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Abstract
We provide a new derivation of the Kramers-Kronig relations on the basis of the Sokhotski-Plemelj equation with detailed
mathematical justifications. The relations hold for a causal function, whose Fourier transform is regular (holomorphic) and
square-integrable. This implies analyticity in the lower complex plane and a Fourier transform that vanishes at the high-
frequency limit. In viscoelasticity, we show that the complex and frequency-dependent modulus describing the stiffness does
not satisfy the relation but the modulus minus its high-frequency value does it. This is due to the fact that despite its causality,
the modulus is not square-integrable due to a non-null instantaneous response. The relations are obtained in addition for the
wave velocity and attenuation factor. The Zener, Maxwell, and Kelvin-Voigt viscoelastic models illustrate these properties.
We verify the Kramers-Kronig relations on experimental data of sound attenuation in seabottoms sediments.

Keywords Kramers-Kronig relations · Sokhotski-Plemelj equation · Causality · Viscoelasticity · Waves · Zener model

Introduction

Viscoelastic attenuation and velocity dispersion is impor-
tant in fields that involve wave propagation. This led to
significant research in seismology, seismic wave propaga-
tion, and imaging in the oil and gas industry, non-destructive
industrial evaluation based on ultrasonic waves, and medi-
cal imaging (e.g., Toksöz and Johnston 1981). The correct
rheological equation is essential to describe the physics.
Mechanical models provide the building blocks of the con-
stitutive equation. Two basic elements are required: weight-
less springs—no inertial effects are present—that represent
the elastic solid, and dashpots, consisting of loosely fitting
pistons in cylinders filled with a viscous fluid. The Zener
model, which combines a spring and a Kelvin-Voigt ele-
ment (spring and dashpot connected in parallel), is the most
suitable model for rocks and metals (Zener 1948; Liu et al.
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1976). In addition, this model can be applied to electromag-
netism, since the Debye model used to describe the behavior
of dielectric materials is mathematically equivalent to the
Zener model (Carcione 1999).

Proper models should satisfy the Kramers-Kronig
relations. These relations are known from the beginning
of the twentieth century from the works of Kronig
and Kramers (1926; 1927), who developed them in the
theory of electromagnetic wave propagation, showing the
interrelation between the real and imaginary parts of the
complex susceptibility. Later, it has been shown that the
relations are of general nature and can be applied to a variety
of systems, such as electrical, mechanical, and acoustical
under certain conditions of causality, linearity, regularity,
and square-integrability, which are the characteristics of real
linear physical systems (Nussenzveig 1972; Stastna et al.
1985). The relations can therefore be used to connect the
real and imaginary parts of the relevant frequency response
function and provide a powerful tool for experimental
and theoretical investigations of materials. For example, in
wave propagation in anelastic media, knowing the phase
velocity as a function of frequency, one can obtain the
dependence of the attenuation factor, having important
practical applications (Wang 2007). Due to the difficulty
in computing Hilbert transforms, because the properties are
not known for all frequencies, approximate (local) Kramers-
Kronig relations were developed. These local relations
relate the damping properties at one frequency to the rate of
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frequency variation of the dynamic modulus. Pritz (1999)
studied their accuracy using a fractional Zener model.

In this work, we provide a complete derivation of the
relations using the Sokhotski-Plemelj equation, showing
explicitly what are the conditions for the relations to
hold. Incidentally, we note that dispersion relations, and
especially Kramers-Kronig formulae, have been considered
an interesting topic even outside the community of
physicists. For example, mathematicians have pointed out
that their mathematical foundations rely upon Titchmarsh’s
theorem, which in turn is a synthesis of the Paley-Wiener
theorem and the Marcel Riesz theorem (Labuda and Labuda
2014). Moreover, dispersion relations are one of the few
important topics of “mature physics” in which the paradigm
of causality plays a crucial role (Frisch 2009).

The Kramers-Kronig relations have a wide application
in elastodynamics and electromagnetism. Our simple
derivation of the relations yields more physical insight
on the conditions for their validity, namely, causality, and
smoothness. Moreover, assuming that the complex modulus
satisfies the relations, their counterparts for attenuation
and phase velocity are also deduced. Finally, a case study
with experimental data confirms the intuitive view that
viscoelastic models satisfying the relations better fit data
over a large frequency band.

