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Forbidden Directions for TM Waves
In Anisotropic Conducting Media

Jo€ M. Carcione and Fabio Cavallini

Abstract—We investigate the wave propagation properties  In this work, we consider the propagation of TM (transverse-
of nonuniform plane waves in an (unbounded homogeneous) magnetic) waves in an anisotropic conducting medium. Three
anisotropic conducting material. Such waves (for which ampli- \5riapjes describe the problem, two electric field components
tudes vary across surfaces of constant phase) characterize the - ; .
refracted field in an imperfect dielectric, like the earth when a and the magnetic f|g|d perpendmu!ar to the propagat.|0n plane.
uniform electromagnetic plane wave is incident from the air. The From the mathematical point of view, this problem is analo-
results, presented in terms of polar diagrams of the attenuation, gous to that of pure viscoelastic shear waves propagating in the
slowness, energy velocity, and quality factor predict the existence plane of mirror symmetry of a monoclinic medium [11], and

of "stopbands” beyond a given degree of nonuniformity (i.€., generalizes the approach in [12] where homogeneous plane
combinations of propagation and attenuation directions where :
waves were considered.

there is no wave propagation). This is a peculiar effect due
to the joint presence of anisotropy and conductivity that may
have application in the design of synthetic materials acting as
absorbers of electromagnetic radiation.

Index Terms—Electromagnetic theory. Il. DISPERSIONRELATION FOR NONUNIFORM TM WAVES

Assume that an electromagnetic wave propagates in the
(z, z)-plane, and that the material properties are constant with
respect to they coordinate. Then, the field componerfs,

N ONUNIFORM plane waves have the property that plan@z' and H, are decoupled fronf,, H,, and H.. The first
of constant amplitude do not coincide with planes ahree obey the TM (transverse-magnetic) Maxwell differential
constant phase. This implies that the wavevector and tBguations which, in the absence of magnetic moments and

attenuation vector do not have a common direction. Theggctric current sources, can be written in compact form as
waves are generated at the heterogeneities of the medium.

For instance, in the problem of reflection and refraction of VT o E :u% (1)
plane waves at a boundary between two electrically different 2 ot

half-spaces, the familiar uniform waves (equiphase planes and VoH, —ceE+ceo JE )
equiamplitude planes coincide) are not generally enough to v ot

satisfy the boundary conditions (e.g., [1]). The problem shoul .

include the nonuniform plane waves which characterize e ereE = [E., E.]T, Vy = [-0/0z, 0/0a]", while
refracted field in an imperfect dielectric like the earth or the sea {611 0 }

I. INTRODUCTION

when a uniform plane wave is incident on its plane boundary

from a perfect dielectric like air. Therefore, in layered media

these waves are not the exception but the rule. o= {011 0 } (3)
To our knowledge, little attention has been paid to the 0 o3

propagation of nonuniform waves in anisotropic media. FQfe the permittivity and conductivity matrices both expressed

instance, Born and Wolf [2, p. 708] describe wave propagatiqithe principal coordinate system of the medium. The symbol
in absorbing crystals, but they assume uniform plane wavgsgenotes ordinary matrix multiplication.

Moreover, recent results [3]-[8] dealing with propagation in rhe magnetic field associated to a nonuniform TM plane
anisotropic lossy materials do not exhaust the related proPsye nas the form
lems. In viscoelastodynamics, several researchers investigated
the problem in the isotropic case, notably Buchen [9] and H=H,,
Borcherdt [10]. i(wt—kex
[10] H, = Hoc!(@t—kex)

é,=[0,1,0]" (4)
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not coincide. Alternatively, the wavevector can be written asase [13, p. 141]. The problem is now to express the real
k = [k, k.], wherek, andk. are complex components. wavenumber and attenuation factersand « in terms of the

Since for the plane wave (4), the opera¥s is angular frequencw and the direction& and &. Substituting
the wavevector components (11) into the dispersion relation
Vo ==Ky (8) and reordering terms gives
— _kz
K. = [ kll ) ar? — ba? — 2icko = w? (24)

substitution of (5) into (1) and (2) yields, after some algebrg,hqore
the dispersion relation

