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Abstract 

We obtain expressions of the attenuation vector and quality factor of the three possible wave modes propagating 
in a linear anisotropic medium. The theory assumes, in principle, a general stiffness matrix. Probing the medium 
with a time-harmonic homogeneous plane wave gives the attenuations and quality factors as simple forms of the 
propagation direction, complex stiffnesses and mass density. As an application, we introduce a new constitutive 
relation, based on four complex moduli, for which the values of the quality factor along three preferred directions 
can be matched with experimentally pre-determined values. The rheology is causal and allows an arbitrary 
frequency-dependence of the stiffnesses based on the generalized standard linear solid model. Two examples are 
explicitly worked out. The first is clay shale, a material of hexagonal symmetry. Since, by Neumann's principle, the 
attenuation symmetries are determined by the crystal class, the medium presents isotropic attenuation in a plane 
normal to the symmetry axis. For instance, in materials with cll > c33 , it is found that the quasi-compressional wave 
attenuates more along the symmetry axis direction than in the plane of isotropy. The second medium is tellurium 
dioxide, a strongly anisotropic material of tetragonal symmetry. In this case, the diagrams show that strong 
attenuation is associated with high slowness values, as at around 45 ° in the horizontal plane. Both Case studies show 
that the features of the attenuation surfaces strongly depend on the values of the elasticities. 

I .  Introduct ion  

Wave  a t tenuat ion  is caused by a variety of  
dissipation mechanisms whose effects depend  on 
the frequency,  as well as on the type of  elastic 
symmetry  of  the medium.  In  macroscopical ly  
isotropic media,  the a t tenuat ion  proper t ies  do 
not  depend  on the direct ion of  propagat ion.  In  
anisotropic media,  any kind of  symmetry  pos- 
sessed by the a t tenuat ion  follows the symmetry  of  
the crystal lographic fo rm of  the material.  These  
s ta tements  are derived f rom an empirical  law 
known as N e u m a n n ' s  principle (Neumann,  1885; 
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Love, 1927). This implies that  the symmetries of  
any proper ty  must  be higher  or  equal to the 
symmetries of  the solid themselves. 

The  constitutive relation is Bol tzmann 's  after- 
effect principle combined with Hooke ' s  law in its 
general  form, where  the a t tenuat ion propert ies  
are mode led  by a viscoelastic constitutive law, 
and anisotropy includes all the symmetry classes. 
As in the elastic case, there  are at most  21 
independent  componen ts  defining the relaxation 
matrix relating the stress and strain vectors. 
Moreover ,  the degree  of  symmetry of  this matrix 
depends  upon  the crystal class in the same way as 

reserved 
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the elasticity matrix. This automatically implies 
that the attenuation properties have the same 
symmetries as the elasticities. 

Dissipation is quantified by the quality factor 
and the attenuation factor which can be mea- 
sured experimentally by various techniques. In 
this work, the probing wave is a time-harmonic 
homogeneous viscoelastic plane wave, and the 
attenuation constants obtained in this way should 
be compared with results from wave propagation 
experiments. The theory of propagation of vis- 
coelastic waves in isotropic media has been inves- 
tigated by several researchers, notably Buchen 
(1971), Borcherdt (1977), Krebes (1984) and Cav- 
iglia and Morro (1992). However, research in the 
framework of anisotropic media is relatively re- 
cent. Carcione (1990) obtained the expressions of 
the phase, group and energy velocities, and qual- 
ity factors for homogeneous viscoelastic plane 
waves in a transversely-isotropic medium. 

For homogeneous waves, the wave number is 
assumed to be complex and the attenuation and 
propagation vectors are collinear. In general, 
there are three possible modes for plane wave 
propagation along a specified direction: they are 
solutions of the complex Christoffel equation 
whose roots can be expressed in terms of the 
complex velocities. The attenuation factor is sim- 
ply the imaginary part of the reciprocal of the 
complex velocity. Although the quality factor in- 
volves the calculation of the potential and loss 
energy densities, it results in a simple function of 
the complex velocity. 

Most applications use the Kelvin-Voigt 
stress-strain relation as constitutive law, but this 
rheology models a particular type of frequency- 
dependent relaxation matrix (Auld, 1991; Lamb 
and Richter, 1966). A more general model was 
introduced by Carcione (1990), which is based on 
standard linear solid relaxation functions. In its 
general form, this model contains several stan- 
dard linear elements, thus describing any arbi- 
trary frequency dependence of the attenuation 
and quality factors. 