The Sokhotski-Plemelj equation

Consider the integral

lim
ε→0+

∫ ∞

−∞
φ(ω)

ω ± iε
dω, (1)

where φ is a continuous function of the angular frequency
ω. We can write as follows:

1

ω ± iε
= ∓iπε

π(ω2 + ε2)
+ ω2

ω(ω2 + ε2)
. (2)

Function ε/[π(ω2 + ε2)] is a nascent delta function, so that
in the limit ε → 0+, it is equal to the Dirac delta function
δ(ω), while function ω2/(ω2 + ε2) is 1 in this limit. Using
these results to compute limit (1), we obtain the formula

lim
ε→0+

∫ ∞

−∞
φ(ω)

ω ± iε
dω = ∓iπφ(ω) + P

∫ ∞

−∞
φ(ω)

ω
dω, (3)

where “P” denotes the Cauchy principal value of the
integral, since the argument can have a singularity. From
Eq. 3, we can identify the Sokhotski-Plemelj operator as
follows:

1

ω ± iε
= ∓iπδ(ω) + P 1

ω
. (4)

Equation 4 was obtained by Sokhotskii (1873) and
rediscovered by Plemelj (1908).

The Kramers-Kronig relations

Let g(t) be a causal function; then

g(t) = H(t)g(t), (5)

where H is the Heaviside function. Taking the Fourier
transform of Eq. 5 yields

g̃(ω) = 1

2π
H̃ (ω) ∗ g̃(ω), (6)

where the tilde means Fourier transform and the asterisk (∗)
denotes convolution with respect to time, namely,

(g1 ∗ g2)(t) =
∫ ∞

−∞
g1(τ )g2(t − τ)dτ . (7)

The transform convention is the following: g̃(ω) = F(g) =∫
g(t) exp(−iωt)dt and g(t) = (2π)−1

∫
g̃(ω) exp(iωt)dω.

Other definitions have a different expression for (6) (e.g.,
Bracewell 1965). Using these definitions, the Fourier
transform of the Heaviside function is as follows:

H̃ (ω) = lim
ε→0

∫ ∞

0
exp(−εt − iωt)dt

= lim
ε→0

(
1

iω + ε

)
= − i

ω − i0
. (8)

From the Sokhotski-Plemelj, Eqs. 4, 8 take the form as
follows:

H̃ (ω) = πδ(ω) − iP 1

ω
. (9)

Replacing this transform into Eq. 6 yields

g̃(ω) = − i

π

(
P 1

ω

)
∗ g̃(ω). (10)

Separating real and imaginary parts,

g̃ = g̃R + ĩgI, (11)

we obtain from Eq. 10:

g̃R = 1

π

(
P 1

ω

)
∗ g̃I,

g̃I = − 1

π

(
P 1

ω

)
∗ g̃R,

(12)

i.e.,

g̃R(ω) = 1

π
P

∫ ∞

−∞
g̃I(ω

′)
ω − ω′ dω′,

g̃I(ω) = − 1

π
P

∫ ∞

−∞
g̃R(ω′)
ω − ω′ dω′,

(13)

which are a formulation of the Kramers-Kronig relations
(Golden and Graham 1988).

Since the Hilbert transform is defined as follows:

H[φ(ω)] = 1

π

(
P 1

ω

)
∗ φ(ω), (14)
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the Kramers-Kronig relations (13) may be written com-
pactly as follows:

g̃R = H(g̃I),

g̃I = −H(g̃R).
(15)

Each of Eq. 15 is equivalent to the other; indeed, the
inverse of Hilbert transformH is just−H. Causality implies
analyticity in the lower complex plane. This is a necessary,
but not sufficient condition for the validity of Kramers-
Kronig relations and regularity requirements are needed,
which refers to how smooth the function is in that domain.
A smooth function is a function that has derivatives of all
orders. It is said that the function is holomorphic, i.e., it is
infinitely differentiable. If a function is holomorphic, it is
analytic. In addition, the function must be square-integrable.
This ensures that g̃ decreases sufficiently rapidly at infinity;
otherwise, g̃R and g̃I can be completely unrelated, as shown
by the example: g̃(ω) = a + ib (a complex constant).
The concept of regularity and square-integrability is widely
treated by Nussenzveig (1960, 1972). For example, if g =
δ(t) then g̃R(ω) = 1 is nonzero while g̃I(ω) is zero, which
clearly implies that (13) cannot hold in this case.

