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Abstract

Extreme catastrophic events such as earthquakes, terrorism and eco-
nomic collapses are difficult to predict. We propose a tentative mathemat-
ical model for the precursors of these events based on a memory formalism
and apply it to earthquakes suggesting a physical interpretation. In this
case, a precursor can be the anomalous increasing rate of events (after-
shocks) following a moderate earthquake, contrary to Omori’s law. This
trend constitute foreshocks of the main event and can be modelled with
fractional time derivatives. A fractional derivative of order 0 < ν < 2
replaces the first-order time derivative in the classical diffusion equation.

We obtain the frequency-domain Green’s function and the correspond-
ing time-domain solution by performing an inverse Fourier transform. Al-
ternatively, we propose a numerical algorithm, where the time derivative
is computed with the Grünwald-Letnikov expansion, which is a finite-
difference generalization of the standard finite-difference operator to deriva-
tives of fractional order. The results match the analytical solution obtained
from the Green function. The calculation requires to store the whole field
in the computer memory since anomalous diffusion “remembers the past”.
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1. Introduction

Experimental evidence has been presented that in some cases anoma-
lous aftershock or swarm sequences of earthquakes may be precursors of an
incoming strong earthquake [7],[24]. The same type of phenomenon, obvi-
ously related to the appropriate indicator, has been suggested as precursor
in the forecast of financial crises of banks [28], in economy [42] and, in
general, in socio-economic events [25]. Another particular indicator is the
anomalous duration of the aftershocks of a moderate earthquake, specifi-
cally the extended duration of foreshocks, which may have an increase in
rate contrary to Omori’s law [6], [20], [38], could be precursor of a possible
future stronger earthquake. In this work, we attempt to model mathe-
matically this phenomenon in order to give an insight to its meaning. We
consider an impulse and a constant input flow of events which diffuses in
the medium according to the Fourier law. The constitutive equation of the
flow is modified to include a mathematical formalism which represents the
memory of the medium.

The basic notion of memory functions is widely recognized in several
fields of science. Memory can be represented mathematically by using frac-
tional order derivatives. For instance, the diffusion equation has been gen-
eralized by using these derivatives, [30]. Mainardi et al. [33] have used the
time-fractional derivative of distributed order between 0 and 1, in both the
Riemann-Liouville and the Caputo sense, [3]. Fractional derivatives have
been thoroughly studied by many authors, e.g. [27], [39], [26], [15], [32].
This mathematical tool has been applied in many fields such as theoretical
physics [36], biology [13], medicine [16], diffusion [31], plasmas in bounded
domains [1], geophysics [21] and in plasma turbulence [14]. Jiao et al. [22]
have thoroughly studied and extensively applied the fractional derivative of
distributed order introduced by Caputo [2]. In seismology, Carcione et al.
[9] and Carcione [12] described the anelastic behaviour of general materi-
als over wide frequency ranges by using fractional derivatives, in particular
considering propagation with constant-Q characteristics, [35].

The time-fractional diffusion-wave equation is obtained by replacing the
first-order time derivative in the classical diffusion equation by a derivative
of fractional order. The order ν of the time derivative can be any real
number between 0 and 2; ν = 1 gives the classical diffusion equation and
ν = 2 gives the wave equation. The range [0, 1] corresponds to dispersive
anomalous sub-diffusion, while the range [1, 2] corresponds to generalized
wave propagation. Several physical phenomena, besides fluid flow, can be
described with the fractional diffusion equation. For instance, turbulent
plasma, diffusion of carriers in amorphous photoconductors, diffusion in

Auth
or'

s C
op

y
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turbulent flow, vortex dynamics, the chaotic regime of the Josephson junc-
tion, a percolation model in porous media, fractal media, various biological
phenomena and finance problems, e.g. [34], [40], [5].

In this work, we obtain semi-analytical solutions for homogeneous co-
efficients, using the Green function method. Caputo [4] obtained analyt-
ical solutions with a different approach, using the Laplace transform and
Bromwich integration. Moreover, we compute numerical solutions by dis-
cretizing the spatial and time variables. In particular, grid methods are
required to simulate wave propagation in heterogeneous realistic models
[10], [41], [11]. Fractional derivatives are computed numerically with the
Grünwald-Letnikov (GL) and central-difference approximations, which are
extensions of the standard FD approximation for derivatives of integer or-
der [18], [29]. Unlike the standard operator of differentiation, the fractional
operator increases in length as time increases, since it must keep the mem-
ory effects.

