ACUSTICA - acta acustica

Vol 84 (1998) 495502 © . Hirzel Verag - EAA 495

* Anisotropic Attenuation and Material Symmetry

1%

J. M. Carcione, F, Cavallini
Osservatorio Geofisico Sperimentale di Trieste, P. O. Box 2011, [-34016 Trieste, htaly

Klaus Helbig
Kiebitzrain 84, D-30657 Hannover, Germany

Summary
The internal structure of a material (as, e.g., expressed by the stiffnesses) dictates the dependence of the quality factor @
on direction. Therefore, the attenuation should have at least the symmetry of the crystallographic form of the material.
To investigate this property, we compare three different constitutive equations for modeling anisotropic attenuation
of wave propagation in rocks. The present analysis considers media with symmetries ranging from orthorhombic to
transversely isotropic with the anelasticity described by a relaxation model.
The first stress-strain relation is based on Backus’s averaging theory, which provides the best model for laminated
media. The other two constitutive laws are not restricted to stratified media and can be tested with the first model. The
second constitutive law is based on the following mechanical interpretation: Each eigeavector (called eigenstrain) of the
stiffness tensor of an anisotropic solid defines a fundamental deformation state of the medium. The six eigenvalues (called
eigenstiffnesses) represent the genuine elastic parameters, which generalize to relaxation functions in the anelastic case.
The third constitutive equation satisfies the condition that the mean stress depends only on the dilatational relaxation
functionin any coordinate system (the trace of the stress tensor is invariant under coordinate transformations), Moreover,
the deviatoric stresses solely depend on the shear relaxation function,
The last two constitutive relations yield similar results when modeling a laminated medium, but they differ for an
- orthorhombic medium. Tests on available experimental data indicate that the second model provides the best fitting.

PACS ne. 432805, 43.35.Cy, 43.35F]

Introduction

The so-called Neumann’s principle [1, 2] states, roughly
speaking, that the symmetry of the consequences is at least
as high as that of the causes. This implies that any kind of
symmetry possessed by wave attenuation must be present
within the crystallographic class of the material. Acmally
Pierre Curie, who was a true scientific leader in crystallog-
raphy, already in 1884 clearly stated this symmetry principle
in an article on the Bull. Soc. Mineral. France.

Since attenuation can be explained by a large number of
mechanisms, it is difficult, if not impossible, to build a gen-
eral microstructural theory. A phenomenological theory, such
as viscoelasticity, leads to a convenient model. Though such
a model does not allow to predict attenuation levels, it can
be used to estimate the anisotropic attenuation. The problem
is the determination of the time (or frequency) dependence
of the relaxation tensor (21 components in triclinic media;
e.g., see [3]). Most applications use the Kelvin-Voigt con-
stitutive law, based on 21 independent viscosity functions
[4], corresponding to imaginary constants in the frequency
domain. Sometimes it has been possible to estimate all these
constants satisfactorily [5]. However, in the present article
three alternative models are shown based on fewer parame-
ters, which are not the imaginary elasticities in themselves,
but real quality factors (often more readily available in the
seismic practice).
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Attenuation is a characteristic associated to a deforma-
tion state of the medium (e.g., a wave mode) and therefore
a small number of parameters should suffice to obtain the
relaxation components. In isotropic media, two (dilatational
and shear) relaxation functions completely define the anelas-
tic properties. For finely layered media, Backus’s averaging
is a physically sound approach for obtaining the relaxation
components of a transversely isotropic (TI) medium [6]. Two
altemative constitative laws [7, 8], not restricted to layered
media as Backus’s approach, relate waves and deformation
modes to anelastic processes, using at most six relaxation
functions. _

Dissipation in a given direction is quantified by the qual-
ity factor or the related attenuation factor, which can be
measured experimentally by various techniques (e.g., [9])-
Most experimental data about anisotropic attenuation were
obtained in the laboratery at ultrasonic frequencies, whereas
such data are not ususally collected during seismic surveys.
This lack of data constilutes a serious problem because, wn-
like the slownesses, the attenuation behaviour observed at
those frequency ranges cannot be extrapolated to the sonic
and seismic ranges, since the mechanisms of dissipation can
be quite different in different frequency ranges.