The paper is organized as follows. Section 2 
introduces the general time-domain constitutive 
relation and the corresponding equation for ho- 
mogeneous plane waves. In a similar way, the 

equation of motion gives the complex Christoffel 
equation whose roots define the complex veloci- 
ties. This is done in Section 3 together with the 
calculation of the attenuation vector. Section 4 
computes the quality factor from the potential 
and loss energy densities. In Section 5 the rheo- 
logical model is introduced and, finally, the exam- 
ples of Section 6 illustrate the dissipation proper- 
ties of hexagonal and tetragonal media by com- 
puting the three-dimensional attenuation and 
quality factor surfaces. 

2. Constitutive relation 

The most general relation (Christensen, 1982) 
between the components of the stress tensor trsy 
and the components of the strain tensor Ely for an 
anisotropic linear viscoelastic medium is given by 

tr/j(x, t) = Oiykt(t) * ~k,(x, t) ,  

i, j, k, l =  1, 2, 3, (2.1) 

where t is the time variable, x is the position 
vector, ffiykt are the components of a fourth-order 
tensorial relaxation function, and the asterisk (*) 
indicates time convolution. A dot above a vari- 
able denotes differentiation with respect to time, 
and the Einstein convention for repeated indices 
is used. 

Eq. (2.1) is the formulation of the isothermal 
anisotropic-viscoelastic stress-strain constitutive 
relation, also called the Boltzmann superposition 
principle. The fourth-rank tensor contains all the 
information about the behavior of the medium 
under infinitesimal deformations. In the most 
general case, the number of components is 81, 
but since the stress and strain tensors are sym- 
metrical, and from the real nature of the strain 
and loss in energy densities (Auld, 1991), it fol- 
lows that the number of independent real compo- 
nents reduces to 21. 

By using properties of the convolution, Eq. 
(2.1) gives, in condensed subscript notation (Auld, 
1991), 

T , ( x ,  t )  = ( * i j ( t ) * S j ( x ,  t ) ,  I ,  J =  1 . . . . .  6, 

(2.2) 
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where 

T-- [T1, T 2, T3, T4, 7"5, T6] T 

= [Orxx , O'yy, O'zz , Oryz, Orxz , O'xy] T (2.3) 

and 

S = [S1,  52,  53, 54,  S5, S6] T 

= [Exx ,  eyy, Ezz '  Eyz ,  e x z ,  exy] T (2 .4 )  

are the stress and strain vectors, respectively. A 
general solution for the displacement field repre- 
senting viscoelastic plane waves is of the form 

U = U 0 e i(°Jt-k'x>, (2.5) 

where U 0 represents a constant complex vector 
and to is the angular frequency. The wavenumber 
vector is, in general, complex and can be written 
as 

k = I¢ - i a ,  ( 2 . 6 )  

where the real vectors K and a indicate the 
directions and magnitudes of propagation and 
attenuation, respectively. In general, these direc- 
tions are different and the plane wave is termed 
inhomogeneous, with K T • a strictly different from 
zero, unlike the interface waves in elastic media 
(the dot denotes ordinary matrix multiplication); 
otherwise, the wave is called homogeneous and in 
this case 

k = (x - i a ) k  - k k ,  (2.7) 

where 

= lx~ x + ly~,y + l z~  z (2.8) 

defines the propagation direction through the 
direction cosines l x, ly and l z. For this kind of 
wave, planes of constant phase (planes normal to 
the propagation vector •) are parallel to planes 
of constant amplitude (defined by a T. x = const). 
Substituting the plane wave (2.5) into the stress- 
strain relation (2.2) yields 

r ( to )  =p (o~) .  S, (2.9) 

where T(to) and $ are related to stress and strain 
by formulas analogous to (2.5), while the compo- 
nents of the complex stiffness matrix are 

p . ( o , )  = e -i'°t dt .  (2.10) 
J--oo 

3 .  C o m p l e x  v e l o c i t y  a n d  a t t e n u a t i o n  f a c t o r  

The equation of momentum for a three-dimen- 
sional anisotropic linear anelastic medium in ab- 
sence of body forces is (Auld, 1991) 

V .  T -  p / / =  0, (3.1) 

where u ( x ,  t )  is the displacement vector, p ( x )  is 
the density, and V is a differential operator de- 
fined by 