2. Diffusion with memory

The mathematical formalism used to model the flow of events consists
in the Fourier equation modified with the application of a memory formal-
ism, in the form of fractional order derivatives. The classical constitutive
equation is

q(x, t) = −c∂xr(x, t), (2.1)

where r(x, t) represents the rate of events (or flow) at the point x and time
t (seismicity rate in seismology), q is the spatial variation of the rate r at
that point, c(x) is a diffusion coefficient (with dimension m2/s in the SI
system), and ∂x denotes a partial derivative with respect to the variable x.
The additional equation

∂xq + ∂tr = 0 (2.2)

ensures conservation. The classical equations (2.1) and (2.2) lead to the
diffusion equation

∂xc∂xr = ∂tr. (2.3)

We now introduce the effect of memory by assuming that ∂xr(x, t) in equa-
tion (2.1) is affected according to the relation

q(x, t) = −d(x)D1−ν∂xr(x, t), (2.4)

where ν ∈ [0,2], here d is a pseudo-diffusion coefficient given by

d(x) = c(x)ων−1
0 , (2.5)

where ω0 is a reference frequency, and d has dimension of m2/sν in the SI
system. The fractional derivative is given by
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Dαr(x, t) =
1

Γ(1− α)

∫ t

0

∂r/∂τ(x, τ)

(t− τ)α
dτ =

1

Γ(1− α)

∂r

∂t
∗ 1

tα
, (2.6)

the Caputo fractional derivative of order α, see [39], [26], [15], [32], [22],
where “∗” denotes time convolution.

The operator Dα describes the perturbation of the present events (or
flow of events) due to the previous events. The system “remembers” the
past. The mathematical formalism defined by equation (2.6) is constructed
with a weighted mean of the first-order derivative r,τ (x, τ) in the time
interval [0, t], which is a sort of feedback system, i.e., the values of r,τ (x, τ)
at time τ far apart from t are given smaller weight than those at times
τ closer to t. Hence, the weights are increasingly smaller with increasing
time separation from the time t to imply that the effect of the past is fading
with increasing time. Importantly, the weights multiplying the first-order
derivative of r(x, τ) inside the integral appearing in equation (2.3) can be
chosen in many ways.

3. The analytical solution

Combining equations (2.2) and (2.4) yields

Dν
t r(x, t) + s(x, t) = ∂xd∂xr(x, t), (3.1)

where we have added a source s(x, t). By taking s(x, t) = δ(t)δ(x), where
δ represents Dirac’s function, equation (3.1) gives the Green function (or
fundamental solution) g(x, t). The cases ν =1 and ν = 2 give the classi-
cal diffusion and wave equations, respectively. The time Fourier-Laplace
transform of the Green function corresponding to (3.1) is given in Hanyga
[19] (Eq. (A3)), with s = iω and A =1:

g̃ν(x, ω) = (iω)−ν/4

√
x

2πd3/2
K−1/2

[
(iω)ν/2

x√
d

]
, (3.2)

where Kγ denotes the MacDonald or modified Bessel function of order
γ. Note that Hanyga [19] (Eq. 2.1) solves ∂2ν

t u = A∆u + S, where u
is the unknown variable, A is a constant and S is the source. More-
over, Φ = 1 in his Eq. (A2) since the initial conditions are zero. Being

K±1/2(z) =
√

π/(2z)exp(−z), solution (3.2) is related to that formerly de-
rived by Mainardi [30], [31] for the homogeneous time fractional diffusion-
wave equation equipped with impulsive initial-boundary conditions.
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3.1. Laplace transform inversion and Wright functions

Then, the Laplace transform in (3.2) explicitly reads

g̃ν(x, s) =
1

2
√
d

exp
(
−x sν/2/

√
d
)

sν/2
,

whose inversion yields [43] (p. 119) [17] (p. 394),

gν(x, t) =
tν/2−1

2
√
d

W−ν/2,ν/2

(
− x√

d tν/2

)
. (3.3)

Here, W denotes the Wright function in general, defined as an entire func-
tion in the complex domain with λ > −1 and µ ∈ C:

Wλ,µ(z) =
1

2πi

∫
Ha
exp

(
σ + zσ−λ

) dσ

σµ
=

∞∑
n=0

zn

n! Γ[λn+ µ]
, (3.4)

where Ha denotes the Hankel contour (a path in the complex plane which
extends from [∞, ϵ], around the origin counter clockwise and back to [∞,
−ϵ], where ϵ is an arbitrarily small positive number).

