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Forbidden Directions for TM Waves
in Anisotropic Conducting Media

Jośe M. Carcione and Fabio Cavallini

Abstract—We investigate the wave propagation properties
of nonuniform plane waves in an (unbounded homogeneous)
anisotropic conducting material. Such waves (for which ampli-
tudes vary across surfaces of constant phase) characterize the
refracted field in an imperfect dielectric, like the earth when a
uniform electromagnetic plane wave is incident from the air. The
results, presented in terms of polar diagrams of the attenuation,
slowness, energy velocity, and quality factor predict the existence
of “stopbands” beyond a given degree of nonuniformity (i.e.,
combinations of propagation and attenuation directions where
there is no wave propagation). This is a peculiar effect due
to the joint presence of anisotropy and conductivity that may
have application in the design of synthetic materials acting as
absorbers of electromagnetic radiation.

Index Terms—Electromagnetic theory.

I. INTRODUCTION

NONUNIFORM plane waves have the property that planes
of constant amplitude do not coincide with planes of

constant phase. This implies that the wavevector and the
attenuation vector do not have a common direction. These
waves are generated at the heterogeneities of the medium.
For instance, in the problem of reflection and refraction of
plane waves at a boundary between two electrically different
half-spaces, the familiar uniform waves (equiphase planes and
equiamplitude planes coincide) are not generally enough to
satisfy the boundary conditions (e.g., [1]). The problem should
include the nonuniform plane waves which characterize the
refracted field in an imperfect dielectric like the earth or the sea
when a uniform plane wave is incident on its plane boundary
from a perfect dielectric like air. Therefore, in layered media
these waves are not the exception but the rule.

To our knowledge, little attention has been paid to the
propagation of nonuniform waves in anisotropic media. For
instance, Born and Wolf [2, p. 708] describe wave propagation
in absorbing crystals, but they assume uniform plane waves.
Moreover, recent results [3]–[8] dealing with propagation in
anisotropic lossy materials do not exhaust the related prob-
lems. In viscoelastodynamics, several researchers investigated
the problem in the isotropic case, notably Buchen [9] and
Borcherdt [10].
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In this work, we consider the propagation of TM (transverse-
magnetic) waves in an anisotropic conducting medium. Three
variables describe the problem, two electric field components
and the magnetic field perpendicular to the propagation plane.
From the mathematical point of view, this problem is analo-
gous to that of pure viscoelastic shear waves propagating in the
plane of mirror symmetry of a monoclinic medium [11], and
generalizes the approach in [12] where homogeneous plane
waves were considered.

II. DISPERSIONRELATION FOR NONUNIFORM TM WAVES

Assume that an electromagnetic wave propagates in the
-plane, and that the material properties are constant with

respect to the coordinate. Then, the field components,
, and are decoupled from , , and . The first

three obey the TM (transverse-magnetic) Maxwell differential
equations which, in the absence of magnetic moments and
electric current sources, can be written in compact form as

(1)

(2)

where , , while

(3)

are the permittivity and conductivity matrices both expressed
in the principal coordinate system of the medium. The symbol

denotes ordinary matrix multiplication.
The magnetic field associated to a nonuniform TM plane

wave has the form

(4)

where , is a complex constant, and is
the complex wavevector with and the real propagation and
attenuation vectors, respectively. Note that for a nonuniform
plane wave, the propagation and attenuation directions do
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not coincide. Alternatively, the wavevector can be written as
, where and are complex components.

Since for the plane wave (4), the operator is

(5)

substitution of (5) into (1) and (2) yields, after some algebra,
the dispersion relation

(6)

where

(7)

is the dielectric impermeability matrix. In components, (6)
becomes

(8)

where

and

(9)

From (2) and using (7), the electric field can be written as

(10)

III. K INEMATICS OF THE WAVE PROPAGATION

The components of the complex wavevectorcan be
written as

and

(11)

where defines the attenuation direction, and
holds together with . The propagation

and attenuation unit vectors can be expressed in terms of
propagation and nonuniformity anglesand as

(12)

(13)

where . We consider here that90
90 , i.e., the amplitude decreases in equiphase planes, although
the values 90 are forbidden in the dissipative isotropic

case [13, p. 141]. The problem is now to express the real
wavenumber and attenuation factorsand in terms of the
angular frequency and the directions and . Substituting
the wavevector components (11) into the dispersion relation
(8) and reordering terms gives

(14)

where

(15)

(16)

(17)

The imaginary part of (14) yields the following relationship
between and :

(18)

where the subscripts and denote real and imaginary parts,
respectively. Substituting relation (18) into the real part of (14)
gives the expression for the real wavenumber

(19)

Note that is the square of the phase
velocity, and must be a positive quantity. Therefore, the real
wavenumber and attenuation vectors are

(20)

The slowness vector and the phase velocity vector are

(21)

Mathematically, it is possible for to be negative for given
values of the variables, , and . As we shall see in the
examples, these solutions give rise to forbidden propagation
directions or “stopbands.”