Viscoelasticity and wave propagation

The viscoelastic constitutive law may be expressed by
Boltzmann’s superposition principle in the form

σ = ψ̇ ∗ ε (16)

(Golden and Graham 1988), where σ is stress, ψ is the
time-dependent relaxation function, ε is strain, and a dot
over a symbol denotes differentiation with respect to time.
Equation 16 yields that

ε̇ = δ(t) implies σ = ψ ∗ δ = ψ . (17)

Thus, ψ is the response to an impulsive forcing. Since
δ is zero for negative times, the physical requirement of
causality implies that ψ also is zero for negative times;
therefore, its Fourier transform ψ̃ satisfies in principle the
Kramers-Kronig relations under additional conditions of
regularity and square-integrability.

In the frequency domain, constitutive law (16) becomes

σ̃ = M ε̃, M(ω) = F(ψ̇) =
∫ ∞

−∞
ψ̇(t) exp(−iωt)dt,

(18)

where the complex modulus M(ω) is the Fourier transform
of the relaxation rate ψ̇ . We have seen that ψ is causal and
ψ̃ may satisfy the Kramers-Kronig relations. Thus, ψ̇ is also
causal, and one may expect that M satisfies the Kramers-
Kronig relations as well; but we shall now see that it is not

exactly so. Indeed, ψ may be factored as ψ = gH , where g

is a smooth function, so that

ψ̇ = gḢ + ġH = gδ + ġH = g(0)δ + ġH . (19)

Fourier transforming this equation, we get

M = g(0) + F(ġH), (20)

where g(0) = M(∞) by Parseval’s theorem (Bracewell
1965). If

η = ġH = ψ̇ − g(0)δ (21)

is causal and smooth, its Fourier transform F(η) = M −
g(0) = M − M(∞) satisfies Kramers-Kronig relations,
but M does not, since we have seen above that the Fourier
transform of the δ function in Eq. 19 does not satisfy the
Kramers-Kronig relations. Therefore, we conclude, because
of the linearity of Kramers-Kronig relations, that M does
not satisfies the Kramers-Kronig relations, unless M(∞) =
0.

Another argument is that a necessary condition for the
Kramers-Kronig relations (15) to hold is that the frequency-
domain complex function g̃(ω) should approach zero as ω

approaches ∞; M(ω) − M(∞) does it, but M(ω) is equal
to M(∞). Then, the Kramers-Kronig relations for stiffness
are as follows:

MR − M(∞) = H(MI),

MI = −H[MR − M(∞)]. (22)

Therefore, if the real and imaginary parts of M − M(∞)

are Hilbert transform pairs, the relaxation function is causal.
On the other hand, causality implies that the frequency
response function is analytic on the lower half complex
ω-plane, i.e., this function is infinitely differentiable and
cannot have poles there. Any pole should be located in the
upper half plane. Let us put this in mathematical language.
A causal function β(t) has the Fourier transform

β̃(ω) =
∫ ∞

0
β(t) exp(−iωt)dt. (23)

If ω = ωR + iωI, we have that for the lower half plane
(ωI ≤ 0)

β̃(ω) =
∫ ∞

0
β(t) exp(−iωRt) exp(−|ωI|t)dt (24)

and the integral has a finite value because the factor
exp(−|ωI|t) tends to zero for t → ∞. Moreover, on
differentiating with respect to ω this factor ensures that all
the derivatives of β̃(ω) are also finite. This means that the
function is analytic in the lower half ω-plane. This property
implies that there are no poles on this plane, because the
function would be singular at a pole. It also implies that
there are no branch points on this plane so that a causal
function is single valued there. For M(∞) �= 0, function M

is analytic but it is not square-integrable, while M − M(∞)

is analytic and square-integrable.
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Square-integrability of M(ω) along the real axis of the
ω-plane implies
∫ ∞

−∞
|M(ω)|2dω < C, (25)

where C is a constant (Nussenzveig 1972). Square-
integrability is equivalent to M(ω) → 0, for |ω| →
∞ (π ≥ arg(ω) ≥ 0). In most cases, the square-
integrability condition cannot be satisfied, but rather the
weaker condition that |M(ω)| is bounded is satisfied, i.e.,
|M(ω)|2 < C is verified. A lossless medium and the
Maxwell and Zener models satisfy this weak condition, but
the Kelvin-Voigt and constant-Q models do not. In fact, in
the case of the Zener model, M satisfies the weak condition
and M − M(∞) is square-integrable. A constant-Q model
has M(ω) ∝ ω2γ , where 0 < γ < 1/2 (Carcione 2014,
Eq. 2.212) and does not satisfy the conditions. All these
concepts will be clear in the example below.