- -  0 0 0 - -  - -  
ax 0z 0y 

V = 0 0y 0 az 0 ~x (3.2) 

0 0 0z ay ~x 0 

For the plane wave (2.5), Eq. (3.1) reads 

( r -  p V Z l ) ' u  = 0, (3.3) 

where I is the 3 x 3 identity matrix, 

L = ly 0 l z 0 

0 l z ly l x 

(3.4) 

is the direction cosine matrix, and 

F = L  . p  . L  T (3.5) 

is the Christoffel matrix. The complex velocity 
tO 

V =  ~- (3.6) 

is a fundamental quantity since it determines 
uniquely both the attenuation vector (3.8) and the 
quality factor (4.8). The complex velocities of the 
three wave modes are obtained from the disper- 
sion relation 

det[ L . p . L x - p V : l ]  = 0, (3.7) 

which is the characteristic equation of (3.3). Us- 
ing (3.6), the attenuation vector can be expressed 
in terms of the complex velocity as [1] 
a = - t o  I m  ~ ( 3 . 8 )  

and its magnitude is the attenuation factor. 
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4. Quality factor 

Roughly speaking, the quality factor expresses 
the amount of the dissipated energy relative to 
the stored elastic energy. To make this concept 
precise, several definitions have been proposed 
(O'Connell and Budiansky, 1978). Owing to its 
widespread use in the geophysical community 
(see, e.g., Borcherdt, 1973), we choose the defini- 
tion of the quality factor as the ratio of the peak 
strain energy density to the average loss energy 
density. The peak strain energy for homogeneous 
plane waves is twice the average value, and is 
given by (Carcione and Cavallini, 1993) 

(es)peak = 1 Re[S T .p "S*],  (4.1) 

where Re denotes the real part. The average loss 
energy density is 

(Ca) = 1 im[S T . p . S . ] .  (4.2) 

From the definition, the quality factor is then 

(~?s)peak R e [ S T ' p  "S* ] 

O (E d) Im[S T "p" S*] " (4.3) 

This equation requires the calculation of S T . p -  
S*. Since S = V T. u (Auld, 1991), 

S = - i kL  T .  u,  (4.4a) 

and 

S* = i k * L  "r" u* (4.4b) 

for the plane wave (2.5). Replacing these equa- 
tions into S ' r ' p  • S* yields 

S T "p"  S* = I k l2u  T" F"  u*, (4.5) 

where F is the Christoffel matrix (3.5). But from 
the transpose of (2.9), 

U T" F = p V 2 u  T. (4.6) 

Therefore, substituting this expression into (4.5) 
gives 

S T . p . S *  = p l k l 2 u  T . u * V  2. (4.7) 

In consequence, since the matrix product in the 
right-hand side of (4.7) is real, the quality factor 
in anisotropic-viscoelastic media takes the follow- 

ing simple form as a function of the complex 
velocity: 

Re[V 2 ] 

Q - Im[ V 2 ~  " (4.8) 

From the definition of complex velocity (3.6), it 
can be easily shown that the quality factor (4.8) 
can be written as 

Re[k  21 
Q im[k2]  . (4.9) 

For isotropic media, this expression is well known 
(see, e.g., Ben-Menahem and Singh, 1981); here it 
has been proved that in general anisotropic me- 
dia the quality factor for homogeneous viscoelas- 
tic waves keeps the same form. 

Since for a homogeneous wave k 2 = K 2 - a 2 - 
2iKol, it follows from (3.8) and (4.9) that the 
quality factor relates to the wavenumber and 
attenuation vectors as 

a =  ( Q ~ +  1 - Q ) K .  (4.10) 

For low-loss solids, it is Q >> 1, and a Taylor 
expansion yields 

1 
a =  2QK, (4.11) 

which is the well known expression for the atten- 
uation vector. 

