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Abstract—The acoustic behavior of biologicmedia can be describedmore realistically using a stress-strain relation
based on fractional time derivatives of the strain, since the fractional exponent is an additional fitting parameter.We
consider a generalization of the Kelvin-Voigt rheology to the case of rational orders of differentiation, the so-called
Kelvin-Voigt fractional-derivative (KVFD) constitutive equation, and introduce a novel modeling method to solve
the wave equation by means of the Gr€unwald-Letnikov approximation and the staggered Fourier pseudospectral
method to compute the spatial derivatives. The algorithm can handle complex geometries and general material-
property variability.Weverify the results by comparisonwith the analytical solution obtained forwave propagation
in homogeneous media. Moreover, we illustrate the use of the algorithm by simulation of wave propagation in
normal and cancerous breast tissue. (E-mail: jcarcione@inogs.it) � 2011 World Federation for Ultrasound in
Medicine & Biology.
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INTRODUCTION

The description of the physical and chemical behavior of
living matter by using fractional derivatives has recently
gained increasing interest in the medical community
for the characterization of pathologies. New imaging
methods are based on fractional stress-strain relations to
interpret data obtained with ultrasound elastography
(Coussot et al. 2009), where the shear and Young’smoduli
are the relevant elastic constants. Fractional derivatives
have been used to describe the viscoelastic characteriza-
tion of liver (Taylor et al. 2002), the flow of small mole-
cules across biologic membranes (Caputo and Cametti
2008a 2008b; Caputo et al. 2009; Cesarone et al. 2005)
and breast-tissue attenuation in ultrasound propagation
(Bouna€ım et al 2007; Bouna€ım and Chen 2008). Magin
et al. (2009) solved the Bloch equation, which relates
a macroscopic model of magnetization to applied radio-
frequency in gradient and static magnetic fields, to detect
and characterize neurodegenerative, malignant and
ischemic diseases. The overview of the methods based

on fractional calculus and used in bioengineering is given
in Magin (2006).

Stress-strain relations based on fractional derivatives
provide a suitable model of wave attenuation in anelastic
media. Bland (1960), Caputo (1967), Kjartansson (1979)
and Caputo and Mainardi (1971) described the anelastic
behavior of general materials over wide frequency
ranges by using fractional derivatives, in particular
considering propagation with constant-Q characteristics.
In this case, Mainardi and Tomirotti (1997) obtained the
one-dimensional (1-D) Green’s function based on the
Mittag-Leffler functions.

One of the most used stress-strain relations for bio-
logic tissues is the Kelvin-Voigt fractional-derivative
(KVFD) model, first introduced by Caputo (1981) to
model underground nuclear explosions (Taylor et al.
2002; Kiss et al. 2004; Coussot et al. 2009; Kelly and
McGough 2009). Since then, several authors studied
and used the properties of the KVFD model. Schiessel
et al. (1995) obtained analytical solutions in terms of
FoxH- and Mittag-Leffer functions. Eldred et al. (1995)
fit experimental data for both rubbery and a glassy
viscoelastic material. Important applications include
biomedical engineering. Zhang et al. (2008) showed
that stress relaxation tests on prostate samples produced
repeatable results that fit a viscoelastic KVFD model.
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Similarly, Coussot et al. (2009) showed that the KVFD
relation can characterize the viscoelastic properties of hy-
dropolymers, in particular normal and cancerous breast
tissues, stating that this approach may ultimately be
applied to tumor differentiation. Here, we consider the
KVFD stress-strain relation that is based on three free
parameters to describe the viscoelastic behavior of bio-
logic media. Combining this relation with Newton’s
equation yields the so-called ‘‘Caputo wave equation’’
(Caputo 1967) studied by Holm and Sinkus (2010).

