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Abstract

For special symmetries (including monoclinic), the 3D equations
of linear (visco-) elasticity admit anti-plane (i. e. linearly polarized)
shear (i. e. divergence-free) solutions, which therefore depend on
two coordinates only in a suitable reference system. The propaga-
tion conditions for these waves in transversely isotropic media are ob-
tained here using coordinate-free notation. Special attention is paid
to monochromatic inhomogeneous waves, in which propagation and
attenuation directions differ. Moreover, the problem of reflection and
transmission at a welded plane surface is considered. The assumed
continuity of displacement and traction yields a generalized Snell’s
law, together with reflection and refraction coefficients. Numerical
computations, with geophysically meaningful parameters, illustrate
the main differences between the elastic and the dissipative materials.

1 Introduction

There is a vast literature on waves in anisotropic elastic media, e. g. [1],
and in isotropic viscoelastic media, e. g. [2] and [3]; but only a few scattered
papers take into consideration both anisotropy and dissipation, e. g. [4], [5],
[6] and [7]. The aim of this work is to contribute to fill this gap starting with
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a study of anti-plane shear waves, which are physically important in spite of
their relatively simple mathematical structure.

2 Theory

2.1 Unbounded homogeneous medium
2.1.1 Basic equations

The equations of linear elastodynamics are, in coordinate-free notation:

(momentum equation) Div T +b = p i, (1)
(constitutive law) T =C E, (2)
(strain-displacement relation) E = sym(Vu), (3)

where 7" is stress, b is body-force density, p is mass density, u is displacement,
C is the elasticity operator, £ is strain, and "sym” denotes the symmetric
part of a tensor [8]. From Eq. (1)-(3) we get a single (3D vector) wave
equation for displacement in the absence of body forces:

Div C (sym Vu) = p 1. 4)
2.1.2 Anti-plane shear waves
Anti-plane waves are expressed by the ansatz
ult,x] = ult,x] 4, (5)

where x is space position, and 1 is a fixed direction (unit vector). By defini-
tion, shear waves fulfill the zero-divergence condition

Div u = 0. (6)
From (5) and (6) we get that anti-plane shear waves verify
trc £ =0. (7)

Substituting ansatz (5) into wave equation (4) yields three scalar constraints
for the single scalar unknown u: the system, in general, is overdetermined
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and so it has no solution. However, for special rheologies, the three scalar
equations in (4) reduce to a single one if polarization 1 is suitably chosen. The
range of materials for which this happens is slightly wider than the monoclinic
class [9]; here, for simplicity, we confine our analysis to transversely isotropic
media, whose elastic constitutive law is given by

T = [ClgtI'CE — (612 — (313)é > (Eé)} I
+(C11 - 612)E (8)
_(Cll = Ci9 — 2044) 2 sym [é ® (Eé)]
— [(C12 — Clg)tl‘CE — (Cn -+ C33 — 2013 — 4C44)é . (Eé)] é & é

where € is a unit vector [10]. Now, let’s assume that & is orthogonal to @ and
introduce &, = 0 x &; it follows that {&,, @1, &} is a right-handed reference
frame, and therefore

E = (&, Vu) sym(é, ® i) + (é- Vu) sym(é ® 1), (9)
é-(pe) =0, (10)
2 sym[ée® (Ee)] = (é- Vu)sym(é ® u). (11)

Substituting (7) and (9)-(11) into (8), we get the stress as
T =2 ces(€, - Vu) sym(é, @ 4) + 2 cyq(é- Vu) sym(é®@a), (12)
where cgs = (€11 — ¢12)/2, and then
Div T =2 ¢ sym(é, ® W)V (&, - Vu) + 2 ¢4y sym(é @ @) V(é - Vu)

At this point it is convenient to introduce coordinates {x,y, z} through x =
zé, + yu + zé. Then, by (5) and (6), the displacement u does not depend
on coordinate ¥, and

Div T = (Cﬁﬁa:vru + 044azzu)ﬁ;
thus the vector wave equation (4) reduces to the single scalar equation
ceﬁamu + c44azzu =p . (13)

From now on, we focus our attention on plane waves, which in our case take

the form .
ult,z, 2] = Re [U e' v texp|—i(kz + kzz)]] , (14)
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where U is the only complex variable. For these waves, Eq. (13) gives the
propagation condition

Cﬁﬁk:xz ~+ C44/\722 =p W, (15)
This equation holds, in particular, for isotropic media, with cgs = caq = p.
The above discussion referred to elastic materials, but it applies as well to
viscoelastic media provided that the parameters cy4, g5, and k., k, are taken
as complex: this is, in essence, the content of the correspondence principle
[11].