Kramers-Kronig relations for velocity
and attenuation

The Kramers-Kronig relations can be applied to wave
propagation in anelastic media, where the complex slowness
of plane waves can be written as follows:

s = 1

c
= 1

cp

− i
α

ω
, (26)

where cp is the wave phase velocity and α is the attenuation
factor. Since

s =
√

ρ

M
, (27)

where ρ is the mass density, is hermitian, let us identify
1/cp − 1/c∞ with g̃R = [MR − M(∞)] and −α/ω with
g̃I = MI, where c∞ = cp(ω = ∞) is the unrelaxed velocity.
Performing the same mathematical developments to obtain
Eq. 13, we get the following:

1

cp(ω)
− 1

c∞
= − 1

π
P

∫ ∞

−∞
α(ω′)dω′

ω′(ω − ω′)
(28)

and

α(ω) = ω

π
P

∫ ∞

−∞

(
1

cp(ω′)
− 1

c∞

)
dω′

ω − ω′ . (29)

Another form of these relations can be obtained as
follows. Let us define s̄ = s − s∞, where s∞ = 1/c∞.
Because of the hermitian property s̄(−ω) = s̄∗(ω), Eq. 10
implies

s̄ = 1

π
P

∫ ∞

−∞
s̄dω′

i(ω − ω′)
. (30)

Splitting the integral into two from 0 to ∞ and s̄ into its real
and imaginary parts, we obtain the following:

s̄ = 2

π
P

∫ ∞

0

s̄Iω
′ − is̄Rω

ω2 − ω′2 dω′. (31)

Then,

1

cp(ω)
− 1

c∞
= − 2

π
P

∫ ∞

0

α(ω′)dω′

ω2 − ω′2 (32)

and

α(ω) = 2ω

π
P

∫ ∞

0

(
1

cp(ω′)
− 1

c∞

)
ωdω′

ω2 − ω′2 . (33)

On the other hand, in terms of the quality factor

Q = |ω|
2αcp

(34)

(valid for low-loss solids, i.e., Q � 1) (Carcione 2014; p.
79), the Kramers-Kronig relations (28) and (29) become

1

cp(ω)
− 1

c∞
= − 1

2π
P

∫ ∞

−∞
|ω′|

ω′cp(ω′)Q(ω′)
dω′

ω − ω′ (35)

and

1

Q(ω)
= 2ωcp(ω)

π |ω| P
∫ ∞

−∞

(
1

cp(ω′)
− 1

c∞

)
dω′

ω − ω′ . (36)

Velocity dispersion, i,e., the difference between the low-
and high-frequency phase velocities increases for increasing
attenuation. The next example illustrates this relation.

Example. The Zener model

A classical model of viscoelastic behavior is the Zener
model (Fig. 1 shows the three basic mechanical models),
which is defined by the differential equation

σ + τ σ̇ = M0ε + M∞τ ε̇, (37)

or, equivalently,

ψ = gH, ψ̇ = M∞δ + 1

τ
(M0 − g)H,

M(ω) = M∞ − M∞ − M0

1 + iωτ
, (38)

g(t) = M0 + (M∞ − M0) exp

(
− t

τ

)
(39)

and

η(t) = −1

τ
(M∞ − M0) exp

(
− t

τ

)
H, (40)

where τ is a relaxation time, M0 = M(0) and M∞ =
M(∞) and M∞ ≥ M0 holds (e.g., Carcione 2014). Note
that M − M∞ satisfies condition (25) because, in this case,
the integral in Eq. 25 is equal to π(M∞−M0)

2/τ . The Zener
model is shown to satisfy the Kramers-Kronig relations in
Appendix.
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Fig. 1 Maxwell, Kelvin-Voigt
and Zener models consisting of
springs and dashpots

Spring

Dashpot

Kelvin- Voigt
Maxwell

Zener

Function (M − M∞)(ω) has a unique pole in the upper
half ω-plane, i.e., at

ω = i

τ
, (41)

and therefore it is analytic in the lower half ω-plane as
required by causality. Its inverse Fourier transform η(t)

is causal and smooth for t > 0, since it is basically an
exponential function of time.

The quality factor is defined as follows:

Q(ω) = MR

MI
= M0 + M∞(ωτ)2

ωτ(M∞ − M0)
(42)

Carcione (2014, p. 91), which has a minimum at

Q0 = 2
√

M∞M0

M∞ − M0
= 2c∞c0

c2∞ − c20

(43)

Carcione (2014, p. 96), where we have defined the phase
velocities at zero and infinite frequency as c0 and c∞, such
that M0 = ρc20 and M∞ = ρc2∞, where ρ is the mass
density. Then, it is easy to show that the amount of velocity
dispersion is as follows:

�c = c∞ − c0 = c0

(
Q−1

0 +
√
1 + Q−2

0 − 1

)
≈ c0

Q0
,

(44)

where the approximation holds for low-loss solids (Q0 �
1). This is a simple relation between the maximum velocity
dispersion and the minimum Q (higher attenuation). The
Kramers-Kronig relations are more general and reflect the
fact that if velocity dispersion is known for all frequencies
then Q is known for all frequencies and vice versa.