Numerical simulations of wave propagation in an
axisymmetric three-dimensional (3-D) domain, based
on the Caputo wave equation, have been performed by
Wismer (2006) in the low-frequency range, using a finite
element method. Regarding other numerical simulations
in more than one dimension, Caputo and Carcione
(2010) generalized the one-term stress-strain relation
(spring or dashpot) to the fractional case, which includes
Hooke’s law at the lower limit of the fractional order of
differentiation and the constitutive relation of a dashpot
at the corresponding upper limit. In this case, these
authors considered a spectrum of orders of differentia-
tion. The numerical simulation of two-dimensional (2-D)
seismic compressional (P)-wave propagation in heteroge-
neous media for one order of differentiation has been im-
plemented by Carcione et al. (2002), while the 3-D P-S
(shear) case has been developed and solved numerically
in two dimensions by Carcione (2009). To our knowl-
edge, there are a few works that use the KVFD approach
to solve the wave equation in more than one dimension.
Besides Wismer (2006), Dikmen (2005) applied the
model to simulate 2-D seismic wave attenuation in soil
structures and employed the finite-element algorithm to
solve the wave equation. In bioacoustics, there is the
work of Bouna€ım et al (2007) and Bouna€ım and Chen
(2008), who used a finite-element method to perform
2-D numerical simulations to investigate the detectability
of breast tumors. They have used a fractional Laplacian
(Chen and Holm 2004) instead of fractional time deri-
vates. It is important to point out that attenuation can
also be described by using spatial fractional derivatives
(Carcione 2010; Treeby and Cox 2010).

Here, we propose to solve the differential equations
with a direct method, where the spatial derivatives are
computed by using the staggered Fourier pseudospectral
method (e.g., Carcione 2007; Caputo and Carcione 2010).
Fractional time derivatives are computed with the
Gr€unwald-Letnikov (GL) approximation (Gr€unwald
1867; Letnikov 1868; Caputo 1967; Carcione et al.
2002), which is an extension of the standard finite-
difference approximation for derivatives of integer order.

In the first part of this work, we introduce the stress-
strain relation and calculate the complex moduli, phase
velocities and attenuation and quality factors vs.

frequency. We then recast the wave equation in the
time-domain in terms of fractional derivatives and obtain
the GL approximation. The model is discretized on a
mesh and the spatial derivatives are calculated with the
Fourier method by using the fast Fourier transform.
Finally, we perform numerical experiments in breast fatty
tissue and breast cancer to study the influence of anelas-
ticity on the wave field. The experiments simulate the
clinical amplitude/velocity reconstruction imaging
(CARI) technique, which is an ultrasonic method for
the detection of breast cancer (Richter 1994). It is based
on the reflection of waves at a metallic plate. In CARI,
reflection through the breast without the tumor shows
a uniform pattern, while in the presence of tumor the field
arrives earlier and shows more attenuation.

MATERIALS AND METHODS

The stress-strain relation
Attenuation can be described by means of additional

first-order time differential equations (e.g., Carcione et al.
1988; Wojcik et al. 1999) or by using power laws in
the form of fractional derivatives. This approach
approximates better the behavior of real media. Caputo
and Mainardi (1971) describe the anelastic behavior of
manymaterials over wide frequency ranges by using frac-
tional derivatives. We consider the generalization of the
Kelvin-Voigt stress (s)-strain (e) relation as

s5Me1h
vqe

vtq
; 0#q#1; (1)

whereM is the stiffness, andh is a pseudo-viscosity,which
is a stiffness for q5 0 and a viscosity for q5 1. The limits
q5 0 and q5 1 give Hooke’s law and the constitutive
relation of a spring in parallel connection with a dashpot,
i.e., the Kelvin-Voigt model (Carcione 2007).

In the frequency domain, we obtain

s5M3; (2)

where

M5M1hðiuÞq (3)

is the complex stiffness, withu the angular frequency.We
may write (Carcione 2009)

h5 h0u
2q
0 ; (4)

where u0 is a reference frequency. Then,

M5M1h0

�
iu

u0

�q

: (5)

Note that h has the units [Pa sq]. The complex
modulus M given by eqn (5) reduces to the real modulus
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M at zero angular frequency; thus, the quasi-static elastic
limit is represented by this model.

Phase velocity, and attenuation and quality factor
We define the complex velocity as

v5

ffiffiffiffiffi
M

r

s
; (6)

where r is the mass density. Then, the phase velocity (vp),
attenuation factor (a) and Q factor are obtained as
(Carcione 2007).

vp 5
�
Re

�
v21

��21
; a52uIm

�
v21

�
(7)

and

Q5
Reðv2Þ
Imðv2Þ; (8)

respectively, where ‘‘Re’’ and ‘‘Im’’ denote real and imag-
inary parts, respectively.