IV. ENERGY ANALYSIS

The group velocity is much simpler to compute than
the energy velocity which involves the calculation of the
Umov–Poynting vector and energy densities. Moreover, as in
the acoustic case the group velocity equals the energy velocity
when there is no attenuation, i.e., for a perfectly dielectric
medium.

However, the description of the wavefront requires the
explicit calculation of the energy velocity since the concept
of group velocity looses its physical meaning when the atten-
uation is relatively high [12], [14].
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Fig. 1. Square of the phase velocity as a function of the propagation angle� for three values of the nonuniformity angle
. The broken lines correspond to
uniform plane waves. As can be seen, when
 = 68�, the phase velocity is pure imaginary for two ranges of propagation angles (stopbands).

A. Complex Umov–Poynting Theorem

The energy balance equation for three-dimensional (3-D)
nonuniform plane waves in the absence of magnetic moments
and electric currents is (e.g., [15])

(22)

where is the complex Umov–Poynting vector

(23)

with the asterisk denoting complex conjugation. The real part
of the Umov–Poynting vector gives the average power flow
density over a cycle. By substituting (10) into (23), the mean
power-flow density becomes

(24)

where (4) has been used. The quantities

(25)

are the time-average electric and magnetic energy densities,
where is the electric flux density and is
the magnetic flux density [16]. Moreover

(26)

is the time-average dissipated power density, where .
For nonuniform plane waves of the form (4), the Poynting

theorem (22) becomes

(27)

In (27), we use the two-dimensional notation for vectors and
for the matrix product. A similar energy balance equation
was obtained by Carcione and Cavallini [17] for viscoelas-
tic inhomogeneous plane waves. Many of the fundamental

relations obtained in [17] also hold for electromagnetic nonuni-
form wave fields if one invokes the acoustic-electromagnetic
analogy [18].

In the following paragraphs, the Umov–Poynting vector and
energy densities for TM waves are calculated and then used
to compute the energy velocity and the quality factor.

B. Energy Velocity and Wavefront

The energy velocity is the ratio between the average
power flow and the mean energy density

[13]. Hence

(28)

On the other hand, from (10), (25), and using , the
electric energy density is

(29)

where the fact that is a symmetric matrix has been used.
Taking into account that and (7), it is easy to
show that . Then

(30)

Replacing the wavevector components (11) into (30), and
using (15), (16), (18), and (21), the electric energy density
becomes

(31)

From (25) and using , the magnetic energy density is

(32)

Substitution of the Umov–Poynting vector (24), and the energy
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(a) (b)

(c)

Fig. 2. Zero level contour line of the phase velocity for three different frequencies: (a) 1 kHz, (b) 100 kHz, and (c) 10 MHz.

densities (31) and (32) into (28), gives the energy velocity for
nonuniform TM waves

(33)

The location of the energy defines the wavefront. Therefore,
the latter is the locus of the tip of the energy velocity vector
at unit propagation time.

C. Quality Factor

The quality factor classifies, somehow, matter from the elec-
tric current standpoint. As stated by Harrington [19, p. 28], the
quality factor is defined as the magnitude of reactive current

density to the magnitude of dissipative current density. The
concept of quality factor can be considered as a generalization
of the concept of in circuit theory. Good dielectrics have
high values, and conductors have very low values. In
viscoelastodynamics, a definition of quality factor is given by
twice the ratio between the average potential energy density
and the dissipated energy density. Accordingly, here we define

(34)

Using (26) and , following the same steps used
to obtain the electric energy density, and noting that

and , the dissipated power
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Fig. 3. Polar representations of the energy velocity for a nonuniform plane
wave. The broken lines correspond to uniform plane waves (
 = 0�). Here
also, as in Fig. 1, the stopbands can be appreciated. For higher frequencies the
bands tend to disappear. In this case, the bands can be activated by increasing
the inhomogeneity angle
.

Fig. 4. Polar representations of the quality factor for a nonuniform plane
wave. The broken lines correspond to uniform plane waves (
 = 0�). The
quality factor vanishes inside the bands, implying infinite dissipation.

density is written as

(35)

From the energy densities (31) and (35), definition (34) yields

(36)

For uniform waves, (36) simply gives .

V. EXAMPLES

We consider an anisotropic medium with ,
, where F m , and

(a)

(b)

Fig. 5. Slowness and attenuation. Polar representations of (a) the slowness
and (b) the attenuation for a nonuniform plane wave. The broken line
corresponds to the uniform plane wave (
 = 0�).

S m , S m . The magnetic permeability
has been taken equal to that of vacuum (

H m ).
Fig. 1 represents the square of the phase velocityas a

function of the propagation anglefor a frequency of 100 kHz.
The broken line corresponds to the uniform wave ( ). In
the transition from 60 to 68 , two stopbands develop
where the wave does not propagate. These bands (intervals in
the -axis where, for a given frequency and nonuniformity
angle, ) are exclusive to conducting anisotropic
media—they do not exist in conducting isotropic and in
purely dielectric materials. The physical interpretation of this
phenomenon requires some considerations. Nonuniform waves
are generated at a boundary between two dissimilar media
and, therefore, their characteristic parameters are governed
by Snell’s law. The fact that becomes negative and that,
hence, becomes purely imaginary (in contradiction with the
starting assumption) means that and interchange their
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Fig. 6. Nonuniformity threshold versus frequency. The quantity
0 is the minimum angle for which the bands are activated (i.e., when, for instance,
the phase velocity vanishes).

roles. However, this conversion can never take place, because
the generation of such a wave is precluded by Snell’s law.