K; efeKy— jw? =0 (6) pa = B3l + pul (15)
b = Bazm?2 + Brim? (16)
where He :/333la;mac + ﬁlllzmz- (17)
_ B O N . . _ _
B= 0 s The imaginary part of (14) yields the following relationship

betweenx and «:

p -1
= <e _ a) (7
w =qK
ay

. . . . aye . = 18
is the dielectric impermeability matrix. In components, (6) q cn+ (B + b2 (18)

Q

becomes
2 2 2 where the subscriptB and denote real and imaginary parts,
Paa bz + Pk — pw” =0 (8) respectively. Substituting relation (18) into the real part of (14)

where gives the expression for the real wavenumber

. —1 W

1 =

P = ( - ;ffn) "= lan = m F 20 (19)

and

. 1 Note thatar — ¢*br + 2gc; = V7 is the square of the phase
B33 = <633 _ 1033) ) 9) velocity, and must be a positive quantity. Therefore, the real
w wavenumber and attenuation vectors are

From (2) and using (7), the electric field can be written as . — it

E-= —%(ﬂ e Ky). (10) a=gra. (20)

The slowness vector and the phase velocity vector are
lll. KINEMATICS OF THE WAVE PROPAGATION

K

The components of the complex wavevectorcan be S ~
written as _Yi 21)
K

k, =rl, —itamy,

and Mathematically, it is possible fo?/p2 to be negative for given
values of the variabled, v, andw. As we shall see in the
examples, these solutions give rise to forbidden propagation
“stopbands.”

k. =kl —iam, (11)

where [m,, m.]T = & defines the attenuation direction, andjlrectmns or
% = [l,, I.]T holds together withe = xk. The propagation
and attenuation unit vectors can be expressed in terms of IV. ENERGY ANALYSIS

propagation and nonuniformity anglésand-y as The group velocity is much simpler to compute than

the energy velocity which involves the calculation of the

Ly = sin 0 Umov—Poynting vector and energy densities. Moreover, as in

Ly = cos 0 (12)  the acoustic case the group velocity equals the energy velocity
My = sin (6 + ) when there is no attenuation, i.e., for a perfectly dielectric
m, = cos (0 +7) (13) medium.

However, the description of the wavefront requires the
wherey = arccos (£ ® &). We consider here that90® < ~+ <  explicit calculation of the energy velocity since the concept
90°, i.e., the amplitude decreases in equiphase planes, althooglgroup velocity looses its physical meaning when the atten-
the valuesy = £90° are forbidden in the dissipative isotropicuation is relatively high [12], [14].
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Fig. 1. Square of the phase velocity as a function of the propagation arfgtethree values of the nonuniformity angie The broken lines correspond to
uniform plane waves. As can be seen, wher- 68°, the phase velocity is pure imaginary for two ranges of propagation angles (stopbands).

A. Complex Umov—Poynting Theorem relations obtained in [17] also hold for electromagnetic nonuni-

The energy balance equation for three-dimensional (3_%? wave fields if one invokes the acoustic-electromagnetic

nonuniform plane waves in the absence of magnetic mome
and electric currents is (e.g., [15])

logy [18].
n the following paragraphs, the Umov—Poynting vector and
energy densities for TM waves are calculated and then used

Ve P — 2iw[(we)ay — (wm)av] + (pa)ay =0 (22) to compute the energy velocity and the quality factor.

whereP is the complex Umov—Poynting vector
B. Energy Velocity and Wavefront
P=3(ExH")=1H, {_gz} (23)  The energy velocityV. is the ratio between the average
‘ power flow R(P) and the mean energy density). v =
with the asterisk denoting complex conjugation. The real pdrv. + wm)av [13]. Hence
of the Umov—Poynting vector gives the average power flow R(P)
density over a cycle. By substituting (10) into (23), the mean Vo= —""74_ | (28)
power-flow density becomes (we =+ wm) av
On the other hand, from (10), (25), and usiDg= ¢ e E, the

2
R(P) = %ﬂe_Qa.xm(ﬁggkxel + P k-e3) (24) electric energy density is
iti 1 H 3 —2aex * ok
where (4) has b?en) used.IQ?Eil;intliljta]s (we) ay = Z|w—02|6 200xRI(K5) T 0 B* e co fo Ky] (29)
We )AV = 7 4
(wm)av = iﬁ%[(H*)T * B (25) Where the fact thaB is a symmetric matrix has been used.

