then such an 
interpretation becomes straightforward. Indeed, if 
we consider, for example, Eq. (23) and assume, for 
simplicity, that Ut3 = Et3 = 0, then its r.h.s. becomes 
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or, in terms of circuit elements, 

which corresponds to a parallel connection of a ca- 
pacitor and a resistor as shown in Figure 2, where R 

and C are the resistance and the capacitance, respec- 
tively, V is the voltage (i.e., the integral of the electric 
field) and It and 12 are the electric currents ( VR cor- 
responds to aE). At first sight it is surprising that a 
series circuit, as in Figure 1, may be the analogue of a 
parallel circuit, as in Figure 2; but this is the outcome 
of the mathematical machinery embodied in the field 
equations and in the correspondence (32)-( 36). An 
important parameter of the circuit represented in Fig- 
ure 2 is the loss tangent of the capacitor. The circuit 
can be considered as a real capacitor whose losses are 
modeled by the resistor R. Under the action of a har- 
monic voltage of frequency w, the total current I is 
not in quadrature with the voltage, but makes an an- 
gle lr/2 - S with it (It is in phase with V, while Z2 is 
in quadrature ) . As a consequence, the loss tangent is 
given by 

tan * = ‘I = 1 c-(77-/2 - 6) 
12 Z sin(7r/2 - 8) ’ 

(38) 

Multiplying and dividing (38) by V gives the relation 
between the dissipated power in the resistor and the 
reactive power in the capacitor 

tan s = w cos(7+ - 6) V2/R 1 

VZ sin( ?r/2 - 6) 
z-z-. 

ocv2 wCR 
(39) 

The quality factor of the circuit is the inverse of the 
loss tangent. In terms of permittivity and conductivity 
it is given by 

Q=w;. 

At the end of the next section, the preceding for- 
mula for the quality factor will be obtained from the 
acoustic-electromagnetic analogy. 

5. Kinematics and energy considerations 

The kinematic quantities describing wave motion 
are the slowness, the phase velocity and the attenua- 

tion vectors. The analysis is carried out for the acoustic 
case, and the electromagnetic case is obtained by ap- 
plying equivalence (32) -( 36). For a harmonic plane 
wave of angular frequency o, Cauchy’s equation (8) 
- in absence of body forces - becomes 

V.T-iopv=O. (41) 

On the other hand, the generalized Maxwell stress- 
strain relation ( 15) takes the form 

T=p.S, (42) 

where p is the complex stiffness matrix given by 

P= 
( *)-I 

s--G . (43) w 

All the matrices in this equation have dimension six. 
However, since the SH mode is pure, a similar equation 
can be obtained for matrices of the form (21) . In this 
case, the stress and strain simplify to 

auY T = [ayZ, axylT and S = [x, fp, (4.4) 

respectively, where uy is the displacement field. 
The displacement associated to a homogeneous vis- 

coelastic SH plane wave has the form 

u = uye2, 

uy = ~aerW---k.x), 
e2 = 10, 1, CUT, (45) 

where x = (x, z ) is the position vector and 

k=(K--iiLY)R=kri (46) 

is the complex wavevector, with 

ri = [ZJ,]r (47) 

defining the propagation direction through the direc- 
tion cosines I, and 1,. Replacing the stress-strain Eq. 
(42) into Cauchy’s equations (41) yields the disper- 
sion relation 

pa& + 2p4&lz + p441; - p ( ;)2 = 0. 

This relation defines the complex velocity 

(48) 

P6& + 2P461,1, + P4& 1’2 

> . 
(49) 

P 
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The real slowness and attenuation vectors can be ex- 
pressed in terms of the complex velocity as 

s=R 1 k, 0 V 

and 

a=---0s A_ k, 0 V 
(51) 

while the phase velocity is the reciprocal of the slow- 
ness. In vector form it is given by 

VP = $2 $ 
[ ( >I 

-1 
k. (52) 

The operators !R( .) and S( +) take the real and imag- 
inary part, respectively. The velocity of the energy 
(wavefront) is defined as the average power flow den- 
sity divided by the average energy density. The power 
flow is the real part of the Umov-Poynting vector, 
while the average energy is half the sum of the peak 
kinetic and potential energy densities (see Ref. [ 131) . 
The calculation of these quantities is carried out in 
Appendix B. Hence, the energy velocity is 

where & and i?s are the unit vectors along the x and z 
directions, respectively. As shown in Appendix B, the 
quality factor is given by 

(54) 

From E!.q. (43), in virtue of the acoustic-electro- respectively. If q --$ 0 and u -+ 00, then the behaviour 
magnetic correspondence (32) -( 36), it follows that is diffusive; while conditions q --) 00 and (+ -+ 0 
p corresponds to the inverse of the complex permit- correspond to the elastic limit. Note that q/G and E/C 
tivity matrix E*, namely: are the relaxation times of the wave processes. 

