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Abstract We present a detailed approach to implement a moment-tensor point source

to compute displacements, particle velocities and accelerations using direct grid meth-

ods. Here, the wave modeling algorithm is based on pseudospectral methods to compute

the partial derivatives. A comparison to the analytical solution in the 3D acoustic case

verifies the discrete implementation of the source in the mesh. Then, the more gen-

eral 3D elastic case is illustrated and simulations, with and without free surface, are

performed that can be used as a reference solution for other grid methods.

Keywords Earthquake · source · modeling · moment-tensor · direct grid method .

1 Introduction

The correct source modeling in direct grid methods is essential in earthquake seismology

to compute ground displacements, particle-velocities and accelerations as an aid in the

generation of reliable seismic hazard maps. The approach is partially outlined in the

literature but not fully detailed and verified [e.g., Graves, 1996; Pitarka, 1999]. In most

of the cases, there is not even the complete information (e.g., wave shape, frequency) to

reproduce the results, yet being this aspect of earthquake modeling essential. We show

in this work the details of the source implementation in a full-wave modeling algorithm,

where the spatial derivatives are computed with pseudospectral methods [Carcione,

2007]. The Fourier and Chebyshev methods used here are accurate (negligible numerical

dispersion) up to the maximum wavenumber of the mesh that corresponds to a spatial

wavelength of two grid points (at maximum grid spacing for the Chebyshev operator).

This fact makes these methods very efficient in terms of computer storage (mainly in

3D space) [Carcione et al., 2002]. The comparison to an analytical solution verifies

the source implementation. The method applies to finite-difference and finite-element

methods (e.g., DGM) and any approach where the space is discretised, such as the
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boundary element method (BEM). In this method, for instance, the integrands in the

source terms of the Green’s functions can in some cases be calculated in closed form

[Tadeu et al., 1999].

The wave equations, recast in the particle velocity-stress formulation, describe 3D

P-wave propagation in acoustic media and 3D P- and S-wave propagation in elastic

media. The physical domain is discretized on a mesh and the time solver is a 4th-

order Runge-Kutta approximation [Carcione, 2007]. The examples provide a reference

solution to verify the source implementation in any direct method algorithm.

2 Acoustic wave equation

Let us consider a 3D space described by the coordinates (x, y, z) = (x1, x2, x3). The

particle velocity-stress formulation for the acoustic wave equation is [e.g., Carcione,

2007]

v̇1 = ρ−1∂1σ,

v̇2 = ρ−1∂2σ,

v̇3 = ρ−1∂3σ,

σ̇ = ρc2(∂1v1 + ∂2v2 + ∂3v3) + Ṁ ,

(1)

where vi denotes the particle-velocity components, σ is the scalar stress (diagonal

component of the stress tensor), M is the source (which corresponds to the moment

tensor components in the elastic case), ρ is the density and c is the wave velocity. A

dot above a variable indicates time differentiation.

Equations (1) can be written in terms of the stress as

σ̈ = c2∆σ + M̈, (2)

where ∆ is the Laplacian, and we have assumed a homogeneous medium. Let us con-

sider the following source

M = M0δ(x)δ(y)δ(z)h(t), (3)

where δ denotes Dirac’s function, h is the time history and M0 is the seismic moment.

This is usually obtained as M0 = A∆σ0s, where A [m2] is the area of the fault, ∆σ0
[Pa] is the stress drop, and s [m] is the slip. M0 has units [Pa m3] or [J], i.e., units of

energy.

The analytical solution of the 3D Green’s function equation

G̈ = c2∆G+M0δ(x)δ(y)δ(z)δ(t), (4)

corresponding to (2), is given in Morse and Feshbach (1953, Eq. 7.3.8),

G =
M0

4πc2r
δ
(

t− r

c

)

. (5)

In the 1D case an additional term δ(t+ r/c) has to be included. Since

σ = G ∗ ḧ, (6)

where “∗” denotes convolution with respect to time (note the source double time deriva-

tive in equation (2)), we obtain

σ =
M0

4πc2r
ḧ
(

t− r

c

)

, (7)

where

r =
√

x2 + y2 + z2. (8)
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2.1 Representation of the source in the mesh

The discrete representation of a delta function is

δ(x) =







1/dx ifx = 0

0 otherwise,

(9)

where dx is the grid spacing in the x-direction; likewise for δ(y) and δ(z). Similarly, a

discrete temporal delta is 1/dt at the time origin and zero elsewhere, where dt is the

time step of the time solver.