For ν = 1 (standard diffusion equation), we recover the known solution

g1(x, t) =
1

2
√
πd t

exp

(
− x2

4d t

)
. (3.5)

In particular, we are interested in a modified source at x = 0

s(x, t) = [δ(t) + ηH(t)]δ(x) , (3.6)

where η < 1 and H is the Heaviside function. We have

s̃(x, ω) =

(
1 +

η

iω + ϵ

)
δ(x), (3.7)

where ϵ is a non-physical parameter to avoid the singularity in the inverse
time Fourier-Laplace transform, such that ϵt ≪ 1.

As a consequence one can compute the solution in the space-time do-
main by adding the contribution of the constant rate in the source, that
is

r(x, t) = gν(x, t) + η

∫ t

0
gν(x, τ) dτ , (3.8)

where, by inversion of the corresponding Laplace transform,∫ t

0
gν(x, τ) dτ =

tν/2

2
√
d
W−ν/2,1+ν/2

(
− x√

d tν/2

)
. (3.9)

There are two alternatives to obtain the solution, i.e., we multiply equation
(3.2) with the source (3.7) and perform an inverse Fourier transform or
use the solution (3.8) in terms of the Wright functions (3.3) and (3.9) by
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performing a time convolution with the source. In both cases, the solution
is semi-analytical. We choose the first option and to ensure a real time-
domain solution, we consider an Hermitian frequency-domain solution.

4. Numerical algorithm

The most used time approximation in fractional calculus is the back-
ward Grünwald-Letnikov (GL) derivative. The GL fractional derivative of
a function f is

hν
∂νf(t)

∂tν
∼

J∑
j=0

(−1)j
(

ν
j

)
f(t− jh), (4.1)

where h is the time step, and J = t/h − 1. The binomial coefficients can
be defined in terms of Euler’s Gamma function as(

ν
j

)
=

Γ(ν + 1)

Γ(j + 1)Γ(ν − j + 1)

and can be calculated by a simple recursion formula(
ν
j

)
=

ν − j + 1

j

(
ν

j − 1

)
,

(
ν
0

)
= 1.

If ν is a natural number, we have the classical derivatives. In this case J = ν
in equation (4.1). The GL approximation is of order O(h). The fractional
derivative of f at time t depends on all the previous values of f . This is
the memory property of the fractional derivative. In our calculations we
consider the whole memory history since for ν < 1 it is not possible to use
the short-memory principle, i.e., less terms in the sum of equation (4.1), as
can be used in the simulation of wave propagation. The waves “forget” the
past but the diffusion fields “remember” it.

The time discretization of equation (3.1) at ndt using the GL derivative
is

Dνrn−1 + sn−1 = ∂xd∂xrn−1. (4.2)
where

hνDνrn−1 = rn +
J∑

j=1

(−1)j
(

ν
j

)
rn−j . (4.3)

Combining equations (4.2) and (4.3), rn can be computed from its past
values rn−j as

rn = hν(∂xd∂xrn−1 − sn−1)−
J∑

j=1

(−1)j
(

ν
j

)
rn−j . (4.4)

The accuracy and stability of this algorithm are analyzed in Appendix A.

The source is implemented as
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sn =
1

h
+ ηHn(t), n = 0, 1 . . . , (4.5)

where 1/h and Hn are the discrete representations of the delta and Heavi-
side functions, respectively.

The spatial derivatives are calculated with the Fourier pseudospectral
method by using the fast Fourier transform (FFT), [8]. The Fourier method
has spectral accuracy for band-limited signals. Then, the results are not
affected by spatial numerical dispersion. In the case of inhomogeneous
media, the algorithm employs the staggered Fourier method. Staggered
operators evaluate derivatives between grid points. For instance, if ∆x
is the grid (cell) size and k1 is the wavenumber component, a phase shift
exp(±ik1∆x/2) is applied when computing the x-derivative. Then, ∂xd∂x is
calculated asD−

x dD
+
x , whereD

±
x is the discrete operator and ± refers to the

sign of the phase shift. The spatial differentiation requires the interpolation
of the material properties at half grid points.

5. Application to earthquakes

It is known that many aftershock sequences can be described with
Omori’s law, by which after a main shock the event rate of aftershocks
decays according to

r(t) =
r0ζ

u

(t+ ζ)u
, (5.1)

where ζ and u are constants, and r(t) denotes the frequency of aftershocks
occurring in a unit time interval [44]. Omori found this law by studying
the aftershocks of the Nobi earthquake, which occurred in 1891 and had
magnitude 8. A 100 years fit of the data gives the curve shown in Figure
1, where u = 1 and ζ = 0.797 days, [23].