Taking into account that = R(B™') and (7), it is easy to
are the time-average electric and magnetic energy densitigfsow thats™ e c ¢ 8 = R(8). Then
whereD = e e E is the electric flux density anB = pH is

2

the magnetic flux density [16]. Moreover (we)ay = %@c—mox%wlﬂkzp ¥ Balka?. (30)
W
(pa)av = 3R[(E")T o J] (26) Replacing the wavevector components (11) into (30), and
sing (15), (16), (18), and (21), the electric energy densit
is the time-average dissipated power density, wileteg e E. . Icc?m(es) (16). (18) (21) ! ay v
For nonuniform plane waves of the form (4), the Poynting

1 |Hol?

theorem (22) becomes (1)1 = Z“| V02| R ) (31)
p

2" o P + 2iw[(we) av — (wim)av] — (pa)av = 0. (27) . , -
From (25) and usin@® = ;:H, the magnetic energy density is

In (27), we use the two-dimensional notation for vectors and 1

for the matrix product. A similar energy balance equation (Wm)ay = ZMHOFG_QMX' (32)
was obtained by Carcione and Cavallini [17] for viscoelas-

tic inhomogeneous plane waves. Many of the fundamenglibstitution of the Umov—Poynting vector (24), and the energy
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Fig. 2. Zero level contour line of the phase velocity for three different frequencies: (a) 1 kHz, (b) 100 kHz, and (c) 10 MHz.

densities (31) and (32) into (28), gives the energy velocity faensity to the magnitude of dissipative current density. The

nonuniform TM waves concept of quality factor can be considered as a generalization
2WR(Baskeer + Prik.es) of the concept o in circuit theory. Good dielectrics have
e = oL+ V2 Ra + 20)] (33) high  values, and conductors have very laW values. In
p

viscoelastodynamics, a definition of quality factor is given by
The location of the energy defines the wavefront. Thereforgyice the ratio between the average potentiaj energy density

the latter is the locus of the tip of the energy velocity vectQind the dissipated energy density. Accordingly, here we define
at unit propagation time.

Q = 20 WAV, (34)
C. Quality Factor (Pa)av
The quality factor classifies, somehow, matter from the ele¥!sing (26) andJ = o e E, following the same steps used
tric current standpoint. As stated by Harrington [19, p. 28], tHe obtain the electric energy density, and noting that=
quality factor is defined as the magnitude of reactive currentu%(ﬂ_l) and 8" e o e 8 = w3(PY), the dissipated power
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Fig. 3. Polar representations of the energy velocity for a nonuniform plane @)
wave. The broken lines correspond to uniform plane waves-(0°). Here .
also, as in Fig. 1, the stopbands can be appreciated. For higher frequencies the a5 f=500KHz, y=68" attenuation
bands tend to disappear. In this case, the bands can be activated by increasing
the inhomogeneity angle.
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Fig. 5. Slowness and attenuation. Polar representations of (a) the slowness
and (b) the attenuation for a nonuniform plane wave. The broken line
corresponds to the uniform plane wave £ 0°).

Fig. 4. Polar representations of the quality factor for a nonuniform plane

wave. The broken lines correspond to uniform plane waves=(0°). The
quality factor vanishes inside the bands, implying infinite dissipation.

density is written as

1 |Hol
(pd)AV = 5 MW

6_2"""%[@ + qu]. (35)
2 V2

S-m™!, 033 =8 x 10~°> S- m~. The magnetic permeability
p has been taken equal to that of vacuym & 47 x 107
H-m™).

Fig. 1 represents the square of the phase veldz;ﬁ)@s a
function of the propagation angefor a frequency of 100 kHz.
The broken line corresponds to the uniform waye=0). In
the transition fromy = 60° to~ = 68°, two stopbands develop

From the energy densities (31) and (35), definition (34) yieldéhere the wave does not propagate. These bands (intervals in

R(a + ¢°b)

TR )

For uniform waves, (36) simply give® = R(V?2)/3(V?2).