Using eqn (3), we obtain from eqn (6)

v2 5
1

r
½M1huqexpðiqÞ� ; q5p

2
q; (9)

and

Q5
Mh21u2q1cosq

sinq
: (10)

Equation (9) is equivalent to the dispersion relation of the
‘‘Caputo wave equation’’ studied by Holm and Sinkus
(2010) and introduced by Caputo (1967). Holm and
Sinkus (2010) show that in the low-frequency range, the
attenuation factor a is proportional to juj11q

while at
the high frequencies it is proportional to juj12q=2

, where
the low and high frequencies are determined by the condi-
tions ðutÞq,,1 and ðutÞq..1, respectively, where t is
the relaxation time t5 ðh=MÞ1=q.

If M 5 0, Q is constant (independent of frequency),
given by

Q5
1

tanq
; (11)

and we obtain the rheology considered by Carcione et al.
(2002).

Two-dimensional dynamical equations
The conservation of linear momentum for a 2-D

linear anelastic medium, describing dilatational deforma-
tions, can be written as

rv2t ui 5 viðs1f Þ; i5 1ðxÞ; 2ðyÞ (12)

(Auld 1990; Carcione 2007), where ui are the components
of the displacement vector, f is the source and vi computes

the spatial derivative with respect to xi. The initial
conditions are uið0; xÞ5 0, vtuið0; xÞ5 0 and
uiðt; xÞ5 0, for t,0, where x is the position vector. The
strain-displacement relation is e5 v1u11v2u2. Then, the
complete set of equations describing the propagation is

v2t u1 5 r21v1ðs1f Þ;
v2t u2 5 r21v2ðs1f Þ;
s5M e1h

vqe

vtq
;

e5 v1u11v2u2;

(13)

Numerical algorithm
The computation of the fractional derivative is based

on the Gr€unwald-Letnikov (GL) approximation
(Podlubny 1999; Carcione et al. 2002). The fractional
derivative of order q of a function g is

vqg

vtq
zDqg5

1

hq

XJ

j50

ð21Þj
�
q
j

�
gðt2jhÞ; (14)

where h is the time step, and J5t=h21. The derivation of
this expression can be found, for instance, in Carcione
et al. (2002). The fractional derivative of g at time t
depends on all the previous values of g. This is thememory
property of the fractional derivative, related to field atten-
uation. The binomial coefficients are negligible for j
exceeding an integer J. This allows us to truncate the
sumat j5 L,L#J, whereL is the effectivememory length.

Fractional derivatives of order q,,1 require large
memory resources and computational time, because the
decay of the binomial coefficients in eqn (14) is slow
(Carcione et al. 2002; Carcione 2009) and the effective
memory length L is large. We increase the order of the
derivative by applying a time derivative of order m to
eqn (13). The result is

Dm12u1 5 r21v1t;
Dm12u2 5 r21v2t;
t5MDme1hDm1qe1s;

(15)

where we have introduced a causal source term
s5 sðt; xÞ5Dmf . It is enough to take m 5 1 to have a
considerable saving in memory storage compared with
m 5 0. In this case, t5 vts is the stress rate.

We discretize eqn (15) at t 5 nh with m5 1. Using
the notation un5uðnhÞ, the left-hand side of the first
two equations in (15) can be approximated using

h3D3ui
�n
5 un11

i 23uni13un21
i 2un22

i ; i5 1; 2; (16)

where we have used a right-shifted finite-difference
expression for the third derivative.
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Using eqn (14), the GL derivative in the third equa-
tion in (15) can be approximated as

Dm1qez
1

hm1q

XJ

j50

ð21Þj
�
m1q
j

�
eðt2jhÞ: (17)

Finally, we obtain for m 51,

un11
1 5 h3ðr21v1t

nÞ13un123un21
1 1un22

1 ;
un11
2 5 h3ðr21v2t

nÞ13un223un21
2 1un22

2 ;

tn 5
M

h

�
en2en21

�
1

h

hq11

XJ

j50

ð21Þj
�
q11
j

�
en2j1sn;

(18)

The spatial derivatives are calculated with the stag-
gered Fourier method by using the fast Fourier transform
(FFT) (Carcione 1999; Carcione 2007, 2009). The
Fourier pseudospectral method has spectral accuracy
for band-limited signals. Then, the results are not affected
by spatial numerical dispersion. Grid staggering requires
averaging the material properties to remove diffractions
arising from the discretization of the interfaces. At half-
grid points, we average the values defined at regular
points. In this case, we apply an arithmetic averaging to
the density and the stiffness.

