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The generalized SH-wave equation

Jose M. Carcione* and Fabio Cavallini*

ABSTRACT

We present a generalization of the SH-wave equa­
tion for anisotropic and dissipative media. The most
general case in which SH-waves are decoupled from
P- and SV-waves at all propagation angles is that of
propagation in the plane of symmetry of a monoclinic
medium. In the isotropic case, the SH constitutive
equation involves only one elastic coefficient (the
rigidity); here, three elastic coefficients are needed.
Moreover, dissipation is introduced by using
Boltzmann's law based on several relaxation mecha­
nisms. Anisotropic attenuation and velocity dispersion
are guaranteed by choosing different relaxation func­
tions for the principal axes. The wave equation, in the
displacement and velocity-stress formulations, is solved
by using time-domain spectral modeling techniques. The
snapshots and seismograms of the computed displace­
ment field show attenuation and anisotropy effects on
traveltime (mainly because of anisotropy) and amplitude
(because of combined anisotropy and dissipation), in
agreement with the theoretical patterns of energy veloc­
ity and attenuation curves.

INTRODUCTION

The observed attenuation and anisotropy of seismic waves
is an important source of information regarding the compo­
sition and structural features of hydrocarbon reservoirs. In
particular, the presence of partially saturated aligned cracks
induces directional dissipation because of energy losses by
the anisotropic flow of the viscous fluid (Hudson, 1990). The
same effect is verified in finely layered systems (Chevalier,
1988; Carcione, 1992a). Indeed, for seismic wavelengths the
medium behaves as an effective anisotropic material where
attenuation generally depends on the wave-propagation di­
rection. Previous works attempting to simulate anisotropic
waves including attenuation effects are attributed to
Carcione (1990) who solved the qP-qSV full-wave equation

by spectral techniques, Gajewski and Psencik (1992) who
used the ray method for weakly anisotropic media and, more
recently, Le et al. (1994) who simulated SH-waves by
complex ray tracing.

Propagation in the plane of mirror symmetry of a mono­
clinic medium includes a shear wave with polarization
perpendicular to the plane (antiplane strain motion). This is
the most general situation for which pure shear waves exist
at all propagation angles (e.g., pure shear-wave propagation
in hexagonal media is a degenerate case). A set of parallel
fractures embedded in a transversely isotropic formation can
be represented by a monoclinic medium. When the plane of
mirror symmetry of this medium is vertical, the pure anti­
plane strain waves are SH-waves. Moreover, monoclinic
media include many other cases of higher symmetry. Weakly
tetragonal media, strongly trigonal media, and orthorhombic
media are subsets of the set of monoclinic media.

A realistic rheological equation of the monoclinic medium
should include anelastic effects, since a sedimentary forma­
tion itself is anelastic, and fractures induce intrinsic attenu­
ation when they are filled with fluids. The result is that
velocity dispersion alters the shape of the wavefront (an
ellipse in the elastic case), and that the amplitude of the
signal is not isotropic along the wavefront as a result of
anisotropic dissipation. The constitutive equation proposed
here includes two relaxation functions describing the anelas­
tic properties along the vertical and horizontal directions,
respectively. These are the generalizations of the elastic stiff­
nesses C44 and C66, while C46 plays the role of a geometric
parameter as in the elastic case. The convolutional integrals are
circumvented by the introduction of two sets of memory
variables, each representing different dissipation mechanisms.
The resulting wave equation for the displacement field is solved
by using spectral techniques in the time domain. The problem
is basically 2-D if a line source of shear waves with polarization
normal to the symmetry plane is assumed.

THE CONSTITUTIVE EQUATION

Let us assume that the (x, z) plane is the symmetry plane
of a monoclinic medium. The anti-plane assumption that
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(6)

(7)