In virtue of the mathematical similarity between the electro-
magnetic and acoustic problems [11], a similar phenomenon
is verified in anisotropic and viscoelastic media [20], [21].

It is then of interest to consider the set of all pairs
where, for a given frequency the propagation is forbidden. This
is done in Fig. 2, that shows the contour line
for three different frequencies: (a) 1 kHz, (b) 100 kHz, and
(c) 10 MHz. For completeness, we have represented the angle

in the whole mathematical range [0, 360] degrees, but as
noted before, the physical ranges are [0, 90] and [270, 360]
degrees. As can be observed, the range ofangles for which
stopbands exist is wider for lower frequencies.

Figs. 3 and 4 illustrate energy-related quantities. Fig. 3
shows polar representations of the energy velocity for
68 and a frequency of 100 kHz. As before, the broken line
corresponds to the uniform wave. Within the stopbands, the
energy velocity has been taken as zero. For higher frequencies,
the bands may still be present for higher nonuniformity angles.
Fig. 4 shows polar representations of the quality factor for
68 and a frequency of 100 kHz. As with the energy velocity,
the quality factor has been set to zero when the phase velocity
is complex.

The slowness and attenuation polar plots for a frequency
of 500 kHz are represented in Fig. 5(a) and (b), respectively.
Even if there are not stopbands in this case, the attenuation
increases substantially with respect to the uniform plane wave
case. As expected, the slowness also increases along the same
directions.

Given the existence of forbidden propagation directions, it is
interesting to consider, for any given frequency, the thresh-
old nonuniformity angle

, which can be computed by
using the Lagrange multiplier method for finding the minimum
of under the constraint . In other
words, if the nonuniformity angle is greater than , then

Fig. 7. Polar representation of the energy velocity for a nonuniform plane
wave. The broken line corresponds to the uniform plane wave. As expected,
in the transition from the wave propagation to the diffusion regime, the energy
velocity of the uniform plane wave has substantially decreased (compare with
Fig. 3). Moreover, the energy velocity of the nonuniform plane wave shows
a strong anisotropic behavior.

certain propagation anglesare forbidden. An example of the
graph of is shown in Fig. 6. In the diffusion regime,
the threshold is lower than in the wave propagation regime,
whereas it approaches a constant value in the high-frequency
limit.

Finally, we illustrate the behavior of the energy velocity
when the frequency range is approaching the diffusion regime,
and the nonuniformity angle is very close to the threshold.
Fig. 7 displays a polar representation of the energy velocity
for a frequency of 1 kHz and a nonuniformity angle of 39.
The main features are the strong direction dependence of the
nonuniform plane wave and the expected contraction of the
curve corresponding to the uniform wave. Contrarily to Fig. 3,
the velocity of the nonuniform wave is, for most directions,
higher than the velocity of the uniform wave.
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VI. CONCLUSIONS

We considered the propagation of nonuniform plane TM
waves in a conducting anisotropic medium. Increasing values
of (the angle between the propagation and attenuation
directions) which is a property of the wave, introduce more
dissipation and anisotropy besides the intrinsic properties that
the medium shows when probed with uniform waves. In fact,
while wavefronts based on the uniformity assumption may ap-
pear isotropic, wavefronts composed of nonuniform waves can
show a high degree of anisotropy. Furthermore, beyond a given
degree of nonuniformity, the combined dissipative-anisotropic
properties of the medium give rise to stopbands where there
is no propagation at all. It can be shown that the location and
width of the bands depend on the material properties, more
precisely on the degree of conductivity and anisotropy. It is
also remarkable that, contrary to the isotropic case, nonuniform
body waves can propagate even for perpendicular propagation
and attenuation directions.

A physical interpretation seems to be in order here. The
bands correspond to nonphysical solutions, since the phase
velocity vanishes or is pure imaginary. A zero phase velocity
corresponds to an infinite slowness, but the generation of
a wave with such slowness is precluded. The same applies
when the slowness takes an imaginary value. However, the
effects of the bands should be observable near the threshold,
that is when the value of the nonuniformity angle is such
that the phase velocity is small and the slowness is high
along a given direction. Indeed, this is combined with a high
attenuation which produces a substantial dissipation of the
wavefield along the band directions; this anomalous highly
anisotropic attenuation is really an observable effect. This
phenomenon may have application in the design of synthetic
materials acting as absorbers of electromagnetic radiation, e.g.,
optically invisible media. Also, the concept can be used to
reduce radar reflections from obstacles.

Numerical modeling of Maxwell’s equations [18] is essen-
tial to get more physical insight into the dynamics underlying
the dispersion relation.
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