Since we use Fourier basis functions to compute the
spatial derivatives, eqn (18) satisfy periodic boundary
conditions at the edges of the numerical mesh.

RESULTS

Analytical solutions of wave propagation problems
are exact and conceptually appealing, but can be obtained
only under rather restrictive assumptions about the geom-
etry and the nature of the propagation medium. On the
other hand, numerical solutions can cope with complex
media and arbitrary boundary conditions but are error
prone and hence require verification (i.e., tests with
synthetic data) and validation (i.e., tests with realistic
data).

In this article, we verify our numerical algorithm by
comparing numerical and analytical solutions arising
from a model that assumes an unbounded homogeneous
model. Moreover, we validate it by simulating the
CARI experimental technique.

Unbounded homogeneous medium
We consider two breast tissues, specifically, (1)

breast fatty tissue and (2) breast cancer, with the
following properties: c0 5 1475 m/s, h0 5 0.01 M and
q 5 1.7 and c0 5 1527 m/s, h0 5 0.04 M and q 5 1.3,
respectively. These values have been taken from the liter-
ature (D’astous and Foster 1986; Weiwad et al. 2000;
Bouna€ım et al 2007; Bouna€ım and Chen 2008). From

eqn (9), M5rc20, where c0 is the velocity at the low-
frequency limit. The density for both media is r 5
1020 kg/m3 (ICRU 1998) and the reference frequency
is u0 5 (2 p) 3 MHz. Figure 1a and b show the phase
velocity and quality factor as a function of frequency,
where the solid and dashed lines correspond to breast
fatty tissue and breast cancer, respectively. It is clear
that the second medium is much lossier than the first one.

To compute the numerical transient responses, we
use the following time-dependence for the source

sðtÞ5
�
a2

1

2

�
expð2aÞ; a5

	
pðt2tsÞ

tp


2
; (19)

where tp is the period of thewave and we take ts51:4tp. Its
frequency spectrum is

SðuÞ5
�

tpffiffiffi
p

p
�

aexpð2a2iutsÞ ; a5
�
u

up

�2

; up 5
2p

tp
:

(20)

a

b

Fig. 1. Phase velocity (a) and quality factor (b) as a function of
frequency, where the solid and dashed lines correspond to breast

cancer and breast fatty tissue, respectively.
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The peak frequency is fp 5 1=tp.
We now perform simulations to compare snapshots

between a hypothetical lossless medium and the actual
medium. A sample of breast cancer is discretized on
a numerical mesh, with uniform vertical and horizontal
grid spacings of 60 mm, and 231 3 231 grid points. A
dilatational source is applied at the center of the mesh
with a peak frequency of 3 MHz. At this frequency Qz
25, according to the dashed line in Figure 1b. We use
a memory length L 5 70 and a time step h 5 5 ns.
Figure 2 shows the snapshots, where the strong attenua-
tion in the real medium is evident (Fig. 2b).

Figure 3 compares the numerical and analytical tran-
sient solutions in breast cancer at a distance of 4.8 mm
from the source location. The 2-D analytical solution is
obtained in Appendix A. The agreement between solu-
tions has an L2-norm error lesser than 0.5 %.

Simulation of CARI technique
The configuration of the CARI technique is shown in

Figure 4, where the transducer emits and records the
sound field. The metallic plate is made of steel with the

Fig. 2. Snapshots of the dilatational wave in breast cancer tissue
at 4 ms, where (a) corresponds to the lossless medium and (b) to

the lossy medium.

Fig. 3. Comparison between the analytical (solid line) and
numerical (dots) solutions at breast cancer tissue. The field is

normalized and the source-receiver distance is 4.8 mm.