Therefore, the discrete source is

M = M0δ(x)δ(y)δ(z)h(t) = M0

1

dx

1

dy

1

dz
h(t) =

M0

V
h(t), (10)

where V = dx dy dz is the volume of the cell, in agreement with the source implementa-

tion in Pitarka [1999]. In variable-grid algorithms, V is the volume of a finite-difference

cell as indicated by Pitarka [1999].

The time history h is dimensionless and must satisfy [Dahlen and Tromp, 1998]

∫

∞

0

|ḣ|dt = 1. (11)

2.2 The time history of the source

A set of Ricker time histories can be generated with the function 2g0 = exp(−a2),

where a depends on the peak frequency of the spectrum fp (see below) [Sheriff, 2002].

If gν = dνg0/dt
ν ,

2g0 = ω0
p exp(−a2), a = πtfp, ωp = 2πfp,

2g1 = ω1
p(−a) exp(−a2),

2g2 = ω2
p(a

2 − 1/2) exp(−a2),

2g3 = ω3
p(−a3 + 3a/2) exp(−a2),

2g4 = ω4
p(a

4 − 3a2 + 3/4) exp(−a2),

(12)

Figure 1 shows g0, g1, g2 and g3 as a function of time for fp = 1 Hz and delayed by

1.4/fp.

Let us assume

2h(t) = 2g0(t− ts) = exp(−b2), b = π(t− ts)fp,

2ḣ(t) = 2g1(t− ts) = ωp(−b) exp(−b2),

2ḧ(t) = 2g2(t− ts) = ω2
p(b

2 − 1/2) exp(−b2),

2
˙̈
h(t) = 2g3(t− ts) = ω3

p(−b3 + 3b/2) exp(−b2),

(13)

where ts = 1.4/fp is the delay to make the time history causal. It can be shown that

the frequency spectrum (time Fourier transform) of these functions is proportional to

exp(f2/f2p ), where 2fp can be considered as a cut-off frequency. The normalization

factor 2 on the l.h.s. of (13) is a consequence of equation (11).
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2.3 Calculation of the displacements and accelerations

Each particle velocity component has associated a Green’s function Gi, such that

vi = Gi ∗ ḣ, (14)

where Gi = ρ−1∂G/∂xi because of (1) and (6).

The corresponding displacement component is

ui =

∫ t

0

vidt = Gi ∗ h, (15)

i.e., if instead of using g1 in equation (1), we use g0, we obtain the displacements (see

equations (13)).

On the other hand, the accelerations are

ai = v̇i = Gi ∗ ḧ, (16)

i.e., if instead of using g1 in equation (1), we use g2, we obtain the accelerations.

In summary, the choice of the source in equation (1) gives

Displacements : Ṁ = M0δ(x)δ(y)δ(z)g0,

Particle velocities : Ṁ = M0δ(x)δ(y)δ(z)g1,

Accelerations : Ṁ = M0δ(x)δ(y)δ(z)g2.

(17)

Alternatively, the particle velocities and the accelerations can be computed by a nu-

merical differentiation of the displacements and particle velocities, respectively. This

approach will be used as a test.

The spatial derivatives are computed by using the Fourier and Chebyshev methods,

where the spectral coefficients are calculated with the fast Fourier transform (FFT)

[e.g., Carcione et al. , 2004]. This differential operator is infinitely accurate up to the

Nyquist wavenumber, corresponding to a spatial wavelengths of two grid points. This

means that if the source is band-limited, the algorithm is free of spatial numerical

dispersion and aliasing effects, provided that the minimum grid spacing is chosen dx ≤
cmin/(2fmax), where fmax is the maximum frequency of the source and cmin is the

minimum wave velocity.

When solving the velocity-stress formulation with pseudospectral methods, the

source can be implemented in one grid point in view of the accuracy of the differential

operators. As stated above, the strength of a discrete delta function in the spatial

domain is 1/dx, where dx is the grid size. Since each spatial sample is represented by

a cardinal sinc function with argument x/dx (the spatial integration of this function is

precisely dx), the introduction of the discrete delta will alias the wavenumbers beyond

the Nyquist (π/dx) to the lower wavenumbers. However, if the source time-function

h(t) is band-limited with cut-off frequency fmax, the wavenumbers greater than kmax =

