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We present a detailed approach to implement a moment-tensor point source to compute displace-
ments, particle velocities and accelerations using direct grid methods. Here, the wave modeling
algorithm is based on pseudospectral methods to compute the partial derivatives. A comparison
to the analytical solution in the 3D acoustic case verifies the discrete implementation of the source
in the mesh. Then, the more general 3D elastic case is illustrated and simulations, with and without
free surface, are performed that can be used as a reference solution for other grid methods.

Keywords Earthquake; Source; Modeling; Moment-Tensor; Direct Grid Method

1. Introduction

The correct source modeling in direct grid methods is essential in earthquake seismology
to compute ground displacements, particle-velocities and accelerations as an aid in the
generation of reliable seismic hazard maps. The approach is partially outlined in the liter-
ature but not fully detailed and verified (e.g., Graves, 1996; Pitarka, 1999). In most of the
cases, there is not even the complete information (e.g., wave shape, frequency) to repro-
duce the results, yet being this aspect of earthquake modeling essential. We show in this
work the details of the source implementation in a full-wave modeling algorithm, where
the spatial derivatives are computed with pseudospectral methods [Carcione, 2007]. The
Fourier and Chebyshev methods used here are accurate (negligible numerical dispersion)
up to the maximum wavenumber of the mesh that corresponds to a spatial wavelength of
two grid points (at maximum grid spacing for the Chebyshev operator). This fact makes
these methods very efficient in terms of computer storage (mainly in 3D space) [Carcione
et al., 2002]. The comparison to an analytical solution verifies the source implementation.
The method applies to finite-difference and finite-element methods (e.g., DGM) and any
approach where the space is discretized, such as the boundary element method (BEM).
In this method, for instance, the integrands in the source terms of the Green functions can
in some cases be calculated in closed form [Tadeu et al., 1999].

The wave equations, recast in the particle velocity-stress formulation, describe 3D P-
wave propagation in acoustic media and 3D P- and S-wave propagation in elastic media.
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Earthquake-Source Numerical Implementation 49

The physical domain is discretized on a mesh and the time solver is a 4th-order Runge-
Kutta approximation [Carcione, 2007]. The examples provide a reference solution to verify
the source implementation in any direct method algorithm.

2. Acoustic Wave Equation

Let us consider a 3D space described by the coordinates (x, y, z) =(x1, x2, x3). The particle
velocity-stress formulation for the acoustic wave equation is (e.g., Carcione, 2007)

v̇1 = ρ−1∂1σ ,

v̇2 = ρ−1∂2σ ,

v̇3 = ρ−1∂3σ ,

σ̇ = ρc2(∂1v1 + ∂2v2 + ∂3v3) + Ṁ,

(1)

where vi denotes the particle-velocity components, σ is the scalar stress (diagonal com-
ponent of the stress tensor), M is the source (which corresponds to the moment tensor
components in the elastic case), ρ is the density and c is the wave velocity. A dot above a
variable indicates time differentiation.

Eq. (1) can be written in terms of the stress as

σ̈ = c2�σ + M̈, (2)

where � is the Laplacian, and we have assumed a homogeneous medium. Let us consider
the following source

M = M0 δ(x) δ(y) δ(z) h(t), (3)

where δ denotes Dirac’s function, h is the time history and M0 is the seismic moment. This
is usually obtained as M0 = A�σ0s, where A

[
m2

]
is the area of the fault, �σ0 [Pa] is the

stress drop, and s [m] is the slip. M0 has units [Pa m3] or [J], i.e., units of energy.
The analytical solution of the 3D Green’s function equation

G̈ = c2�G + M0δ(x) δ(y) δ(z) δ(t), (4)

corresponding to (2), is given in Morse and Feshbach (1953, Eq. 7.3.8),

G = M0

4πc2r
δ
(

t − r

c

)
. (5)

In the 1D case an additional term δ(t + r/c) has to be included. Since

σ = G ∗ ḧ, (6)

where “∗” denotes convolution with respect to time (note the source double time derivative
in Eq. (2)), we obtain
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50 J. M. Carcione et al.

σ = M0

4πc2r
ḧ

(
t − r

c

)
, (7)

where

r =
√

x2 + y2 + z2. (8)

2.1. Representation of the Source in the Mesh

The discrete representation of a delta function is

δ(x) =
{

1/dx if x = 0
0 otherwise,

(9)

where dx is the grid spacing in the x-direction; likewise for δ(y) and δ(z). Similarly, a
discrete temporal delta is 1

/
dt at the time origin and zero elsewhere, where dt is the time

step of the time solver.
Therefore, the discrete source is

M = M0δ(x) δ(y) δ(z) h (t) = M0
1

dx

1

dy

1

dz
h (t) = M0

V
h (t), (10)

where V = dx dy dz is the volume of the cell, in agreement with the source implementation
in Pitarka [1999]. In variable-grid algorithms, V is the volume of a finite-difference cell as
indicated by Pitarka [1999].