Hosten et al. {5] measured the dependence of attenua-
tion with propagation direction in a carbon-epoxy composite.
They found that, in a sense, attennation is more anisotropic
than slowness, and while shear wave dissipation is larger than
longitudinal dissipation in the isotropy planes, the opposite
behaviour occurs in planes containing the axis of rotational
symmetry. Arts et al. [10] obtained the viscoelastic tensor of
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experimental techniques are employed. On the other hand,
laboratory data obtained by Yin [12] on prestressed rocks
suggest that attenuation may be more sensitive to the closing
of cracks than the elastic stiffnesses, and that its symmetry
is closely related to the type of loading. Yin found a sim-
ple relation between wave amplitude and loading stress, and
concluded that accurate estimates of wave attenuation can be
used to quantify stress-induced anisotropy.

1. Constitutive equations

The following rheological model assumes a single standard
linear solid element {13] describing each anelastic deforma-
tion mode (identified by the index 1/), whose (dimensionless)
complex moduli can be expressed as

_V Q()v +1-1+4+iwQe 70
Mu(w) B \/Q_g,, + 141+ iwQomo ’ (1)

where w is the angular frequency. Depending on the sym-
metry class, subscript ¥ goes from 1 to 6 at most; in the
rheological models that follow ¥ =1, 2 in cases | and 3, and
v=1,...,4incase 2, The quality factor (),,, associated with
each modulus, is equal to the real part of M,, divided by its
imaginary part. Atwg = 1/7y, the curve @, {w) has its high-
est value: @, (wo) = Qoo For a given angular frequency w,
we take pw = 1; and, therefore, the frequency dependence is
irrelevant. Actually, we are interested in the anisotropic prop-
erties of attenuation. The high-frequency limit corresponds
to the elastic case with M, — 1.

Let us denote by prs, where I,J = 1,...,6, the com-
plex stiffnesses and by cr s the purely elastic (or unrelaxed)
stiffness constants. Then, prs(w — 00) = ¢rJ. For an or-
thorhombic medium, Hooke’s Law can be written either in
the so-called *“Voigt notation” as

{Q)x

Figure 1. Polar representation of the quality factors for a hydrocarbon
source rock, comesponding to model 1 (a), model 2 (b) and model 3
(c). The parameters of models 2 and 3 have been chosen so that their
resulis be close to those of model 1, taken as giving synthetic data
on which to test the flexibility of models 2 and 3.

dry and saturated rock samples (sandstone and limestone).
Their results indicate that attenuation in dry rocks is one
order of magnitude lower than attenuation in saturated sam-
pies. Moreover, the attenuation is again more anisotropic
than the slowness, a fact that is interpreted by the authors as
attenuation having lower symmnetry than the slowness, or, al-
ternatively, .a consequence of experimental error. According
to Baste ‘et al. [11], the elastic stiffnesses are quite adequate
to describe the closing of cracks — provided that the proper

o1 Priipapa 0 0 O €11
o2 Przpaps 0 0 0 €22
o33 | _ | Pspaapss 0 0 O €33 @)
d93 0 0 0 Pas g 0 2623
013 0 0 0 0 ps5 O 2¢13
o192 0O 0 0 0 0 Dea 2612
or in “Kelvin notation” (required by model 2) as
o1
022
J33
Vaoy | = @)
V2013 '
V201,
pupzpz 0 0 O €11
P2peps 0 0 0 €22
papapss 0 0 O €33
0 0 0 2p4 0 O V23 |’
0 0 0 0 2ps5 O V23
0 0 0 0 O 2pg V22
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Figure 2. Sections of the ¢nergy velocity (a), attenuation (b) and
quality factor surfaces {(c) for human femoral bone across the
three symmeiry planes. The dotted line corresponds to the quasi-
compressional wave and the polarizations are represented in the
energy velocity curves. Model 2, with six distinet complex mod-
uli, is used to obtain the complex stiffnesses. The corresponding
dimensionless quality factors are defined as follows: Qos = 30
and Qor = [Ars(00)/Ag(00)]Qos, I =1,...,6.

where the p;y are functions of ¢y and M, [14]. Note that
the three arrays of (3) are true tensors in 6-D space, while in
equation (2) they are just arrays.