2πfmax/cmin will be filtered. Moreover, since the wave equation is linear, seismograms

with different time histories can be implemented by convolving h(t) with only one

simulation obtained with δ(t) as a source, i.e., a discrete delta with strength 1/dt

[Carcione et al., 2002].
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3 Elastic wave equation

The particle velocity-stress formulation for the elastic wave equation is [e.g., Carcione,

2007]

v̇1 = ρ−1(∂1σ11 + ∂2σ12 + ∂3σ13),

v̇2 = ρ−1(∂1σ12 + ∂2σ22 + ∂3σ23),

v̇3 = ρ−1(∂1σ13 + ∂2σ23 + ∂3σ33),

σ̇11 = λ̄θ + 2µ̄∂1v1 + Ṁ11,

σ̇22 = λ̄θ + 2µ̄∂2v2 + Ṁ22,

σ̇33 = λ̄θ + 2µ̄∂3v3 + Ṁ33,

σ̇12 = µ̄(∂1v2 + ∂2v1) + Ṁ12,

σ̇13 = µ̄(∂1v3 + ∂3v1) + Ṁ13,

σ̇23 = µ̄(∂2v3 + ∂3v2) + Ṁ23,

θ = ∂1v1 + ∂2v2 + ∂3v3,

(18)

where σij are the stress components, λ̄ and µ̄ are the Lamé constants and the source

terms are

Mij = M0mijδ(x)δ(y)δ(z)h(t), (19)

where mij are the moment-tensor components. The moment-tensor formulation [Aki

and Richards, 1980] is used to describe the radiation pattern of the source. The Carte-

sian components are described by the following angles: strike φ, dip δ and rake λ. The

moment-tensor components are

√
2m11 = −(sin δ cos λ sin 2φ+ sin 2δ sinλ sin2 φ),√
2m12 = (sin δ cosλ cos 2φ+ 1

2
sin 2δ sin λ sin 2φ),√

2m13 = −(cos δ cos λ cos φ+ cos 2δ sinλ sinφ),√
2m22 = (sin δ cosλ sin 2φ− sin 2δ sinλ cos2 φ),√
2m23 = −(cos δ cos λ sinφ− cos 2δ sinλ cos φ),√
2m33 = sin 2δ sinλ,

(20)

such that mijmij = 1, where implicit summation is assumed. This is the reason for

the
√
2 normalisation.

As in the acoustic case, the discrete version is

Mij =
M0

V
mijh(t), (21)

where V is the volume of the cell, and the time history must satisfy equation (11).

4 Examples

4.1 Acoustic model

The first example considers a homogeneous acoustic medium with ρ = 2650 kg/m3

and c = 3200 m/s, and the source time history is ḣ = g1 (or h = g0), with fp = 1

Hz. The seismic moment is M0 = 7 × 1019 J (7 × 1026 dyne cm), corresponding to

the Messina 1908 earthquake [e.g., Carcione and Kozác, 2008; Carcione and Gei, 2009].

The modeling algorithm is based on the calculation of the spatial derivatives using the

Fourier pseudospectral method along the three spatial coordinates [Carcione, 1993].

The simulations use a 77 × 77 × 77 mesh, with grid spacings dx = 500 m, dy = 400
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m and dz = 300 m, and the required time step of the Runge-Kutta algorithm is dt =

0.03 s. A snapshot of the stress field at 6 s is shown in Figure 2. The numerical and

analytical solutions are compared in Figure 3 at (3.5, 3.2, 4.5) km from the source (r

= 6.54 km). The agreement verifies the correct implementation of the source. Figure 4

shows the particle velocity components.

We now test the calculation of the particle velocity v1 and acceleration a1 by

two alternative methods. In the first calculation, we use the time history ḣ = g0 to

obtain the displacement u1. Then, we compute v1 by a first-order finite-difference

differentiation. This is compared to v1 obtained by using the source g1. Figure 5 shows

the comparison, where the agreement is excellent. In the second calculation, we use

the time history ḣ = g1 to obtain the particle velocity v1. Then, we compute a1 by

a first-order finite-difference differentiation. This is compared to a1 obtained by using

the source g2. Figure 6 shows the comparison. Having tested the approach, we compute

the displacements at r = 6.54 km, which are shown in Figure 7.

4.2 Elastic model

The solution of a similar problem as in Section 4.1, but using the elastic equations (18)

and the moment tensor (20) is shown in Figure 8, where φ = 20o, δ = 30o and λ =

270o [e.g., Carcione and Kozác, 2008; Carcione and Gei, 2009] and the medium is a

Poisson solid. The difference between Figures 7 and 8 is the presence of the shear wave

in the second simulation after 4 s propagation time.