The time history h is dimensionless and must satisfy [Dahlen and Tromp, 1998]

∫ ∞

0

∣∣ḣ∣∣ dt = 1. (11)

2.2. The Time History of the Source

A set of Ricker time histories can be generated with the function 2g0 = exp
(−a2

)
, where

a depends on the peak frequency of the spectrum fp (see below) [Sheriff, 2002]. If gv =
dvg0

/
dtv,

2g0 = ω0
p exp

(−a2
)
, a = π t fp, ωp = 2π fp,

2g1 = ω1
p(−a) exp

(−a2
)
,

2g2 = ω2
p

(
a2 − 1

/
2
)

exp
(−a2

)
,

2g3 = ω3
p

(−a3 + 3a
/

2
)

exp
(−a2

)
,

2g4 = ω4
p

(
a4 − 3a2 + 3

/
4
)

exp
(−a2),

(12)

Figure 1 shows g0, g1, g2 and g3 as a function of time for fp = 1 Hz and delayed by 1.4
/

fp.
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Earthquake-Source Numerical Implementation 51

FIGURE 1 Normalized time histories gv.

Let us assume

2h (t) = 2g0(t − ts) = exp
(−b2

)
, b = π(t − ts) fp,

2ḣ (t) = 2g1(t − ts) = ωp(−b) exp
(−b2

)
,

2ḧ (t) = 2g2(t − ts) = ω2
p

(
b2 − 1/2

)
exp

(−b2
)
,

2 ˙̈h(t) = 2g3(t − ts) = ω3
p

(−b3 + 3b/2
)

exp
(−b2),

(13)

where ts = 1.4
/

fp is the delay to make the time history causal. It can be shown that the fre-
quency spectrum (time Fourier transform) of these functions is proportional to exp

(
f 2

/
f 2
p

)
,

where 2fp can be considered as a cut-off frequency. The normalization factor 2 on the l.h.s.
of (13) is a consequence of Eq. (11).

2.3. Calculation of the Displacements and Accelerations

Each particle velocity component has associated a Green’s function Gi, such that

vi = Gi ∗ ḣ, (14)

where Gi = ρ−1∂G
/
∂xi because of (1) and (6).

The corresponding displacement component is

ui =
∫ t

0
vidt = Gi ∗ h, (15)

i.e., if instead of using g1 in Eq. (1), we use g0, we obtain the displacements (see Eq. (13)).
On the other hand, the accelerations are

ai = v̇i = Gi ∗ ḧ, (16)

i.e., if instead of using g1 in Eq. (1), we use g2, we obtain the accelerations.
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52 J. M. Carcione et al.

In summary, the choice of the source in Eq. (1) gives

Displacements : Ṁ = M0δ(x) δ(y) δ(z) g0,

Particle velocities : Ṁ = M0δ(x) δ(y) δ(z) g1,

Accelerations : Ṁ = M0δ(x) δ(y) δ(z) g2.

(17)

Alternatively, the particle velocities and the accelerations can be computed by a numerical
differentiation of the displacements and particle velocities, respectively. This approach will
be used as a test.

The spatial derivatives are computed by using the Fourier and Chebyshev methods,
where the spectral coefficients are calculated with the fast Fourier transform (FFT) (e.g.,
Carcione et al., 2004). This differential operator is infinitely accurate up to the Nyquist
wave number, corresponding to spatial wavelength of two grid points. This means that if
the source is band-limited, the algorithm is free of spatial numerical dispersion and aliasing
effects, provided that the minimum grid spacing is chosen dx ≤ cmin

/
(2fmax), where fmax is

the maximum frequency of the source and cmin is the minimum wave velocity.
When solving the velocity-stress formulation with pseudospectral methods, the source

can be implemented in one grid point in view of the accuracy of the differential oper-
ators. As stated above, the strength of a discrete delta function in the spatial domain is
1/dx, where dx is the grid size. Since each spatial sample is represented by a cardinal sinc
function with argument x/dx (the spatial integration of this function is precisely dx), the
introduction of the discrete delta will alias the wavenumbers beyond the Nyquist

(
π

/
dx

)
to the lower wavenumbers. However, if the source time-function h(t) is band-limited with
cut-off frequency fmax, the wavenumbers greater than kmax = 2π fmax

/
cmin will be filtered.

Moreover, since the wave equation is linear, seismograms with different time histories can
be implemented by convolving h(t) with only one simulation obtained with δ(t) as a source,
i.e., a discrete delta with strength 1/dt [Carcione et al., 2002] (see more details about the
modeling algorithm in the appendix).