2 mm
Breast

Tumor

Metallic reflector (steel)

Transducer

Fig. 4. Two-dimensional model representing the clinical ampli-
tude/velocity reconstruction imaging (CARI) technique for
ultrasound breast tumor detection. The transducer is both source
and receiver. The wave field is reflected at the metallic plate and

returns to the transducer.
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properties c0 5 5900 m/s, r 5 7850 kg/m3 and no atten-
uation. The mesh has absorbing boundary conditions at
the top and bottom of the grid (20 grid cells) (Cerjan
et al. 1985). Due to the periodicity of the Fourier method,
the absorbing strip of the top boundary is located at the
bottom of the mesh. To be effective, the damping is
applied to all the temporal levels, un; n522;21; 0; 1.
We use a memory length L5 70 and a time step h5 2 ns.

Figure 5 shows snapshots of the wave field at two
different propagation times. In Figure 5a, the picture

shows how the down-going plane wave is diffracted by
the tumor, while in Figure 5b the plane wave has been re-
flected at the breast-steel interface and is traveling back
(up) to the transducer line. As can be seen, the field is
faster in the region where the tumor is present. The
time history recorded at the transducer is represented in
Figure 6. The first horizontal event is the initial plane
wave, while the reflection event can be seen at nearly
12 ms, with the signal below the tumor arriving slightly
earlier and showing more dissipation.

To show the sensitivity of the technique to the pres-
ence of a tumor and attenuation, we represent in Figure 7
the maximum stress rate of the reflection event corre-
sponding to the following cases: (1) without tumor, loss-
less media; (2) with tumor, lossless media; (3) without
tumor, lossy media; and (4) with tumor, lossy media.
When there is no tumor the response is flat, while the
effect of attenuation is clear in the much lower amplitude
of the signal. The simulations show that the CARI tech-
nique is suitable for tumor detection.

DISCUSSION

To our knowledge, the numerical algorithms used to
simulate ultrasound in biologic media involving frac-
tional derivatives are based on the finite element (FE)
method (Dikmen 2005; Wisman 2003; Bouna€ım et al
2007; Bouna€ım and Chen 2008). In other fields, the
finite difference (FD) method is also used (e.g., Rekanos
and Papadopoulos 2010). These algorithms and the Four-
ier pesudospectral (PS)method have no restrictions on the

Fig. 5. Snapshots at 4 ms (a) and 10 ms (b). The thick line repre-
sents the breast/steel interface and the transducer is located at
2.4 mm (vertical distance). A diffraction event arising from

the tumor can be seen at 4 ms.

Fig. 6. Time history recorded at the transducer. The reflection
event at 12 ms has a smaller travel time and lower amplitude

at the location of the tumor.

Wave simulation in biologic media d M. CAPUTO et al. 1001
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type of constitutive equation, boundary conditions or
source-type and allow general material variability. FD
simulations are simple to program and, under not very
strict accuracy requirements, are very efficient. Pseudo-
spectral methods can, in some cases, be more expensive,
but guarantee high accuracy and relatively lower back-
ground noise when staggered differential operators are
used. These operators are also suitable when large varia-
tions of Poisson’s ratio are present in the model (e.g.,
a fluid-solid interface). On the other hand, FE methods
are best suited for engineering problems, where interfaces
have well defined geometrical features, in contrast with
biologic interfaces. Moreover, use of nonstructured grids,
mainly in 3-D space, is one of the main disadvantages of
finite-element methods because of the topological prob-
lems to be solved when constructing the model.

In particular, the PS method is suitable when the
signal propagates long distances. For instance, a 3 MHz
signal traveling a distance 10 cm propagates hundred of
wavelengths. At these ranges, low-order FE and FD algo-
rithms distort signals unacceptably, while it is known that
PS methods are highly accurate (Carcione 2007). In addi-
tion, the PSmethod permits the use of coarse grid sizes. In
3-D space, pseudospectral methods require a minimum of
grid points, compared with finite differences and can be
the best choice when limited computer storage is avail-
able. Fornberg (1996) showed a formal equivalence
between the PS method and n-th order FD stencils, where
n is the number of grid points. This is the reason for the
high accuracy. This property, computational efficiency
and parallelism using a large-scale bioacoustic model is
illustrated in Wojcik et al. (1999). Optimal performances
in geophysics are shown in Carcione et al. (2002) and
Carcione (2009).