2.1.3 Energy flow

In linear elastodynamics, the total energy density and the (Umov-Poynting)
intensity vector are defined by

1 r ..
e=§E-T+§pu-u (16)

and
q=-Tnu, (17)
respectively. It is well known that they satisfy the energy balance equation
é=-Divg+b-q, (18)

as stated, e. g., in chapter 34 of Gurtin’s book [8].
Assuming ansatz (14) and a transversely isotropic material, Eq. (17)
becomes

q=w (Re [iU e' ¥ texp[—i(kyx + lczz)]])2 (co6 K €z + Caa K, &5).

It is then clear that, for this kind of waves, the Poynting vector is easily
computed from the wave parameters and the material constants. Moreover,
the quotient between the Poynting vector components determines the grazing
angle of q: this angle

k
o] _ arcta.ncﬁs—Izl (19)
|q2| Caq |kz|

1) = arctan

is then a constant and, in anisotropic media, usually differs from the cor-
responding quantity for the propagation vector k. On the other hand, the
magnitude of Poynting’s vector depends both on time and space.
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The time average of the Poynting vector over the one-period interval
[0, 27 /w] is given by

1

and therefore is independent not only on time (which is obvious), but also
on space (which is rather surprising). From this formula, and propagation
condition (15), it follows that the magnitude of Poynting’s vector may be
expressed as

1
”<Q>”:§W|Ul2 \/044(PW2—066< _@)kzz)' (20)
Caq

2.2 Two homogeneous half-spaces

Consider a wave u[t,z, 2] = Urexp[—i(kjzx + k1,2 — wr t)], traveling in an
elastic isotropic medium of density p;, that is incident at a plane interface
z = 0 with a transversely isotropic, viscoelastic medium of density p,. We
want to compute the reflected wave ug and the transmitted wave up. The
assumed continuity of displacement,

ur+ugr =up atz=0, (21)

has three main consequences: first, the frequencies of the three waves are the
same; second, the z-components of the propagation vectors coincide (gener-
alized Snell’s law); third, the sum of incident and reflected amplitudes equals
the transmitted wave amplitude, namely

Ur+Ug="Ur. (22)
The assumed continuity of traction,
Tre+Tre=Tré atz=0, (23)
yields, in particular,

p(kr; Ur + kg, Ug) = caskr,Ur.
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From these results, and propagation conditions of the form (15), the re-
flected and transmitted waves can be determined, given the incident wave,
using the reflection and transmission coefficients

Ur
= —=Cr-—1
CR UI T ) (24)
Ur Caa b, -
Cr = —=2[1+— . 25
r Ur ( * wokr, (25)

Since the incidence medium is elastic, we may write the propagation vector
k; in terms of the incidence angle §; = arctan |k, /kr.| as ki, = krsiné; and
ky, = —kjcosfy, with ki = pyw?/u; hence, by eliminating frequency from
the propagation conditions for the two media, we get

2

k

AN R R N
kr. cu \pP1 M cos? 0

Thus, the transmission coefficient Cr depends on the incident wave through
the incidence angle only.