V. EXAMPLES

We consider an anisotropic medium with; = 10¢,
€33 = 20 €9, Whereeg = 8.85x 10712 F-m~!, andsy; = 107°

the #-axis where, for a given frequency and nonuniformity
angle, Vp2 < 0) are exclusive to conducting anisotropic
media—they do not exist in conducting isotropic and in
purely dielectric materials. The physical interpretation of this
phenomenon requires some considerations. Nonuniform waves
are generated at a boundary between two dissimilar media
and, therefore, their characteristic parameters are governed
by Snell's law. The fact that’? becomes negative and that,
hence,s becomes purely imaginary (in contradiction with the
starting assumption) means thatand a interchange their
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Fig. 6. Nonuniformity threshold versus frequency. The quamityis the minimum angle for which the bands are activated (i.e., when, for instance,
the phase velocity vanishes).

roles. However, this conversion can never take place, because f=1KHz, y-39° energy velocity

the generation of such a wave is precluded by Snell’s law. 70

In virtue of the mathematical similarity between the electro- K\

magnetic and acoustic problems [11], a similar phenomenon K\
30 \

is verified in anisotropic and viscoelastic media [20], [21].

It is then of interest to consider the set of all paits )
where, for a given frequency the propagation is forbidden. This
is done in Fig. 2, that shows the contour lifg (6, v) = 0
for three different frequencies: (a) 1 kHz, (b) 100 kHz, and
(c) 10 MHz. For completeness, we have represented the angle \ ) \
~ in the whole mathematical range [0, 360] degrees, but as -30 ¢
noted before, the physical ranges are [0, 90] and [270, 360] \}

Vez (Mius)

/
/

degrees. As can be observed, the range ahgles for which
stopbands exist is wider for lower frequencies.

Figs. 3 and 4 illustrate energy-related quantities. Fig. 3
shows polar representations of the energy velocity ffoe
68> and a frequency of 100 kHz. As before, the broken line

corresponds to the uniform wave. Within the stopbands tﬁ@ 7. Polar representation of the energy velocity for a nonuniform plane
) ’ “wave. The broken line corresponds to the uniform plane wave. As expected,

energy velocity has been taken as zero. For higher frequencighe transition from the wave propagation to the diffusion regime, the energy

the bands may still be present for higher nonuniformity angleglocity of the uniform plane wave has substantially decreased (compare with
Fig. 4 shows polar representations of the quality factoryfef Fig. 3). Moreover, the energy velocity of the nonuniform plane wave shows

. . a strong anisotropic behavior.
68° and a frequency of 100 kHz. As with the energy velocity,

the quality factor has been set to zero when the phase velogiéttain propagation anglésare forbidden. An example of the
is complex. graph of v(f) is shown in Fig. 6. In the diffusion regime,
The slowness and attenuation polar plots for a frequengye threshold is lower than in the wave propagation regime,
of 500 kHz are represented in Fig. 5(a) and (b), respectiveiyhereas it approaches a constant value in the high-frequency
Even if there are not stopbands in this case, the attenuatipnit.
increases substantially with respect to the uniform plane waveFinally, we illustrate the behavior of the energy velocity
case. As expected, the slowness also increases along the sahen the frequency range is approaching the diffusion regime,
directions. and the nonuniformity angle is very close to the threshold.
Given the existence of forbidden propagation directions, it Hg. 7 displays a polar representation of the energy velocity
interesting to consider, for any given frequengythe thresh- for a frequency of 1 kHz and a nonuniformity angle of°39
old nonuniformity angley,(f) = inf {y : 386, Vp2(9, ~v) < The main features are the strong direction dependence of the
0} = min {~ : 36, V;?(6, v) = 0}, which can be computed by nonuniform plane wave and the expected contraction of the
using the Lagrange multiplier method for finding the minimunsurve corresponding to the uniform wave. Contrarily to Fig. 3,
of y(6, v) = ~ under the constraint/p?(e, ~v) = 0. In other the velocity of the nonuniform wave is, for most directions,
words, if the nonuniformity angle is greater than,(f), then higher than the velocity of the uniform wave.

-70

-70 -50 -30 -10 10 30 50 70
Vi (miss)
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VI. CONCLUSIONS [8] S. He, “The correct ETLC model for anisotropic lossy materials—A

. . . comment on ‘Transient propagation in anisotropic laminated compos-
We considered the propagation of nonuniform plane TM ites’,” IEEE Trans. Electromagn. Compatol. 36, pp. 409—410, Nov.

waves in a conducting anisotropic medium. Increasing values 1994.