We now consider the event precursors consisting in the anomalous du-
ration of the aftershocks of a moderate event, specifically the extended
duration of aftershocks which may have an increase in rate contrary to
Omori’s law. First, we compare the analytical and numerical solutions at
x = 100 km for η = 0 (an impulse), with ν = 0.9, c = 3000 km/yr2, ω0

= 2 π/yr and a maximum time tmax = 10 yr. The analytical solution is
computed with a FFT of length N = 220 points and a time step dt = 60
day, while the numerical method uses Nx = 165 grid points, Dx = 10 km,
h = 0.073 day and the whole history of the seismicity rate to compute the
fractional derivative. This comparison is shown in Figure 2, where the
symbols correspond to the numerical solution. The match is excellent.

Next, we compare solutions for an impulse plus a constant rate using
the same parameters and η = 0. 2. Figure 3 shows that the agreement is
very good. These comparisons allows us to verify that both the analytical
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and numerical solutions are correct. The trend shown in Figure 3 agrees
very well with the seismicity rates of Hayward fault reported by Parsons
[37], which have an almost linear behaviour with time (see his Figure 2).
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Fig. 1: Decay of aftershocks after the Nobi earthquake represented with
Omori’s empirical law.
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Fig. 2: Comparison of the seismicity rate calculated analytically (solid
line) and numerically (symbols). The source is an impulse function and

the order of the fractional derivative is ν = 0.9.
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Fig. 3: Comparison of the seismicity rate calculated analytically (solid
line) and numerically (symbols). The source is an impulse plus a constant

rate with η = 0.2.

Several cases are shown in Figure 4, where the seismicity rates agree
with or show opposite behaviour to Omori’s law. The source is an impulse
plus a constant rate (steady flow) and the curves are normalized with re-
spect to the maximum value of the case ν = 0.5 and η = 0.05. In some cases
it is seen that the flow is decreasing or increasing depending on the value of
η which quantifies the amount of steady flow at the origin (see Figure 4a).
In Figure 4b, we can verify that the order of the time derivative models
different behaviours in agreement or disagreement with Omori’s law.

Figure 5 shows the seismicity rate at a larger time for different values
of the order of the fractional derivative. The curves, which correspond to
a delta function (η = 0), follow Omori’s law, showing that different rates
can be described with different fractional orders.

6. Conclusions

We have modeled flow of events representing precursors of a main event
showing different trends, where the model is based on fractional time deriva-
tives. The analytical solution is obtained with an inverse Fourier transform
and considers as sources an impulse plus a constant rate of events. Alterna-
tively, a solution has been computed with a numerical integration based on
the Grünwald-Letnikov derivative and a spatial discretization, where the
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spatial derivatives are calculated with the Fourier pseudospectral method.
Both methods yields similar results.

Fig. 4: Seismicity rates (normalized) for ν = 0.5 (a) and η = 0.05 (b).
The source is an impulse plus a constant rate.
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Fig. 5: Seismicity rates (normalized) for η = 0. The source is an impulse.

Anomalous sequences occur if the background flow increases, contrary
to Omori’s law in the case of earthquakes. This could be the precursor of
an incoming event, which is probably large if the increasing flow has lasted
enough time or the rate is sufficiently high. The sequences are represented
by aftershocks, i.e., an earthquake at t0 relaxes the state of the seismicity
rate, which decreases less rapidly after t0. If the background flow rate has
lasted enough time, the incoming earthquake could be large due to the
accumulation of elastic energy, implying in this interpretation that the rate
of flow and stress seem equivalent.

Appendix A. Stability and accuracy

Here, we analyse the numerical stability and accuracy of the numerical
discretization. The kernel exp(ikx) replaced in equation (4.4) gives

rn = −hνd k2rn−1 −
J∑

j=1

(−1)j
(

ν
j

)
rn−j . (A.1)

Let us assume the relation

rj = Arj−1, (A.2)

where A is the amplification factor. Then

A = −hνd k2 −
J∑

j=1

(−1)j
(

ν
j

)
A1−j . (A.3)
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The von Neumann condition for stability implies

max|A| ≤ 1. (A.4)

In particular, setting A = −1 and k = π/∆x, the Nyquist wavenumber, we
obtain the following stability condition:

h ≤

∆x2

π2d

1 + J∑
j=1

(
ν
j

)
1/ν

. (A.5)
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