(9)

m = 1,2

f = 1, ... , L(2). (lOb)

f = 1, ... , L(l),

f = 1, ... , L (2),

.i(m) = _A. (m)/T(m)
'fit 'fit at •

e(2) = A,.(2)*'Y
t 'fit xy'

e(2) = A. (2)(0)'Y - e (2)/T (2)
t 'l't xy t at,

and

(m) t _ H(t) ( Ti'f») -t/ (m)
A. () 1 - -- e Tat
'l't - L(m) (m) (m) ,

T et Tat

is called the response function of the fth mechanism. With
these definitions, equation (5) takes the form:

where

Using equation (9), time differentiation of the memory vari­
ables (6) yields the following first-order equations:

e~l) = <I>~l)(Ohyz - e~l)iT~~, f = 1, ... , L(l), (lOa)

and

where the first term is the unrelaxed or high-frequency
response of the medium and the second term contains the
history of deformation of the material. The unrelaxed elastic
stiffnesses are given by C44 = c44t1J(1)(O) and C66 =
c66t1J(2)(0). To avoid the convolution integrals in equation (5)
we define the following memory variables

[:: ] = [~:: ~::][~: ] + [C~4 C~6][ ~ :t::l (8)

The response function [equation (7)] satisfies the following
differential equation:

(2)

(1)

au
'Y =-xy ax'

tlJ46] * [~yz],
tlJ66 'Yxy

and
au

'Yyz = az '

[
O"yz] = [tlJ44
O"xy tlJ46

Equation (1) is quite general within the framework of linear
viscoelasticity. The problem now is the choice of the time
dependence of the relaxation components, which should be
as general as possible to describe anisotropic attenuation and
a Q factor with an arbitrary frequency dependence. We
know that tlJ44 describes the properties of the shear wave
along the z-direction (say, the vertical direction), and that
tlJ66 is related to the horizontal direction. In fact, in the
elastic case the wavefront curve is an ellipse whose values
~ong the vertical and horizontal directions are VC 66/P and

C44/P, respectively, where the cIJ(x, z) are the elastic
stiffnesses and p(x, z) is the density (Schoenberg and Costa,
1991). Following Carcione (1990) we take

where 'YyAx, z, t) and 'Yxy(x, z, t) are the strain compo­
nents, and the tlJIJ(x, z, t) are relaxation components. The
symbol * represents time convolution and a dot above a
variable denotes time differentiation. The strains can be
expressed in terms of the displacement u, normal to the
plane of symmetry, as:

displacement u = u(x, z, t)ey implies that the only nonzero
stress components are O"yAx, z, t) and O"xy(x, z, t). In
condensed notation, the stress-strain relation for pure shear
waves in this plane is:

tlJ66(t) = c66t1J(2)(t)H(t)

and tlJ46(t) = c46H(t), (3)

To complete the scheme, the description of wave propaga­
tion requires the equation of momentum conservation
(Ewing et aI., 1957),

(11)
aO"yz aO"xy ..
--+--=pu.

az ax

+ (C66e(2) + T(2)C66U,x + C46U,z),x = pii,

T~l)e(l) = (1 - T(l»u,z - e(l),

For instance, when L (1) = L (2) = 1, the wave equation for
the displacement u and variables of strain memory ell) and
e (2) becomes

and T~2)e(2) = (1 - T(2»u,x - e(2), (12)

where T (m) = T ~m) iTJm) and abbreviated notation for spatial
differentiation is used.

Equation (12) is solved in the time domain by using
spectral techniques (Tal-Ezer et aI., 1990). The above dis­
placement formulation of the wave equation is solved by
using the Fourier pseudospectral method for computing the
spatial derivatives. When the problem includes boundary
conditions like, for instance, the surface of the earth, the
Chebyshev differential operator is used (e.g., Kosloff et aI.,

(5)

THE WAVE EQUATION

where

m = 1, 2, (4)

and H(t) is the Heaviside function. The quantities T ~'F) and
TJ7) are material relaxation times. Equation (4) is the
relaxation function of L (m) standard linear solid elements
connected in parallel (Casula and Carcione, 1992). Each
element or pair of relaxation times describes a particular
dissipation mechanism. Anisotropy of the anelastic proper­
ties (attenuation and velocity dispersion) is guaranteed by
the choice of two different relaxation functions, m = 1 for
the vertical direction and m = 2 for the horizontal direction
[instead, Carcione (1990) considers only one relaxation
function to model the anelastic properties of the SH-wave].