P -I * e* = et - La’* (55) 
0 6. Wave equation and simulations 

Then, the electromagnetic slowness, attenuation, 
phase and energy velocities, and quality factor can 
be calculated from equations (50), (5 1)) (52), (53) 
and (54) by applying this equivalence, and that of 
the density with the permeability (36), to Eq. (49). 

Equations (28) and (29) can be written in compact 
form as 

In orthorhombic media, the components of the form 
a46 vanish; therefore the complex stiffness matrix is 
diagonal, with components 

(ci’ - iw-177i1)-1 (56) 

in the acoustic case, where I = 4 or 6, and 

(E,, - iw-‘a,,)-’ (57) 

in the electromagnetic case, where I = 1 or 3. In 
isotropic media, where a~ = ~66, the complex velocity 
becomes 

v = [(G-l - j@-17]-1)p]-1’2 (58) 

in the acoustic case, and 

V = [(E - io-‘a)p]-I’*, (59) 

in the electromagnetic case, where G is the rigidity 
modulus, 7 is the viscosity, E is the permittivity, and 
(T is the conductivity. 

It is clear that the kinetic and strain energy densi- 
ties are associated with the magnetic and electric en- 
ergy densities. In terms of circuit elements, the ki- 
netic, strain and dissipated energies represent the en- 
ergies stored in inductances, capacitors and the dissi- 
pative ohmic losses, respectively. A similar analogy, 
used by Maxwell, can be established between particle 
mechanics and circuits (e.g., Ref. [ 141) . 

In the isotropic case, the acoustic and electromag- 
netic quality factors are 

Qac = $9 
and 

Q ;. em =fj)- (61) 
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which can be also deduced from (19) by using the 
2D notation, with V2 = [ a/az, a/& IT. Multiplying 
(62) by c gives 

dT 
- =c.(V2uy -7.T). 
ar 

Cauchy’s equation (27) becomes 

au, 1 -=_ 
at P 

(VT-T-F,). 

Equations (63) and (64) represent the velocity-stress 
formulation of the problem for the unknown vector V 
defined in (32). The wave equation has the form 

g =MV+F’, 

where M is a spatial differential operator matrix. Most 
frequently, an explicit or implicit finite-difference 
scheme is used to march the solution in time. This 
technique is based on a Taylor expansion of the evo- 
lution operator. Here, Rq. (65) is solved by a spectral 
time integration technique introduced in Ref. [ 151. 
Its formal solution is t V(t) = J eeMF’( t - 19) do, (66) 

0 

where zero initial conditions have been assumed. In 
Eq. (66), exp( 0 M) is called the evolution operator of 
the system. The corresponding numerical algorithm is 
based on a polynomial interpolation of the exponential 
function in the complex domain of the eigenvalues of 
the operator M, over a set of points which is known 
to have some optimal interpolation properties. These 
points should lie on a T-shape domain defined by the 
imaginary axis and the negative real semiaxis of the 
complex frequency plane. In this way, the interpolating 
polynomial is “almost best”. In the isotropic case, the 
eigenvalues A = iw (w complex) of M satisfy the 
following characteristic equation: 

(A+$) [,(A+;)+y =o, (67) 

where K is the real wavenumber. The solution of (67) 
gives a static mode corresponding to the eigenvalue 
A = -q/G, and two propagating modes lying close to 
the imaginary axis, corresponding to the other eigen- 
values. Note that v/G is the relaxation time of the 

Table 1 
Material properties 

Elasticities ( GPa) 

Viscosities (GPa s) 
Permittivities 

cqq = 10.0, c@, = 22.5, c&j = -5.0 

r)44 = 1.50. q&i = 3.40, T) - 1.13 
z,, = 12.5.~0 > q3 = 17 56: - . , 
E,J = -4.3q 

Conductivities (S m-l) (+I1 = 3.0 x 10-5, 033 = 7.0 x 10-5, 
~'13 = -3.46 x 1O-5 

q, = 8.85 x lo-‘* F m-l; p=m=4rx lo-‘H m-‘; 
p = 2.5 g cme3 

system, and G/p is the square of the phase velocity 
at high frequencies. It can be seen that, also in the 
anisotropic case, the eigenvalues lie on the T-shape 
domain. 