3. Elastic Wave Equation

The particle velocity-stress formulation for the elastic wave equation is (e.g., Carcione,
2007)

v̇1 = ρ−1(∂1σ11 + ∂2σ12 + ∂3σ13),

v̇2 = ρ−1(∂1σ12 + ∂2σ22 + ∂3σ23),

v̇3 = ρ−1(∂1σ13 + ∂2σ23 + ∂3σ33),

σ̇11 = λ̄θ + 2μ̄∂1v1 + Ṁ11,

σ̇22 = λ̄θ + 2μ̄∂2v2 + Ṁ22,

σ̇33 = λ̄θ + 2μ̄∂3v3 + Ṁ33,

σ̇12 = μ̄(∂1v2 + ∂2v1) + Ṁ12,

σ̇13 = μ̄(∂1v3 + ∂3v1) + Ṁ13,
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Earthquake-Source Numerical Implementation 53

σ̇23 = μ̄(∂2v3 + ∂3v2) + Ṁ23,

θ = ∂1v1 + ∂2v2 + ∂3v3, (18)

where σij are the stress components, λ̄ and μ̄ are the Lamé constants and the source
terms are

Mij = M0mijδ(x) δ(y) δ(z) h (t), (19)

where mij are the moment-tensor components. The moment-tensor formulation [Aki and
Richards, 1980] is used to describe the radiation pattern of the source. The Cartesian
components are described by the following angles: strike φ, dip δ and rake λ. The
moment-tensor components are

√
2m11 = −(

sin δ cos λ sin 2φ + sin 2δ sin λ sin2 φ
)
,

√
2m12 =

(
sin δ cos λ cos 2φ + 1

2
sin 2δ sin λ sin 2φ

)
,

√
2m13 = −(cos δ cos λ cos φ + cos 2δ sin λ sin φ),

√
2m22 =(

sin δ cos λ sin 2φ − sin 2δ sin λ cos2 φ
)
,

√
2m23 = −(cos δ cos λ sin φ − cos 2δ sin λ cos φ),

√
2m33 = sin 2δ sin λ,

(20)

such that mijmij = 1, where implicit summation is assumed. This is the reason for the
√

2
normalization.

Equation (20) is a particular case of a more general moment-tensor formulation
describing tensile and shear sources and given, for instance, in Vavryčuk [2011]. The slope
angle, ϕ, describes the tensility of the source, such that ϕ = 90◦ for pure extensive sources
and ϕ = −90◦ for pure compressive sources. If ϕ = 0, we recover the usual moment-tensor
components (20) describing shear faulting.

As in the acoustic case, the discrete version is

Mij = M0

V
mijh (t), (21)

where V is the volume of the cell, and the time history must satisfy Eq. (11).

4. Examples

4.1. Acoustic Model

The first example considers a homogeneous acoustic medium with ρ = 2650 kg/m3 and
c = 3200 m/s, and the source time history is ḣ = g1(or h = g0), with fp = 1 Hz. The
seismic moment is M0 = 7 × 1019 J (7 × 1026 dyne cm), corresponding to the Messina
1908 earthquake (e.g., Carcione and Kozác, 2008; Carcione and Gei, 2009). The modeling
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54 J. M. Carcione et al.

FIGURE 2 Snapshot in the (x, y)-plane of the stress at 6 s.

FIGURE 3 Stress. Comparison of numerical and analytical solutions.

algorithm is based on the calculation of the spatial derivatives using the Fourier pseu-
dospectral method along the three spatial coordinates [Carcione, 1993]. The simulations
use a 77 × 77 × 77 mesh, with grid spacings dx = 500 m, dy = 400 m and dz = 300 m,
and the required time step of the Runge-Kutta algorithm is dt = 0.03 s. A snapshot of the
stress field at 6 s is shown in Fig. 2. The numerical and analytical solutions are compared
in Fig. 3 at (3.5, 3.2, 4.5) km from the source (r = 6.54 km). The agreement verifies the
correct implementation of the source. Figure 4 shows the particle velocity components.

We now test the calculation of the particle velocity v1 and acceleration a1 by two
alternative methods. In the first calculation, we use the time history ḣ = g0 to obtain the
displacement u1. Then, we compute v1 by a first-order finite-difference differentiation. This
is compared to v1 obtained by using the source g1. Figure 5 shows the comparison, where
the agreement is excellent. In the second calculation, we use the time history ḣ = g1 to
obtain the particle velocity v1. Then, we compute a1 by a first-order finite-difference dif-
ferentiation. This is compared to a1 obtained by using the source g2. Figure 6 shows the
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Earthquake-Source Numerical Implementation 55

FIGURE 4 Particle velocity components.