Test of the Kramers-Kronig relations

It is shown in this section the consistency of the Kramers-
Kronig relations applied to experimental data of wave
propagation obtained for rocks. We consider the data used
by Zhou et al. (2009) in their Figs. 12 and 13. These data
are consistent with the Kramers-Kronig relationships, where
the best fit is given by the Zener model (Fig. 2, black-solid
line). Model parameters can be obtained from experimental

data by best fitting the formula for the pertinent variable
(e.g., complex modulus, attenuation, phase velocity) using a
least-square criterion. One may also look for a “compromise
solution” by minimizing the sum of the misfits, each one

Fig. 2 Experimental phase velocity ratio and attenuation factor
(symbols) (Zhou et al. 2009) compared with the mechanical model
results (solid lines) (a , b). The Zener model provides the best fit with
τ = 4.17 × 10−5 s, Q0 = 11.5 and c∞ = 1730 m/s. These values
correspond to a relaxation peak centered at 3.5 kHz. The parameters
of the Maxwell model are τ = 0.0001 s and c∞ = 1730 m/s, and the
Kelvin-Voigt model has τ = 5 × 10−6 s and c0 = 1590 m/s. The water
sound speed for the normalization of the phase velocity is 1500 m/s
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normalized by variance. The Maxwell and Kelvin-Voigt
model give a good fit of the velocity at the high- and
low-frequency limits, respectively, whereas attenuation is
best described by the second model. Phase velocity and
attenuation have been obtained as follows:

cp = 1

sR
=

(√
ρ

M

)−1

R
(45)

and

α = −8.686 ωsI = −8.686 ω

(√
ρ

M

)
I
, (46)

where s is the slowness (27) and M is given by Eq. 38.
The Zener model does not capture the high-frequency

behavior of the attenuation. A porous medium model,
such one based on the Biot theory, that includes a high-
frequency viscodynamic operator to describe deviations of
the fluid flow from the Poiseuille regime, might correct this
deficiency (e.g., Carcione 2014).

The Kelvin-Voigt model asymptotically approximates
Zener model at low frequencies, likewise for Maxwell
model at high frequencies. This is evident in Fig. 2. The
higher flexibility of Zener model is related to the fact that
it has three free parameters, whereas the other two models
depend on two parameters only.

Conclusions

We have provided alternative mathematical demonstrations
of the Kramers-Kronig relations between the real and
imaginary parts of the complex stiffness modulus, as well
as between the phase velocity dispersion and the attenuation
and quality factors. The conditions to satisfy the relations
have been clearly analyzed, i.e., causality (analyticity),
linearity, regularity, and square-integrability of the stiffness
modulus, M = MR + iMI; basically MR − M(∞) and MI

are the correct Hilbert transform pairs, where the infinity
refers to time frequency. The examples are illustrative: the
Zener and Maxwell models satisfy the relations while the
Kelvin-Voigt and constant-Q models do not. The Zener
model is shown to fit experimental data (wave velocity and
attenuation) obtained for ocean bottom sediments.

The classical derivation of the relations and its variants
are thoroughly discussed in the referenced paper by Labuda
and Labuda. These approaches are based on the theory
of complex holomorphic functions and requires quite
involved computations and arguments. Our derivation uses
the modern formulation of the Sokhotski-Plemelj formula
and of harmonic analysis, which in turn relies on the
theory of distributions (also called “generalized functions”)
developed a few decades after the publication of the original
papers by Kramers and Kronig.
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Appendix: the Zener andMaxwell models
verify the Kramers-Kronig relations

In this Appendix we derive, first, a very compact unified
formulation of Kramers-Kronig relations, using Hilbert
transform. Then we show, through detailed ad hoc
computations, that the reduced complex modulus of the
Zener model verifies this condition.