To balance time integration and spatial accuracies, 
the spatial derivatives are computed by means of 
the Fourier pseudospectral method, although finite- 
differences or finite-elements can also be used. 

The material properties of the medium are given in 
Table 1, where ~0 and Jo are the permittivity and per- 
meability of free space. Fig. 3 shows slowness (a), 
attenuation (b), energy velocity (c) and quality factor 
(d) surfaces for homogeneous electromagnetic plane 
waves at a frequency of 600 kHz. The orientation and 
shape of the curves depend on the dielectric and con- 
ductivity tensors. As can be seen, the attenuation is 
highly anisotropic, with maximum dissipation at ap- 
proximately 30 degrees from the horizontal axis. Anal- 
ogously, the slowness has an anisotropic character, 
while the energy velocity indicates the shape of the 
wavefront. 

The rectangular numerical mesh has NX = Nz = 
105 grid points per side, with a uniform grid spacing 
of Dx = DZ = 30 m in the electromagnetic simulation, 
and Dx = Dz = 20 m in the acoustic simulation. 
The field is initiated by a line source, normal to the 
(x, z )-plane. The source central frequency is 300 kHz 
and 50 Hz for the electromagnetic and acoustic cases, 
respectively. The cutoff frequency is twice the central 
frequency. 

Fig. 4 compares numerical and analytical electro- 
magntic solutions of the magnetic field at a receiver 
whose location (x, z ), relative to the source, is indi- 
cated in the picture. The distance between the source 
and the receiver is 600 m. As can be appreciated, the 
agreement between solutions is virtually perfect de- 
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attenuation slowness 

9 

5 
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3 
ui+ -3 

-9 

-15 
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YO 
a" 

-2 

-4 

quality factor 

a" 0 

-10 

-20 
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V., (m/p) Qx 

Fig. 3. Polar diagrams of the slowness (a), attenuation (b), energy velocity (c) and quality factor (d) curves for electromagnetic plane 

waves at a frequency of 600 kHz. 
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Fig. 4. Comparison between numerical and analytical electromagnetic solutions. The source central frequency is 300 kHz and the 
source-receiver distance is 600 m. 

vv t=0.44 s 

Elastic Viscoelastic 

Fig. 5. Snapshots of the elastic (a) and viscoelastic (b) acoustic fields at 0.44 s. The elastic wavefront is slightly wider than the viscoelastic 
wavefront, since the phase velocity in a Maxwell material vanishes at zero Frequency and approaches the elastic velocity at infinite frequency. 
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Non-conducting 

Fig. 6. Snapshots of the electromagnetic wavefield in the purely dielectric (a) and conducting (b) cases at 13.5 /.Ls. The anisotropic 

dissipation features are in agreement with the attenuation curve represented in Fig. 3b. 

spite the anomalous behaviour of the phase velocity 
at low frequencies. Fig. 5 represents snapshots of the 

particle velocity uY at f = 6.44 s, where (a) corre- 
sponds to the elastic limit (77 -+ co) and (b) is the 
viscoelastic case. Finally, Fig. 6 displays snapshots of 

the magnetic component HY at t = 1.35~s, where (a) 
corresponds to the elastic limit (u + 0) and (b) is 
the dissipative case. The results given in Figs. 5 and 6 

were obtained by using the same computer code with 

different input data. As can be seen, the snapshots of 
the lossy medium exhibit more anisotropic dissipation 
than in the lossless case. The features of the lossy elec- 
tromagnetic snapshot are in agreement with the atten- 

uation and energy velocity curves displayed in Fig. 3b 

and 3c, respectively. 
This type of numerical modeling can be effectively 

used to simulate electromagnetic waves in heteroge- 

neous media also [ 161. 

7. Conclusions 

TEM (transverse-electromagnetic) equations. The 
underlying assumptions are that the medium has 
monoclinic symmetry and, for simplicity, the electric 

source currents are zero. The analogy constitutes a 
mathematical equivalence that allows the acoustic 

and electromagnetic problems to be solved with the 
same analytical methodology. Therefore, the analy- 

sis of viscoelastic plane waves can be applied to the 

electromagnetic case. Similarly, the transient solution 

obtained in the viscoelastic case corresponds to the 
electromagnetic solution. In these cases, the equiva- 
lence is basically a correspondence between stiffness 
and permittivity, which are complex and frequency- 
dependent matrices. The most powerful application 

of the analogy is the use of the same computer code 

to solve acoustic and electromagnetic propagation 
problems in general inhomogeneous media. A chal- 
lenging problem for future research is to generalize 
these results from two to three dimensions and/or to 
release the assumption on the material symmetry. 