5. The rheological model 

A class of constitutive equations for anisotrop- 
ic-viscoelastic media based on two complex mod- 
uli was investigated by Carcione (1990). In the 
present work, two additional complex moduli are 
introduced to model in more detail the anelastic 
properties of the shear modes. The stiffness ma- 
trix of this new rheology is 

Pl l  1912 P13 C14 

P22 P23 C24 

P33 C34 
19 ---- c44M 2 

¢15 C16 

C25 C26 

¢35 ¢36 

C45 ¢46 

c55M3 c56 

c66M4 

(5.1) 
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where 
4 

PI(1) = Cl(1) -- D + K M  1 + "~GMn, 

for I = 1, 2, 3, (5.2a) 

PH = cH - D + 2G + K M  1 - 2GM~ 

for 1, J =  1, 2, 3; I ~ J .  (5.2b) 

Here cu,  for I, J = 1 , . . . ,  6 are the low-frequency 
limit elastic constants, and 

g ~  o _ 4 gG,  

where 
1 

D = g(c11 + c22 + c33), 

(5.3) 

G + c55 -q- c 6 6 ) .  =  (c44 
(5.4) 

Coefficients M y  are dimensionless complex mod- 
uli: v - - 1  is for the quasi-dilational mode, and 
v = 2, 3, 4 are for the shear waves. In (5.2a, b), 
M s is a shear modulus that can be chosen such 
that 6 = 2, 3 or 4. The mean stress O~ = E3=1 
1TH can be expressed in terms of the mean strain 
O, 3 = EI=ITSII as 

~(Cyl + C j E + c j a ) S j + K O , ( M  1 1), ~ t r =  1 

( 5 . 5 )  

which only depends on the first complex modulus 
involving quasi-dilatational dissipation mecha- 
nisms. Moreover, the deviatoric stresses are 

3 

T I -  0o '= E (aIK-- 1 )CKjS j  
K = I  

+ 2 G ( S ,  - O , ) (M~  - 1), for 1_<3, 

(5.6a) 

and 
3 6 

Tg= E cHSj  + E c H S j M j - z ,  f o r I > 3 ,  
J = l  J = 4  

(5.6b) 

which depend on the complex moduli associated 
to the quasi-shear mechanisms. Eq. (5.1) gives the 
elasticity matrix of the generalized Hooke's law in 
the anisotropic-elastic limit when M~---} 1, and 
gives the 3D isotropic-viscoelastic constitutive re- 
lation in the isotropic limit (Carcione et al., 1988). 
The stiffness matrix (5.1) generalizes that given in 
Carcione (1990), since here three relaxation func- 

tions instead of one are used to describe the 
anelastic properties of the shear modes. In this 
way, it is possible to control the quality factor 
along three preferred directions, like the princi- 
pal axes of the anisotropic medium, for instance. 
The choice of the complex moduli depends on 
the symmetry system, since the attenuation sym- 
metries follow the symmetry of the crystallo- 
graphic form of the material. For isotropic, cubic 
and hexagonal media, two relaxation functions 
are necessary and sufficient to model the anelas- 
tic properties. For instance, for transversely 
isotropic media with symmetry axis in the z-direc- 

1 
tion, M s = M 2 = M3, and P66 = 2 ( P l l  - -  1012 ) 
should be taken in order to preserve transverse 
isotropy. 

For L~ dissipation mechanisms, the theory as- 
sumes the following form for the complex moduli: 

1 ~ 1 +ito~'~t (~) 
M v ( t ° ) = ~ L  l+itoz~7) ' v = l  . . . . .  4, 

l=1  

(5.7) 

where r,~ ) and ~'~) are relaxation times such that 
z,~ ') > ~'~). Eq. (5.7) represents the complex mod- 
ulus of a generalized a standard linear solid. Note 
that 7~ ') ~ ~-~) gives the low-frequency elastic 
limit where M~ ~ 1 as mentioned before. When 
Lv = 1, Vv, the quality factor corresponding to 
each modulus is given by 

Re[M~] 1 + to2~'~'~'~ ~) 
Q~(to) = Im[M~] to(z~ , _ ~.~)), (5.8) 

(v) (~) whose minimum is located at to0~ = 1/~z~ z& 
(Ben-Menahem and Singh, 1981). 

Figure 1 illustrates a polar diagram of quality 
factor curves in a symmetry plane of an or- 
thorhombic medium. Only one quadrant of the 
plane is displayed due to symmetry considera- 
tions. As can be seen, the values of the quality 
factors along the directions of the cartesian axes 
are determined by the one-dimensional quality 
factors Q~ for the shear waves, and by simple 
functions of the stiffnesses for the qP wave. 