The preceding examples have not considered a free surface and the spatial deriva-

tives have been computed by using the Fourier pseudospectral method. In the follow-

ing, we model the free surface (stress-free condition). In this case, the spatial derivative

along the vertical direction is computed with the Chebyshev pseudospectral method

[Carcione et al., 2004]. We simulate the propagation from the source DS parameterised

by Graves [1996] in his Table 1, where M0 = 1023 dyne cm = 1016 J, φ = 90o, δ =

90o and λ = 90o (see his Figure 5 also). The calculations are based on a homogeneous

model, with a P-wave velocity of 4 km/s, an S-wave velocity of 2.3 km/s and a density

of 1.8 g/cm3. The source depth is 2.5 km and the receiver is located at the surface

at a horizontal distance of 10 km. The source has a peak frequency fp = 1 Hz. The

simulations use a 81 × 81 × 81 mesh, with grid spacings dx = dy = 500 m and a

vertical extent of 10.45 km. The source is located at the vertical grid point 23, where

dz = 140.5 m, averaging the adjacent grid sizes, since the grid size is variable along

the vertical direction [Carcione et al., 2004]. The time step of the Runge-Kutta algo-

rithm is dt = 2 ms. The particle velocity components are shown in Figure 9, where the

amplitudes and traveltimes agree with those of Graves [1996] (see his Figure 5). The

horizontal (y-) component is zero.

In the case of a spatial distribution of the source, say, involving N grid points, the

total moment tensor M0 =
∑N

i=1
M0i, where M0i is the moment tensor assigned to

the i-th grid point. This is due to the linearity of the wave equation.

5 Conclusions

The simulations presented in this work can be used to calibrate the source implemen-

tation in direct grid methods, such as finite-difference and finite element algorithms.
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The result has been tested with the analytical solution in 3D acoustic media. The con-

volutional Green function form is useful to verify and compute the magnitudes of the

displacements, particle velocities and accelerations fields and provide a reliable refer-

ence solution. The source implementation holds for any time history other than the

Ricker wavelet and in cases where there is seismic anisotropy and attenuation. The

method has been shown for a point source, but it can easily be extended to the case

of a spatially distributed source.
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A Modeling planning

We summarise in the following the steps to perform a simulation with direct grid methods.

1. From the maximum source frequency and minimum velocity, find the constraint on the
grid spacing, namely, dx ≤ cmin/(2fmax). The equal sign implies the maximum allowed
spacing to avoid aliasing; that is, two points per wavelength.

2. Find the number of grid points from the size of the model.
3. Allocate additional wavelengths for each absorbing strip at the sides and bottom of the

model. For instance, the standard sponge method requires four wavelengths, where the
wavelength is λd = 2cmax/fd and fd is the dominant frequency of the seismic signal
[Carcione et al., 2002].

4. Choose the time step according to the stability condition and accuracy criteria. For pseu-
dospectral methods a good choice is dt = 0.2dx/cmax, where dx is the minimum spacing.

5. Implement the source, using equation (10) in the acoustic case and equations (20) and
(21) in the elastic case. In both cases, the source time history is normalized as in equation
(11).

6. Locate the receivers in the model, usually at the free surface, and choose the displacement,
particle velocity or acceleration fields according to equations (17).
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Fig. 1 Normalized time histories gν .

Fig. 2 Snapshot in the (x, y)-plane of the stress at 6 s.
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Fig. 3 Stress. Comparison of numerical and analytical solutions.

Fig. 4 Particle velocity components.
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Fig. 5 Particle velocity component v1 obtained by two different methods. The solid line
corresponds to the source choice given in equation (17), while the symbols to a first-order
finite difference derivative of the displacement u1. The L2-error of the difference between
signals is 4 × 10−5.

Fig. 6 Acceleration component a1 obtained by two different methods. The solid line corre-
sponds to the source choice given in equation (17), while the symbols to a first-order finite
difference derivative of the particle velocity v1. The L2-error of the difference between signals
is 3 × 10−6.
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Fig. 7 Displacement components in the acoustic case.
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Fig. 8 Displacement components (a) and particle-velocity components (b) in the elastic case.
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Fig. 9 Particle-velocity components. The modeling is based on an elastic stress-strain relation
and the presence of free surface.