We have exhibited an invertible correspondence 
between physical quantities that transform the SH 
(shear-horizontal) viscoelastic equations into the 
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Appendii A. Analytical solution in unbounded 
homogeneous media 

The analytical solution for the anelastic problem can 
be obtained by means of the correspondence principle 
(e.g., Ref. [9] ). This requires to know the explicit 
expression of the elastic solution in the frequency do- 
main. Then, the elasticities can be replaced by the cor- 
responding complex stiffnesses, and the viscoelastic 
solution can be obtained by an inverse time Fourier 
transform. 

Considering the elastic case in (62), i.e. r = 0, and 
eliminating the stress tensor by using (64) gives 

(0;. c. V2)vy - pii, = l$, (A.1) 

where the dot above a variable denotes time differenti- 
ation. Since we consider here a homogeneous medium, 
Eq. (A.l) becomes 

( a2 a2 a2 
c44- 

dZ2 
+ ~66~ + l&6-- 

8XdZ > 
VY 

-pijy = Fy, (A.21 

We show below that it is possible, by a transforma- 
tion of coordinates, to transform the spatial differen- 
tial operator on the r.h.s. of (A.2) to a pure Laplacian 
differential operator. In that case, Eq (A.2) becomes 

(A.3) 

Considering the solution for the Green’s function (i.e., 
the r.h.s. of (A.3) is a localized delta function in time 
and space at the origin), and transforming the wave 
equation to the frequency domain, gives 

g + pw2g = -47r6( x’) 6( z’) , (A.4) 

where g is the Fourier transform of the Green’s func- 
tion. The constant -47r is introduced for convenience. 
The solution of (A.4) is (e.g., Ref. [ 171) 

g( x’, z’, w) = -i7rHh2) ( JZior’) , (A.3 

where H12' is the Hankel function of the second kind, 
and 

r’ = (# + z’2)‘/2 s (x/T. X’) 112. (A.6) 

We have to compute the r.h.s. of (A.5) in terms of 
the original position vector x = [z, X] T. Diagonalizing 
matrix c as c = Aa A .A=, where A is the matrix of the 
eigenvalues, the Laplacian operator in (A. 1) becomes 

V~cV2=V;~A~A~ATV2 

=V;.A.&&ATV2 

= v;r * v;, (A.7) 

where A = a’, and 

V;=&ATV2. (A.8) 

Using that fl is diagonal and AT = A-‘, we get 

x’ = a-’ . A=. x. (A.9) 

Substituting (A.9) into Eq. (A.6) gives 

X 
IT .x’=XT.~.~-L .a-’ .AT.~ 

=x T.A.A-’ .A=.X. (A.lO) 

But, since A. A-’ ’ AT = c-‘, we finally have 

r ‘2=XT.C-’ .x 

= ( c&jz2 + c&$x2 - 2c46xz j/c, (A.ll) 

where c is the determinant of c given by Eq. (3 1) . 
Application of the correspondence principle to the 

elastic Green’s function 

g(x,z,w) = -i~H$2’[w(xT.pc-’ .x)‘/‘], (A.12) 

gives the viscoelastic Green’s function 

&(x,z,w) = -i.lrHA2)[W(xT.Pp-1 .x)“‘], (A.13) 

where p is given by (43). Note that in the electro- 
magnetic case the solution is 

&(x,z,o) = -i71-Hi2’ 
[ 
w(xT.,ue* .x)‘/~ 1 ,(A.14) 

in virtue of the equivalence (32)-( 36), and Eq. (55). 
When solving the wave propagation problem with nu- 
merical techniques, the Green function is multiplied 
with the Fourier transform of a band limited wavelet. 
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In this case, the transform of the source term in Eq. 
(A.2) is iwFY. Therefore, the viscoelastic solution is 

$(x, o) = rrw&H;*) 
[ 
o(xT . pp-’ . x)l/* 1 , (A.15) 

and the electromagnetic solution is 

ii,(x,o) =w&tyH~) 
[ 
w(x~./Lu(E* .x)l’* 1 ,(A.16) 

To ensure a time-domain real solution we take, for 
w < 0, 

fi,(X,@) = Lqx, -w), (A.17) 

where the bar denotes complex conjugation. Finally, 
the time domain solution is obtained by an inverse 
transform based on the Fast Fourier Transform. 