When the transmission medium is viscoelastic, one has to assume that the
transmitted plane wave is inhomogeneous, i.e., that the propagagation vector
k is complex with non-parallel real and imaginary parts. We express it as
k = & —i @, where K and @ are the real propagation and attenuation vectors,
respectively. Because of the generalized Snell’s law, the angle between the
real attenuation vector and the normal to the interface is zero. Moreover,
the angle of transmission (i.e., the angle between the real propagation vector
and the normal to the interface) depends on the incident wave through the
incidence angle only, since

ke e c !
( TI) = Xsin?g; (@ — 8 gin? 01> .
k. Iz pr

If c4q and cgg are real, and pa/p1 < ces/pt, then for incidence angles greater
than the total reflection angle

. P2 M
6,77 = arcsin | —=—
P1 Ceo

the transmitted wave becomes evanescent.
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Medium p I Caq Ce6
Incidence (elastic) 2000 | 10.58 ~ -
Transmission | elastic 2500 = 44.1 19.6
viscoelastic | 2500 — 64.8+4.031]28.8+1.791

Table 1: Numerical values of the material parameters used in the examples,
with densities expressed in kg/m® and stiffnesses in GPa.

From Eq. (19) and the propagation condition for the incidence medium,
we have that 9p = 9; = 0gr = 0;. Likewise, for an elastic transmission
medium, we get that tan 7 = (ces/caq) tan Op; therefore, 1y = 67 when both
media are elastic isotropic. Finally we note that, because of Eq. (20), the
magnitudes of the average Poynting vectors of the reflected and transmitted
waves depend on the incident wave only through its angular frequency w and
its horizontal wavenumber k,; thus, by the generalized Snell’s law, they are
all equal to the magnitude of the average incident Poynting vector, given by

1
| <ar>l=3 w? |U)* /i pr.

3 Examples

We consider here two correlated situations of geophysical interest: in both
cases the incidence medium is the same (isotropic elastic) and the transmis-
sion medium is transversely isotropic, but the latter is elastic in the first
example and viscoelastic in the second, as shown in Table 1. The Lamé pa-
rameter . = p; cg® corresponds, here, to a shear wave velocity cg = 2300
m/s. Assume, for clarity, that the interface is horizontal. Then, in the elastic
case, the stiffnesses cqyy = py cy? and cgs = py cy? in Table 1 correspond to
a vertical shear wave velocity ¢y = 4200 m/s and to a horizontal shear wave
velocity cg = 2800 m/s, respectively.

In the viscoelastic case, a standard linear solid constitutive law has been
assumed (cf. [11] and [13]). Then, the complex stiffness c44 may be expressed
in terms of the more directly measurable quantity Qoy (minimum quality
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factor of vertical shear waves) as

2 (+1+ \/1+ng ) —1Qov
Cq4 = P2 Cv2 .
2w (—1-1— V1 +ng> —1 Qov

A similar formula holds for cgs. Choosing Qo = Qov = 5 leads to the
values in Table 1. Fig. 1 shows cartesian plots of the transmission angle
and of the reflection coefficient for the two geological structures described
above: in both cases the incidence medium is the same (elastic isotropic),
but the transmission medium is either elastic isotropic (left part of Fig. 1)
or viscoelastic and transversely isotropic (right part of Fig. 1). The total
reflection angle is 55 degrees: for incidence angles greater than that, the
transmission angle is 7/2, the magnitude of the reflection coefficient is 1,
and its argument grows from 0 to 180 degrees (see left part of Fig. 1).

4 Conclusion

We have computed the reflected and transmitted waves due to an incident
anti-plane shear wave, assuming an elastic isotropic incidence medium and a
transversely isotropic transmission medium. The analysis for a viscoelastic
transmission medium follows closely that for an elastic medium, via the cor-
respondence principle. The most evident conclusion that can be drawn from
our numerical examples (see Fig. 1) is that discontinuities and corner points
appear only in the purely elastic case.




REFLECTION AND TRANSMISSION OF ANTI-PLANE SHEAR WAVES, ... 99

80 80
60 60
40 40
20 20

0 0

o
N
o
N
o
[
=)
(o]
o
o
n
=3
S
o
(2]
o
[oo]
o

i 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 0
0 20 40 60 80 0 20 40 60 80

200 200
150 150
100 100
50 50
0 0

0 20 40 60 80

o

20 40 60 80

Figure 1: Cartesian plots of transmission angle (top), magnitude of reflection
coefficient (center), and argument of reflection coefficient (bottom) for an
elastic/elastic interface (left) and an elastic/viscoelastic interface (right).
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