: - [9] P. W. Buchen, “Plane waves in linear viscoelastic med@gbphys. J.
of v (the angle between the propagation and attenuatiot] Roy. Astr. Soc.yol. 23, pp. 531-542, 1971.

directions) which is a property of the wave, introduce morgo] R. D. Borcherdt, “Reflection and refraction of typediwaves in elastic
dissipation and anisotropy besides the intrinsic properties that and anelastic solid,Bull. Seis. Soc. Amenol. 67, pp. 43-67, 1977.
the medium shows when probed with uniform waves. In fa J. M. Carcione and F. Cavallini, “On the acoustic-electromagnetic

€ mediu p _ _ Ves. ' analogy,”Wave Motionyol. 21, pp. 149-162, 1995.
while wavefronts based on the uniformity assumption may ap2] J. M. Carcione, “Wave fronts in dissipative anisotropic medi@go-

i i i phys, vol. 59, pp. 644-657, 1994.
pear 'SOU_'OF)'C, Wavefront$ composed of nonuniform waves (\:ﬁ%] H.'C. Chen,Theory of Electromagnetic Fields.New York: McGraw-
show a high degree of anisotropy. Furthermore, beyond a given' nj; 19s3.
degree of nonuniformity, the combined dissipative-anisotropit4] K. E. Ou?hstuln and G. C.IShermﬂectromanetic Pulse Propagation
: ; ; : in Causal Dielectrics. Berlin: Springer-Verlag, 1994.

propertles of the medium give rise to stopbands Whe_re th Eg] H. G. Booker,Energy in Electromagnetism.New York: Peregrinus,
is no propagation at all. It can be shown that the location and” |EE Electromagn. Waves Ser. 13, 1982.

width of the bands depend on the material properties, maiél W. C. Chew,Wavgs and Fields in Inhomogeneous Medialew York:
isel he d f ductivi d . It i Van Nostrand Reinhold, 1990.
precisely on the degree ot conductivity and anisotropy. It {$7] 3 m. carcione and F. Cavallini, “Energy balance and fundamental

also remarkable that, contrary to the isotropic case, nonuniform relations in anisotropic viscoelastic mediafave Motionyol. 18, pp.

i i 11-20, 1993.
bOdy waves can propagate even for perpendlcular propagattgé] , “Modeling transverse electromagnetic waves in conducting

and atten_uatic_’n direCtiO_nS- _ anisotropic media by a spectral time-domain techniq@8th Ann. Rev.
A physical interpretation seems to be in order here. The Progress Appl. Computat. EIeC_tror?agml. I, pp. 586|—$593, 1994.k
: : f R. F. Harrington,Time-Harmonic Electromagnetic FieldsNew York:
band; corre_spond tq nonphysma}l solutions, since the ph_éjsgé McGraw-Hill 1961.
velocity vanishes or is pure imaginary. A zero phase veloci{yo] E. S. Krebes and L. H. T. Le, “Inhomogeneous plane waves and
corresponds to an infinite slowness, but the generation of g)élindficgg\ggge;;g Elgnisoégomc anelastic media,'Geophys. Resvpl.
. . . , pp. —23919, 1994.

a wave with such slowness 'S_ preFIUded' The same appngﬁ J. M. Carcione and F. Cavallini, “Forbidden directions for inhomoge-
when the slowness takes an imaginary value. However, the neous pure shear waves in dissipative anisotropic me@agphys.,
effects of the bands should be observable near the threshold, vol- 60, pp. 522-530, 1995.
that is when the value of the nonuniformity angle is such
that the phase velocity is small and the slowness is high
along a given direction. Indeed, this is combined with a high
attenuation which produces a substantial dissipation of t-~
wavefield along the band directions; this anomalous high
anisotropic attenuation is really an observable effect. Tt
phenomenon may have application in the design of synthe
materials acting as absorbers of electromagnetic radiation, e
optically invisible media. Also, the concept can be used -
reduce radar reflections from obstacles. 9¢ 87, k _

Numerical modeling of Maxwell's equations [18] is esser search Geophysicist at Yacimientos Péfasbs Fis-

. . L . - . cales, Buenos Aires, Argentina. Presently, he is
tial to get more physical insight into the dynamics underlyingirigente di Ricerca at the Osservatorio Geofisico Sperimentale, Trieste, taly.
the dispersion relation. His current research deals with numerical modeling and the theory of wave

propagation in acoustic and electromagnetic media, and their application to
geophysical problems and rock physics.
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