The complex velocities are the key to obtain 
the attenuation properties. These velocities are 
now given for the symmetry planes of orthorhom- 
bic media, which include the tetragonal and 
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Q,=Re(p.)/Im(p,,) 
Q,=Re(p.)/Im(p.) Q~r)qp 

" ~ q j  Q,:Re(p,,)/Im(p.) 
qP 

Q, Qo~ p=Re(p.)/Im(p.) 
O O - - ~  ~ Q~...=Re(p,,)/Im(p.) 

/ 
1~12 - 

(Q), 

Fig. 1. Polar diagram of quality factor curves in a symmetry 
plane of an orthorhombic medium. Only one-quarter of the 
plane is displayed due to symmetry considerations. The values 
of the quality factors along the directions of the cartesian axes 
are determined by the one-dimensional quality factors Q~ for 
the shear waves, and simple functions of the stiffnesses for the 
qP wave. 

h e x a g o n a l  s y s t e m s  a n a l y z e d  in t h e  e x a m p l e s .  In  

t h e  n a t u r a l  c o o r d i n a t e  sys t em,  o r t h o r h o m b i c  m e -  

d ia  h a v e  p l j = P 2 j = p 3 j  = O, fo r  J >  4, a n d  P45 = 

1946 = P56 = 0, a n d  n i n e  independent s t i f fne s s  c o n -  

s t an t s .  F o r  t h e s e  m e d i a ,  t h e  e i g e n v a l u e s  o f  t h e  

C h r i s t o f f e l  m a t r i x  (3.5) in t h e  s y m m e t r y  p l a n e s  

a r e  as fo l lows .  

In the XZ-plane: 

pVI~2) = {(P55 + P l l l x  2 +P33 /2  - E ) ,  

2 2 2 (5.9a) pV3 =P661x + P441z , 

where 

E=~[(P33_P55)12_(pu 2 2 2 2 2 -P55)lx] +4(P;3+P55) lxlz . 

(5.9b) 

In the YZ-plane: 

pV12(2> = { ( P , 4  4- P2212 4- P3312 + E ) ,  

2 _ 2 2 (5.10a) PV3 --P661y +Psslz,  

where 

2 2 
E=~/[(p33 P44)12 (P22_Pa4)lr] +4(P23 + 2 22 - - P44) lylz.  

(5.10b) 

In the XY-plane: 

pVI~2) = {(P66 +P,112 +P22/2 -+ E) ,  

pV3 z = p,512 +P4412, (5.11a) 

where 

-- 2 2 2 2 2  
E = ff[(P22 P66) 12 - ( P l l  - P66)lx ] + 4(P12 + P66) lxlv' 

(5.11b) 

In relatively weak anisotropic media, V t is the 
velocity of the qP wave ( + sign), while V 2 ( - sign) 
and V 3 correspond to the shear waves, with the 
second one a pure mode. In complex materials, 

Table 1 
Material properties 

Medium Elasticities (GPa) density (kg/m 3) 

Cll C12 C13 C22 C23 C33 C44 C55 C66 P 

Clay shale 66.6 19.7 39.4 66.6 39.4 39.9 10.9 10.9 23.4 2590.0 
TeO 2 55.7 51.2 21.8 55.7 21.8 105.0 26.5 26.5 65.9 5990.0 

Relaxation times (s) 

Clay shale 8.00 x 10 -3 7.49 x 10 -3 8.00 x 10 -3 7.25 x 10 -3 8.00 x 10 -3 7.25 x 10 -3 8.00 x 10 -3 7.25 x 10 -3 
Qv 30 20 20 20 
TeO 2 6.40 x 10 -7 6.33 x 10 -7 6.40 x 10 -7 6.31 x 10 -7 6.40 x 10 -7 6.31 x 10 -7 6.40 × 10 -7 6.27 × 10 -7 
Qv 200 150 150 100 
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like for instance tellurium dioxide (tetragonal 
symmetry), this identification does not apply since 
along the same wavefront the wave may change 
from quasi-compressional to quasi-shear or vicev- 
ersa. Note that in the simplest case of hexagonal 
symmetry, the qSV wave corresponds to V 2 in 
the X Z  and YZ planes, and it is a pure mode 
defined by V 3 in the XY-plane. 