FIGURE 5 Particle velocity component v1 obtained by two different methods. The solid
line corresponds to the source choice given in Eq. (17), while the symbols to a first-order
finite difference derivative of the displacement u1. The L2-error of the difference between
signals is 4 × 10−5.

comparison. Having tested the approach, we compute the displacements at r = 6.54 km,
which are shown in Fig. 7.

4.2. Elastic Model

The solution of a similar problem as in Sect. 4.1, but using the elastic equations (18) and
the moment tensor (20) is shown in Fig. 8, where φ = 20◦, δ = 30◦ and λ = 270◦ (e.g.,
Carcione and Kozác, 2008; Carcione and Gei, 2009) and the medium is a Poisson solid. The
difference between Figs. 7 and 8 is the presence of the shear wave in the second simulation
after 4 s propagation time.

The preceding examples have not considered a free surface and the spatial derivatives
have been computed by using the Fourier pseudospectral method. In the following, we
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56 J. M. Carcione et al.

FIGURE 6 Acceleration component a1 obtained by two different methods. The solid line
corresponds to the source choice given in Eq. (17), while the symbols to a first-order finite
difference derivative of the particle velocity v1. The L2-error of the difference between
signals is 3 × 10−6.

FIGURE 7 Displacement components in the acoustic case.

model the free surface (stress-free condition). In this case, the spatial derivative along the
vertical direction is computed with the Chebyshev pseudospectral method [Carcione et al.,
2004]. We simulate the propagation from the source DS parameterised by Graves [1996]
in his Table 1, where M0 = 1023 dyne cm = 1016 J, φ = 90◦, δ = 90◦ and λ = 90◦ (see his
Fig. 5 also). The calculations are based on a homogeneous model, with a P-wave velocity
of 4 km/s, an S-wave velocity of 2.3 km/s and a density of 1.8 g/cm3. The source depth
is 2.5 km and the receiver is located at the surface at a horizontal distance of 10 km. The
source has a peak frequency fp = 1 Hz. The simulations use a 81 × 81 × 81 mesh, with
grid spacings dx = dy = 500 m and a vertical extent of 10.45 km. The source is located at
the vertical grid point 23, where dz = 140.5 m, averaging the adjacent grid sizes, since the
grid size is variable along the vertical direction [Carcione et al., 2004]. The time step of the
Runge-Kutta algorithm is dt = 2 ms. The particle velocity components are shown in Fig. 9,
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Earthquake-Source Numerical Implementation 57

FIGURE 8 Displacement components (a) and particle-velocity components (b) in the
elastic case.

where the amplitudes and traveltimes agree with those of Graves [1996] (see his Fig. 5).
The horizontal (y−) component is zero.

In the case of a spatial distribution of the source, say, involving N grid points, the total
moment tensor M0 = ∑N

i=1 M0i, where M0i is the moment tensor assigned to the i-th grid
point. This is due to the linearity of the wave equation.

5. Conclusions

The simulations presented in this work can be used to calibrate the source implementation
in direct grid methods, such as finite-difference and finite element algorithms. The result
has been tested with the analytical solution in 3D acoustic media. The convolutional Green
function form is useful to verify and compute the magnitudes of the displacements, particle
velocities and accelerations fields and provide a reliable reference solution. The source
implementation holds for any time history other than the Ricker wavelet and in cases where
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58 J. M. Carcione et al.

FIGURE 9 Particle-velocity components. The modeling is based on an elastic stress-strain
relation and the presence of free surface.

there is seismic anisotropy and attenuation. The method has been shown for a point source,
but it can easily be extended to the case of a spatially distributed source.
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Earthquake-Source Numerical Implementation 59

Appendix: A Modeling Planning

We summarize in the following the steps to perform a simulation with direct grid methods.

1. From the maximum source frequency and minimum velocity, find the constraint
on the grid spacing, namely, dx ≤ cmin

/
(2fmax). The equality sign implies the

maximum allowed spacing to avoid aliasing; that is, two points per wavelength.
2. Find the number of grid points from the size of the model.
3. Allocate additional wavelengths for each absorbing strip at the sides and bottom

of the model. For instance, the standard sponge method requires four wavelengths,
where the wavelength is λd = 2cmax

/
fd and fd is the dominant frequency of the

seismic signal [Carcione et al., 2002].
4. Choose the time step according to the stability condition and accuracy criteria.

For pseudospectral methods a good choice is dt = 0.2dx
/

cmax, where dx is the
minimum spacing.

5. Implement the source, using Eq. (10) in the acoustic case and Eq. (20) and (21) in
the elastic case. In both cases, the source time history is normalized as in Eq. (11).

6. Locate the receivers in the model, usually at the free surface, and choose the
displacement, particle velocity or acceleration fields according to Eq. (17).
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