After substitution of the relaxation components (3) and
using properties of the convolution, the constitutive
equation (1) can be rewritten as:
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Generalized S~wave Equation 551

PLANE-WAVE ANALYSIS

1990; Carcione, 1992b). In this case, the modeling requires a
velocity-stress formulation. Defining the particle velocity
v = it, the velocity-stress differential equations read

(20)

Since the attenuation is given by a = - Im[k], it is easy to
show that a = ('VQ2 + 1 - Q)ws. The values of Q along
the vertical and horizontal directions are Re[M(2)]/Im[M(2)]
and Re[M(l)]/Im[M(1)], respectively. These relations allow
a close control of the shape of the attenuation curves.

hence, the velocity dispersion is determined by M(l) along
the vertical direction and by M(2) along the horizontal
direction. Limiting cases of equation (18) are equation (6) of
Schoenberg and Costa (1991) (monoclinic elastic) and
equation (45) of Carcione (1994) (orthorhombic viscoelastic).

The velocity of the energy (wavefront) is defined by the
average power flow density divided by the average energy
density. Following the same calculations as given by
Carcione (1994), we get

V e =~{Re[~ [(P66i'x + P 46 i'z)ex
Re[V] pV

+ (P44 i'z + P 46 i'x )ez]]}, (20)

where V = w/k, and Vp = lIRe(lIV) is the phase velocity.
Compare equation (19) to equation (A-13) of Schoenberg and
Costa (1991) and to equation (37) of Carcione (1994). It can
be shown that the energy velocity, and therefore the wave­
front, depends only on M(2) and M(l) in the vertical and
horizontal directions, respectively.

The quality factor is defined as the ratio of strain energy
density to dissipated energy density. It has the following
simple form (Carcione and Cavallini, 1992)

Re[k 2]

Q = - Im[k 2]'

(14)

(13a)

(13b)

• a<Tyz a<Txy
pV=--+--,

az ax

(13d)

L(2)

iTxy = C46V,z + C66V,x + C66 L e(2), (13c)
e=l

and

A brief plane-wave analysis helps one to understand the
physics of wave propagation in this type of medium. The
analogy with the elastic case is found in Schoenberg and
Costa (1991) and the analogy with pure shear-wave propa­
gation in orthorhombic media in Carcione (1994). Let the
displacement be associated with the following homogeneous
plane wave of slowness s and attenuation a:

T(2)i::(2) = (1 - T(2»v - e(2)
u 'x,

where e (m) == e(m), m = 1, 2. In the isotropic and elastic
limit, equations (13a)-(13d) give the conventional velocity­
stress differential equations (Virieux, 1984).

where w is the angular frequency, x == (x, z) and (ws - ia)s
== k is the complex wavenumber vector with s == (i'X> i'z)
defining the propagation direction. Substituting this form
into equation (1) and the result into the equation of momen­
tum conservation (11) gives the complex dispersion relation

P66f; + 2p46 i'x i'z + P 44 i'; = p(w/k)2, (15)

whereP IJ are the complex stiffness components given by the
Fourier transform of the time derivatives of the relaxation
components. This gives

EXAMPLE

(21)

m = 1, 2,

m = 1,2.

In the time domain, the wave equation (12) corresponds to
this rheology. The quality factors for homogeneous waves
along the z- and x-axes are

1 + W 2T(m)2
Q(m)(w) = Q(m) 0

o 2WTbm )

We consider a monoclinic medium with P44 = c44M(l),
P66 = C66M (21, andp46 = c46, where

1 + iWT(m)
M(m)(w) = "

1 + iWT~m)'

(16)P44 = C44M (l),

where

are the dimensionless complex moduli. Since the slowness s
is equal to Re[k/w], we obtained from equation (15) that the
slowness curve is

2T(m)
(m) _ 0

Qo - (m) (m)'
T" -Tcr

respectively, where

and

Tbm ) = VT~m)T~m). (22)

The curve Q(m)(w) has its peak at w~m) 1/T~m), and the
value of Q(m)(w) at the peak is Q~m). The low-frequency
elastic stiffnesses are taken as: C44 = 10.0 GPa, c66
22.5 GPa and c46 = 5.0 GPa, and the density as

(18)

m = 1, 2, (17)
1 L (m) 1 +' (m)

lWT"e
M(m)(w)_- ~

- L (m) LJ 1 +' (m) ,
e=l lWTcre

[ (

2 2 ) -1/2]Sx 2sx s z Sz
Re --+--+-- -1=0

P/P66 P/P46 P/P44 '

where sXy'= si'x and Sz = si'z. Note that s = (0, ~implies

s = Re[ P/P44], and s = (1, 0) implies s = Re[ P/P66];
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552 Carcione and Cavalllni

p = 2500 kg/m 3 • The relaxation peaks of both dissipation
mechanisms are centered atto = 1/27rT6m) = 25 Hz, and the
values of the peak quality factors are Q61) = 20 and Q62

) =

100.
Figure 1 displays polar diagrams of the attenuation and

energy velocity at a frequency of 25 Hz. The orientation and
shape of the curves depend on the elasticities and the
dissipation mechanisms, which are intrinsic properties of the

medium, and the direction of propagation. In particular, the
dissipation is strong in the vertical direction.