6. Examples  

The attenuation and quality factor surfaces are 
computed here for two media of hexagonal and 
tetragonal symmetries (clay shale and tellurium 
dioxide, respectively), whose non-zero elasticities, 
densities and relaxation times are given in Table 
1. The stiffness matrix of orthorhombic media 
acquires tetragonal symmetry if Pll  =P22, P23 = 

P13, and P44 =P55, and hexagonal if, in addition, 
1 

1966 = ~ ( P l l  - -P12).  AS mentioned before, hexago- 
nal media require only two complex moduli, and 
for tetragonal media the condition P44--Ps5 im- 
plies a maximum of three complex moduli since 
M 2 = M 3 but P66 = c66M4 is an independent  stiff- 
ness. Each complex modulus has one dissipation 

Attenuation factor (20 Hz) 
Clayshale 

o o i (°)v 0 / ~ ,  

3 

-i 

Fig. 3. Sections of the attenuation factor surfaces at 20 Hz for 
clay shale across three mutually perpendicular planes where 
the symmetry axis coincides with the vertical axis. The dotted 
line corresponds to the quasi-compressional wave. Only one 
octant of the sections is displayed from symmetry considera- 
tions. 

Tellurium Dioxide 
500 - 

4 0 0  - 

300- ! 

(~ 200- 

100 L 

//\' 
/ 

Q2--Q~ ~ 

Q4 ,..... I 

0" 

0 1 O0 200 300 400 500 

frequency (KHz) 

Fig. 2. One-dimensional quality factors Q~ as a function of 
frequency for tellurium dioxide. The minimum values are 
given in Table 1. 

mechanism, with relaxation minimum at 20 Hz in 
clay shale and 250 kHz in tellurium dioxide. The 
minimum value of the one-dimensional quality 
factor for each single mechanism is indicated in 
Table 1. Fig. 2 illustrates these quality factors as 
a function of frequency for tellurium dioxide. For 
clayshale, the symmetry constraints imply ~ = 2, 
while for tellurium dioxide ~ = 2 is our choice. 

6.1. Clay shale 

Fig. 3 shows sections of the clay shale attenua- 
tion factor surfaces at 20 Hz across three mutu- 
ally perpendicular planes where the symmetry 
axis coincides with the vertical axis. The inner 
curve (dotted line) corresponds to the quasi-com- 
pressional wave; then follow the quasi-shear 
waves, which have a kiss singularity at the symme- 
try axis. Only one octant of the sections is dis- 
played from symmetry considerations. The corre- 
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sponding three-dimensional surfaces are illus- 
trated in Fig. 4, where (a) is the qP mode, (b) is 
the qSV, and (c) is the SH mode. Note that for 
clarity, the three surfaces have been plotted with 
different scales. The quality factor sections and 
surfaces for clay shale are displayed in Figs. 5 and 
6, respectively. The inner curve in Fig. 5 corre- 
sponds to the qSV wave. As can be appreciated 
in the figures, the symmetry of the attenuation 
properties follows the symmetry of the crystal 
class. As mentioned before, dilatational energy 
dissipates according to the complex modulus M 1 
with quality factor Q1 = 30, as indicated in Table 
1. However, the anelastic characteristics of the 
quasi-compressional wave depend also on M 2. In 
fact, at the symmetry axis, the qP quality factor 
becomes, by (4.8) and (5.9a), Q(lz= 1)=  Re- 
[P33]/Im[P33], while in the horizontal plane, 

Q(lx= 1)=Re[pn]/Im[p11]. The relation be- 
tween these two values by (5.2a) is 

O(Iz=l) c33-D+Re[A] 
Q ( l x =  1) C l l - D  + R e [ A ]  ' 

where A = KM 1 + 3GM2. (6.1) 

If we define a = R e [ A ] -  D, it can be verified 
that a > 0 and a < c n, a < c33, for realistic media 
(a = 0 in the elastic case). This implies that, 
whatever the ratio C33/Cll , the ratio between 
quality factors given by (5.12) departs from unity 
more than the ratio C33//C11. It follows that the 
quality factor gives a better  indicator of anisotropy 
than the elastic constants. Another  important 
consequence of this analysis is that, when Cll > 
c33 , the qP wave attenuates more along the sym- 
metry axis than in the plane of isotropy. 