Another use of the present modeling method could
be the simulation of ultrasonic pulse-echo data. Doyle
et al. (2010) showed that normal and malignant cells
produce time-domain signals and spectral features that
are significantly different. The method may have other
potential applications in medicine and biology, besides
modeling of breast tissue. For example, it could improve
the simulation study of contrast microbubbles with
a KVFD-type shell instead of the classical KV visco-
elastic shell of encapsulation (Chen et al. 2009).

We note that a final test of the method requires
a direct comparison of the numerical results with experi-
mental measurements. Also, we should take into account
the limitations of the CARI simulations in relation to
‘‘realistic’’ experiments, given the more complex reality
of breast cancer assessment with ultrasound (e.g., ductal
or lobular carcinoma, natural variations in tissue density
and stiffness in normal breast tissue, sources of experi-
mental noise, etc.).

Themethodcanbeusefulwhere other techniquesmay
fail, for instance travel time tomography (Schreiman et al.
1984), since the difference invelocity between breast tissue
and breast cancer is small.

CONCLUSIONS

We have presented a numerical algorithm to model
ultrasound in biologic tissues based on a generalization
of the Kelvin-Voigt model to the case of fractional time
derivatives of the strain. This stress-strain relation has
three parameters that can be obtained by fitting real
data, namely, the stiffness, the pseudo-viscosity and the
fractional order. The wave field is computed in the
time-space domain using the Gr€unwald-Letnikov approx-
imation and the staggered Fourier pseudospectral
method. The method is successfully tested against an
analytical solution and applied to breast cancer detection.

The classical amplitude-velocity reconstruction
imaging technique data modeled with the Kelvin-Voigt
stress-strain relation, modified with the introduction of
fractional derivatives, may possibly indicate the presence
of tumor. A further analysis of the physical properties of
various tumors and more detailed data are required. Then,
the method may lead to the possibility to distinguish
between malignant and nonmalignant tumors.
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APPENDIX A

GREEN’S FUNCTION AND ANALYTICAL
SOLUTION

A 2-D analytical solution corresponding to eqn (15) withm5 1 in
a homogeneous medium can easily be obtained. Combining the equa-
tions, we have

v3t e5
1

r
Dt: (21)
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In the frequency domain, s5Me, according to eqn (2), and using
(15), eqn (21) becomes a Helmholtz equation,

De1p2e52
1

iurv2
Ds52

1

iuM
Ds; p5

u

v
; (22)

where p is the wave number and v is given by eqn (6). If v is real, the
medium is lossless. The solution to the acoustic (lossless) equation
ðD1p2ÞG528dðrÞ is the Green function G522iH

ð2Þ
0 ðprÞ, with v5c0,

where H
ð2Þ
0 is the zero-order Hankel function of the second kind (e.g.,

Carcione, 2007). More precisely,

Gðx; y; x0; y0;u; c0Þ522iH
ð2Þ
0

�
ur

c0

�
(23)

where ðx0; y0Þ is the source location, and

r5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2x0Þ21ðy2y0Þ2

q
: (24)

The anelastic solution is obtained by invoking the correspondence
principle (Bland 1960), i.e., by substituting the acoustic velocity c0 with
the complex velocity v. The differential operator D=ðiuMÞ acts on the
source in eqn (22). Thus, the Green’s function for the strain is

Ge 5
1

iuM
DG: (25)

Since DG52p2G away from the source and s5Me, the Green’s
function for the stress is

Gs 5MGe 52
p2G

iu
: (26)

We setGð2uÞ5G�ðuÞ, where the superscript * denotes complex
conjugation. This equation ensures that the inverse Fourier transform of
the Green’s function is real. The frequency-domain solution is then
given by sðuÞ51

8
GsðuÞFðuÞ, where F is the Fourier transform of the

source time history. Since we are solving the dynamical equation with
m 5 1, our solution is not s but the stress rate t5vts. Hence,

tðx; y; x0; y0;uÞ5 1

8
iuGsF52

1

8
p2Gjðx; y; x0; y0;u; vÞFðuÞ; (27)

Because the Hankel function has a singularity at u 5 0, we
assumeG50 foru5 0, an approximation that does not have a significant
effect on the solution (note, moreover, that Fð0Þ5 0). The time-domain
solution tðtÞ is obtained by a discrete inverse Fourier transform. We
have tacitly assumed that t and dt=dt are zero at time t5 0.
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