Appendix B. Umov-Poynting vector, energy 
densities, and quality factor for SH waves in 
monoclinic viscoelastic media 

By Eq. (45)) the nonzero strain components are 

Sd = 2 = -ikl,u, and & = 2 = -ikl,u,. (B.l) 

Hence, the nonzero stress components are 

T4 = P44s4 + p46s6 = -i&&adz + p46lx) 

and 

T6 = P66s6 + p46s4 = -ikUy(P661x + p461z). 

The Umov-Poynting vector is [ 131 

where T 7-e Ts Z = T6 T2 T4 

[ 1 T, T4 T3 

and therefore, in the monoclinic case, 

P=-;ir*‘[T6, 0, T41T 

U3.2) 

(B.3) 

(B.4) 

(B.5) 

(B.6) 

The peak kinetic energy density is [ 181 

(E,)~A = i~v*~.v = ~pw2]Ua]2e-2nL-x. (B.7) 

Likewise, the peak potential energy density is 

(%)peok = ;R(P44lS4/* +P661s612 

+P46(s4$ + s:*s6)) 

- X(P) = ;pw*I~o~2e-*“K.L 
IV2 

and the average dissipated energy density is 

(%f)AV = 
- S(V) 

!pw*I~,,l*e-*~K.X- 

IV2 . 

u3.8) 

(B.9) 

Finally, using the last two equations, we get the quality 
factor 

e = (Es)peak x(V*) -=- 
(%f)AV WV) ’ 

(B.lO) 

References 

[ 11 R. J. Greenfield, and T. Wu, Electromagnetic 
propagation in disrupted coal seams, Geophysics 56, 
1577 (1991). 

wave 
1571- 

[21 C. W. F. Ever& 1975, James Clerk Maxwell, Physicist and 
Natural Philosopher, Charles Scribner’s Sons ( 1975). 

[ 31 J. Hendry, James Clerk Maxwell and the Theory of 
the Electromagnetic Field, Adam Hilger Ltd, Bristol and 
Boston ( 1986). 

[4] .I. C. Maxwell, On the dynamical theory of gases, Phil. 
Trans. R. Sot. 157, 49-88 (1867). 

[5] J. C. Maxwell, The Scientific Papers of James Clerk 
Maxwell, ed. W. D. Niven, 2 volumes, Cambridge 
University Press, Cambridge ( 1890). 

[6] D. R. Bland, Wave theory and applications, Clarendon 
press, Oxford (1988). 

[ 71 W. C. Chew, Waves and fields in inhomogeneous media, 
Van Nostrand Reinhold, New York ( 1990). 

[ 81 B. A. Auld, Acoustic fields and waves in solids, Vol. 1, 
Robert E. Krieger, publishing Co., Malabar, Florida ( 1990). 

[9] A. Ben-Me&em and S. G. Singh, Seismic waves and 
sources, Springer Verlag, New York ( 1981). 

[lo] G. Casula and J. M. Carcione, Generalized mechanical 
model analogies of linear viscoelastic behaviour, Boll. 
Geofis. Teor. Appl, 34, 235-256 (1992). 

[ Ill J. Virieux, SH-wave propagation in heterogeneous media: 

Velocity-stress finite-difference method, Geophysics 49, 
1933-1957 (1984). 

[ 121 E E. Neumann, Vorlesungen uber die Theorie der 
Elasticitat, Leipzig ( 1885). 



162 J.M. Carcione, E CavalZini/Wave Motion 21 (1995) 149-162 

[ 131 J. M. Carcione and E Cavallini, Energy balance and 
fundamental relations in anisotropic viscoelastic media, 
Wave Motion 18, 1 l-20 (1993). 

[ 141 I? Hammond, Energy methods in electromagnetism, 

Clarendon Press, Oxford ( 198 1). 
[ 151 H. Tal-Ezer, J. M. Carcione, and D. Kosloff, An accurate 

and efficient scheme for wave propagation in linear 
viscoelastic media, Geophysics 55. 1366-1379 ( 1990). 

[ 161 J. M. Carcione and I? Cavallini, Modeling transverse 
electromagnetic waves in conducting anisotropic media by 
a spectral time-domain technique, in A. Terzuoli, Rd., 
10th Annual Review of Progress in Applied Computational 
Electromagnet&, Vol. II, 586-593, Monterey CA (1994). 

[ 171 I? M. Morse and H. Feshbach, Methods of theoretical 

physics, McGraw-Hill, New-York ( 1953). 
[ 181 I. M. Carcione, Wavefronts in dissipative anisotropic media. 

Geophysics 59,644-657 ( 1994). 