In the following figures, we consider a flat interface where
the upper half-space is a medium with monoclinic (or higher)
symmetry, and the lower half-space is an elastic isotropic
medium with C44 = C66 = 48 GPa and p = 3000 kg/m3

•

Figure 2 shows snapshots (not scaled) of the displacement
wavefields produced by a line source with central frequency
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FIG. 1. Polar representations of (a) slowness, (b) attenuation, (c) quality factor, and (d) energy velocity for a homogeneous wave
in the symmetry plane of a monoclinic medium. The curves correspond to a frequency of 25 Hz.
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Generalized SH-wave Equation 553

of 25 Hz. The upper medium is isotropic-elastic (left col­
umn), anisotropic-elastic (central column), or anisotropic­
viscoelastic (right column). In the left column, the elastic
stiffnesses of the upper medium are c 66 = c 44 = 10 GPa and
C46 = O. As can be observed, a comparison of the first
elastic and viscoelastic snapshots (taken from the left) shows
that the wave is more attenuated in the vertical direction, as
predicted by the theoretical curves. Moreover, the reflected
field in the anelastic case is clearly weaker than in the elastic
case (see snapshots at t = 340 ms). An important effect is
the change in amplitude along the wavefront, as can be
appreciated in the last snapshots. This is caused by the
anisotropic-dissipation properties of the monoclinic me­
dium, and by a reflection coefficient presumably different
from that of the elastic case.

The corresponding seismograms are illustrated in
Figure 3. Anelasticity and anisotropy affect the reflected
wave more than the direct wave, as shown by the different
amplitude variation with offset of the reflected event in the
three cases. Finally, reflection traveltimes are considerably
different in the isotropic and anisotropic cases.

CONCLUSIONS

We have developed a wave equation for simulating vis­
coelastic pure shear waves in a monoclinic medium. The
theory includes other cases of higher symmetry, like or­
thorhombic and transversely isotropic media. As is well
known (e.g., Winterstein, 1990), these rheologies describe a
set of systems (cracked formations, fine layering, etc.)
frequently appearing in reservoir environments. A frequen­
cy-domain analysis shows how the values of the attenuation
(or the quality factor) can be chosen along the horizontal and
vertical directions for modeling purposes. The use of a
simple wave equation that considers the anisotropy of the
elastic constants and directional dissipation can be conve­
nient for analyzing the performance of amplitude variations
with offset in the presence of anisotropy and attenuation.
Indeed, in the case of a reservoir environment, an interpre­
tation of the seismic response based merely on the assump­
tion of elastic and isotropic medium is often adequate to give
an indication of the location of the reservoir, but a correct
diagnosis of its composition and structural features requires
the consideration of the directional dissipation effects. Fi­
nally, from the point of view of research, the modeling
algorithm may prove helpful for studying the properties of

inhomogeneous viscoelastic body waves generated at
anelastic-anelastic interfaces.
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FIG. 3. Synthetic seismograms (not scaled) corresponding to (a) the isotropic-elastic case, (b) the anisotropic-elastic case, and
(c) the anisotropic-viscoelastic case. The reflected anelastic wave shows an amplitude and phase behaviour different from that
of the reflected elastic wave. Traveltime differences can also be appreciated.

FIG. 2. Snapshots of the displacement field (relative ampli­
tudes) produced by a line source with a dominant frequency
of 25 Hz. In all the snapshots, the lower medium is isotropic­
elastic; analogously, III the figures that compose the left
column, the upper medium is also isotropic-elastic, but with
different material parameters. In the right column, the upper
medium is anisotropic-viscoelastic. In the central column,
the upper medium is anisotropic-elastic and corresponds to
the low-frequency limit of the viscoelastic case. The triangle
indicates the position of the first receiver.
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