Attenuation factor (qP) 

Attenuation factor (qSV) 

Fig. 4. Three-dimensional attenuation surfaces for clay shale at 20 Hz, where (a) is the qP mode, (b) is the qSV, and (c) is the SH 
mode. For clarity, the three surfaces have been plotted with different scales. 
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Fig. 4. (continued) 

On the other hand, the quality factor of the 
q S V  wave along the three axes is uniquely deter- 
mined by the complex modulus M 2 since 

Re[Pss] 
Q im[Ps5 ] = Q2 (6.2) 

in virtue of Eqs. (5.1) and (5.8). Similarly, the S H  
mode has Q = Q2 along the symmetry axis, and 

Re[ P66 ] 
Q =  ira[p66 ] , where P66=c66At-a(M2 - 1), 

(6.3) 

in the horizontal plane. For this wave, 

Q ( l  z --- 1) G Re[M2] 
= (6.4) 

a ( l  x = 1) c66 + G(Re[M2]  - 1 ) '  

where G is given by Eq. (5.4). Since Re[M 2] > 1, 
it is straightforward to prove that when c66 > c55 , 
this ratio is less than 1, and the attenuation is 

higher along the symmetry axis. This is the case 
for clay shale, as can be seen in Table 1. 

6.2. Tellurium dioxide 

The attenuation and quality factor surfaces of 
tellurium dioxide are much more complicated 
than the clay shale surfaces. Actually, there exists 
one single surface that for a given direction de- 
termines three points which are the eigenvalues 
of the Christoffel matrix (3.5). Moreover, as men- 
tioned before, the type of wave is not uniquely 
defined, even at symmetry planes where the 
eigenvalues are given by Eqs. (5.9), (5.10) and 
(5.11). However, the analysis of the eigenvectors 
is not within the scope of this work. 

Figure 7a and 7b show sections of the attenua- 
tion surface across the symmetry planes, where 
the dotted line corresponds to the complex veloc- 
ity V 1. Fig. 7b is a magnification of the region 
around the origin of Fig. 7a. As can be seen, one 
of the modes practically does not propagate 
around 45 ° in the horizontal plane, due to the 
strong dissipation. It can be shown that this mode 

Quality factor (20 Hz) 
Clayshale 

o 

30 

30 

'20 

'10 

Fig. 5. Sections of the quality factor surfaces for clay shale 
(see Fig. 3). 
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behaves as a shear wave along that direction and 
is associated with a high value of the slowness 
(Auld, 1991). Sections of the quality factor sur- 
faces are displayed in Fig. 8. As with the clay 

shale, the elasticities and the complex moduli 
control the values of the quality factors along the 
natural coordinate axes. For instance, since 1733 > 
C, ,  the quality factor of the mode represented 

Quality factor (qP) 

Quality factor (SH) 

Quality factor (qSV) 

Fig. 6. Three-dimensional quality factor surfaces for clay shale (see Fig. 4). 
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with a dotted line is higher along the vertical axis 
than in the horizontal axes. The quasi-shear waves 
have their quality factor controlled by M 2 at the 
symmetry axis, where Q = 150 (see Table 1), and 
partially by M 4 along the horizontal axes, for 
which 0 4 - -  100. 

Sections of  the at tenuation and quality factor 
surfaces in several meridian planes (a), and in- 
clined planes (b), are illustrated in Figs. 9 and 10, 
respectively• The  meridian planes contain the z- 
axis, and are characterized by the longitude angle 
4, measured from the positive x-semiaxis, while 
the inclined planes contain the x-axis, and are 
characterized by the inclination a measured from 
the positive y-semiaxis. As is seen from Eqs. (3.4) 
and (3.5), the Christoffel matrix is a function of 
the propagat ion direction (lx, ly, lz). However,  
using any computer  algebra software, it is easily 
seen that the characteristic polynomial of the 
Christoffel matrix is not affected by a rotation of 

1 the propagat ion direction through an angle ~ -  
about the z-axis. Hence,  the at tenuation and 

7o0. / 

Quality factor (250 KHz) 
Tellurium Dioxide 

D 

,4, 

250 
"2,50 

'200 

• iS0 

"100~ 

'0 

Fig. 8. Sections of the quality factor surfaces for tellurium 
dioxide (see Fig. 6). 

Attenuation factor (250 KHz) 
Telludum Dioxide 

°.~ ~o (°~'(1/,,. 