A.1 Compact formulation of Kramers-Kronig
relations

As we have seen in the main text, Kramers-Kronig relations
for a complex-valued function f of a real variable ω may be
expressed as follows:

{
Ref = H(Imf )

Imf = −H(Ref )
(47)

where symbolH denotes Hilbert transform.
Summing (1)1 and (1)2 multiplied by the imaginary unit

i, and rearranging, we obtain the following:

f = −iH(f ) (48)

where we have used the linearity of Hilbert transform.
Conversely, taking real and imaginary parts of Eq. 48,

we obtain (47). Therefore, the single condition (48) is
equivalent to Kramers-Kronig relations.

A.2 Zener model

We recall that the complex modulus of the Zener model may
be expressed as follows:

M(ω) = M∞ − M∞ − M0

1 + i τ ω
(49)

Now, we show that the reduced complex modulus

M(ω) = M(ω) − M∞ = − M∞ − M0

1 + i τ ω
(50)

verifies formulation (48) of Kramers-Kronig relations, i.e.,

M(ω) = (M∞ − M0) iH
(

1

1 + i τ ω

)
(51)
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The Hilbert transform of a function f (ω) is given by the
following:

Hf (ω) = 1

π
P

∫ ∞

−∞
g(ω, ω′) dω′ = 1

π
lim

L→∞P
∫ L

−L

g(ω, ω′) dω′

= 1

π
lim

L→∞ lim
ε→0+

(∫ ω−ε

−L

g(ω, ω′) dω′ +
∫ L

ω+ε

g(ω, ω′) dω′
)

= 1

π
lim

L→∞ lim
ε→0+ [G(ω, ω − ε) − G(ω, −L)

+G(ω, L) − G(ω, ω + ε)] (52)

where

g(ω, ω′) = f (ω′)
ω − ω′ (53)

and G is a primitive of the integrand in Eq. 52, i.e.,

G(ω, ω′) =
∫

g(ω, ω′) dω′ (54)

Therefore, the Hilbert transform in Eq. 51 is given by the
following:

H
(

1

1 + i τ ω

)
= 1

τ ω − i
(55)

as shown in the Lemma below.
Substituting (55) into (51) and rearranging, one obtains

an identity, which proves that the reduced complex modulus
M(ω) verifies Kramers-Kronig relations.

Lemma The Hilbert transform of function f (ω) = 1/(1 +
i τ ω) is given by the following:

H
(

1

1 + i τ ω

)
= 1

τ ω − i
(56)

Proof We rely on identity (52), where now

g(ω, ω′) = 1

(ω − ω′) (1 + i τ ω′)
(57)

and hence its primitive is

G(ω, ω′) = 2 tan−1(τ ω′) + 2 i ln(ω′ − ω) − i ln[1 + (τ ω′)2]
2 (τ ω − i)

(58)

as can be checked by differentiating with respect to ω′.
Substituting (58) into (52), one obtains (56). Computations
are cumbersome, but straightforward: indeed two divergent
terms appear, ln(ε) and ln(−ε), but they are present only in
the combination ln(ε) − ln(−ε) = ln(−1) = iπ .

A.3 Maxwell model

TheMaxwell model is obtained from Fig. 1 by removing the
parallel spring. Its reduced complex modulus is as follows:

M(ω) = M(ω) − M∞ = − M∞
1 + i τ ω

(59)

(e.g., Carcione 2014). From Eqs. 48 and 56, we have the
following:

M(ω) = −iH(M) = iM∞H
(

1

1 + i τ ω

)
= iM∞

τ ω − i
= M(ω),

(60)

so we have shown that the Maxwell model satisfies the
relations.

A.4 Kelvin-Voigt model

The Kelvin-Voigt model is obtained from Fig. 1 by
removing the series spring. Its complex modulus is as
follows:

M(ω) = M0(1 + i τ ω) (61)

(e.g., Carcione 2014). M∞ = ∞ in this case. We may
consider M = i τ ω M0, since the Hilbert transform of a
constant (M0) is zero. This is the complex modulus of the
dashpot.

The primitive function is as follows:

G(ω, ω′) = −i τ M0[ω′ + ω ln(ω′ − ω)]. (62)

It can be easily seen that the calculation (52) diverges,
and therefore the Kelvin-Voigt solid does not satisfy the
relations. Another explanation may be found by considering
the relaxation rate ψ̇ = M0δ + M0τδ, which is the inverse
Fourier transform of the complex modulus. One immeditely
sees that it is causal, but both of its terms are singular
distributions. Thus, there is no way, because of the lack of
regularity, to introduce a “reduced complex modulus” as in
the previous cases. Equivalently, one may notice that both
terms in the complex modulus M = M0 + iωτM0 are not
square-integrable.
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