(a) 

Io o 

~Oo 

Attenuation factor (250 KHz) 
Telludum Dioxide 

0 In~.. • 

Fig. 7. Sections of the attenuation factor surfaces at 250 kI-Iz for tellurium dioxide across three mutually perpendicular planes 
where the symmetry axis coincides with the vertical axis. In Figure (b), the dotted line corresponds to the complex velocity V i. 
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quality factor  surfaces are symmetric with respect  
to this rotat ion and its multiples. It  follows that  
Figs. 9 and 10 completely describe the situation, 

a l though the longitude angle varies only in the 
first quadrant  and not  in the whole [0, 2~-] inter- 
val. Moreover ,  a similar computa t ion  yields sym- 

Attenuation factor in TeO2 

= 0 0 = rd22 0 = xll 1 

= (3.7t)/22 ~ = (2**t)/11 ~ = (5.~t)/22 

= (3*x)/11 ~ = (7.7t)/22 ~ = (4.7t)/11 

0 = (9.1t)/22 0 = (5.1t)/11 $ = rd2 

(a) 
Fig. 9. Sections of the attenuation surfaces in meridian planes (a), and inclined planes (b), at 250 kHz for tellurium dioxide. 
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metry with respect to the x = y  plane, as well as 
with respect to the coordinate planes. Hence, 
Figs. 9 and 10 are also adequate to describe the 
dependence with respect to the inclination of the 
section plane. 

7. Conclusion 

Wave attenuation, as wave velocity, is a prop° 
erty that can be used for the characterization of 
anisotropic media. We obtained closed expres- 

Attenuation factor in TeO2 

¢ -[ 
N 

¢=0 ¢==r22 ¢=ral~ 

0 = (3"~)/22 0 = (2*x)/11 $ = (5"~)/'22 

= (3*~t)/11 0 = (7.~t)/22 0 = (4.1t)/11 

t/)  
t/)  I 

¢ = (9"~)/22 0 = (5*r0/11 0 = rd2 

(b) 
Fig. 9 (continued) 
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sions of measurables quantities, like the attenua- 
tion and the quality factor, in terms of the com- 
plex velocities of the medium. In this way, these 
material properties can be determined from the 

analysis of the propagation of homogeneous plane 
waves (Hosten et al., 1987; Arts et al., 1992). For 
the constitutive rheology under consideration, the 
attenuation surfaces are strongly dependent  on 

Attenuation factor inTeO2 

¢3 
ii 

x - a x i s  x-axis x-axis 

"1 
x - a x i s  x-axis x-axis 

x= 

x-axis x-axis 

! 
x-axis 

i! 

v 

x-axis 

! 
x-axis x-axis 

(c) 
Fig. 9 (continued) 
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Quality factor inTe02 

~ = ¢r22 ~ = 0  ~ = r J l l  

= (3"z) /22 ~ = (2*z)/11 #p = (5"z)/22 

= (3*x)/l I ~ = (7.x)/22 q~ = (4*x)/l I 

= (9"z) /22  ~ = (5*x)/11 ~p = r, J2 

(a) 
Fig. 10. Sections of the quality factor surfaces (see Fig. 9). 
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Quality factor in Te02 

ii 

c~ 

x-axis x-axis x-axis 

II 

x - a ~ s  x - ~ s  

II I 
x-a~s 

gL 

x - ~ s  x-~is  x - ~ s  

x-axis 
\ / 

x-axis x-axis 

(b) 
Fig. 10. (continued) 
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the values of the elasticities, and seem to provide 
a better indicator of anisotropy. For example, in 
clay shale Cll > c33 implies that the dissipation 
along the symmetry axis is higher than in the 
plane of isotropy. The same applies to the S H  
wave if c66 > C55. Moreover, the theory predicts 
that in tellurium dioxide, one of the shear modes 
does not propagate along a given direction due to 
the strong dissipation. This effect could be con- 
firmed by laboratory experiments or by numerical 
simulations. In particular, the present constitutive 
relation can be easily implemented in time-do- 
main computations of transient wavefields (Car- 
cione, 1990). We worked out our analysis for a 
particular frequency. However, the dependence 
of the stiffnesses on the frequency can be ob- 
tained from the frequency dependence of the 
attenuation and quality factor. For this purpose, 
the constitutive model provides an arbitrary fre- 
quency dependence, and gives elastic behaviour 
at the low and high frequency limits. 

In conclusion, we presented a linear 3D rheo- 
logical model, as general as possible, where the 
anelastic properties of the different wave modes 
can be conveniently defined along preferred di- 
rections, and gave the expressions of measurable 
quantities in terms of the material properties. 
The theory can be used either for matching ex- 
perimental data for material characterization, or 
for predicting directional attenuation behaviour 
of anisotropic media. 
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