Transverse isotropy implies

P22 =P, P23 = s,
P4 = Pss, Pes = (P11 — p12)/2. (4)

1.1. Model 1: Effective anisotropy

Intertayering of lithologies with different material properties
on a scale much finer than the dominant wavelength of the
signal yields effective anisotropy [15]. Carcione {6] used this
approach to study the anisotropic characteristics of attenua-
tion in viscoelastic finely layered media. Let each medium be

isotropic and anelastic with complex Lamé parameters given
by

4 2
= 2——V2)M—— 2 M.
A P(Vp 3Vs )| Mi— 2oV My 5)
and p = pV3IMa, -

whereMlanglMgarethedilataﬁonalandshearcom—_
plex moduli, respectively, V and Vs are the elastic high-
frequency limit compressional and shear velocities, and g is
the density (note that in [6] the elastic limit corresponds to
the relaxed moduli). For instance [15],

pss = {p1)7!, and pee = {u), ()

where (o) denotes the thickness weighted average. The com-
plete equations can be found in [15}. In the case of a periodic
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Figure 3. Sections of the energy velocity (a), attenuation (b) and
quality factor surfaces (c) for human femoral bone across the
three symmetry planes. The dotted line corvesponds to the quasi-
compressional wave and the polarizations are represented in the
energy velocity curves. Model 3, with four distinct complex mod-
uli, is used to obtain the complex stiffnesses. The corresponding
dimensionless quality factors are Qo1 = 200, Qo2 = 41.35, Qoa
=37.23 and Qoa = 30.

sequence of two alternating layers, the explicit equations
were obtained by Postma {16].

1.2. Model 2: Attenuation via eigenstrains

We introduce now a constitutive equation based on the fact
that each eigenvector (called eigenstrain) of the stiffness ten-
sor defines a fundamental deformation state of the medium.
The six eigenvalues (called eigenstiffnesses) represent the
genuine clastic parameters. For example, in the elastic case
the strain energy is uniquely parameterized by the six eigen-
stiffnesses. From this fact and the correspondence principle
we infer that in a real medium the rheological properties
depend essentially on six relaxation functions, which are the
generalization of the eigenstiffnesses to the viscoelastic case.
The existence of six or less complex moduli depends on the

symmetry class of the medium. The theory is developed in
[7). According to this approach, the principal steps in the
construction of a viscoelastic theology from a given stiffaess
tensor C(®) are the following:

1. Decompose the elastic stiffness tensor as

6
CO=3"AE;0E,
I=1

where Ay and E; are the eipenvalues and normalized
eigenvectors of C(®), respectively, and @ denotes the ten-
sor product. The elastic stability of the material ensures
the symmetry of C(®); heace Ay and E; are real.

2. Invoking the correspondence principle, we get that a
straightforward viscoelastic generalization of the above
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equation — for time-harmonic motions of angular fre-
quency w — is given by

6
C(v) = EAI M](&J) E;E;,
I=1

where Mj(w) are complex moduli of the form 1. By
construction, the eigenstiffnesses of C(¥) are complex, but
the eigenstrains are the same as those of C(®)} and hence
real.

For orthorhombic symmetry, the characteristic polynomial
of the elasticity matrix, when in Kelvin's form, factors into
the product of three linear factors and a cubic one: there-
fore, eigenstiffnesses are found by resorting to Cardano’s
formulae. For a transversely isotropic medium, the situation
is even simpler, as the characteristic polynomial factors into
the product of two squared linear factors and a quadratic
one: a straightforward computation then yields that the inde-
pendent entries of the complex stiffness matrix are, in Voigt
notation,

A, A A

PL= gt e T ™
P2 = P11 — Al, (8)
02A1 b2A2
s ara Vel @
GAl bAg
= = 1
3= oz T2y (10)
Pss — A3) ;-’ :L (11)
where
o= dcy3
€11 +¢12 —c33 — vE’
b= ders (12)

c11 +c1z - ¢33 + VE'

and Ap(w), I = 1,...,4 are the complex and frequency-
dependent eigenstiffnesses, given by

A = %(Cn +c12 + ez — VE)M,, (13)

A = %(cu +c2tep+ \/E)Mz (14)

A3 = 2c55M;, (15)

Ay = (en1 — c12) My, (16)
with

E =8c}3 + (c11 + 12 — e3s)”. (17

The two-fold eigenstiffnesses Ay and A4 are related to pure
“isochoric” eigenstrains, i.e., to volume-preserving changes
of shape only, while the single eigenstiffnesses Ay and A are
related to eigenstrains that consist of simultaneous changes
of volume and shape. For weak anisotropy, A; correspondsto
the quasi-dilatational wave and A; to the quasi-shear wave.
Moreover, Az and A4 determine the ¢ values of the shear
waves along the principal axes,

1.3. Model 3: Atienuation via mean and deviatoric stresses

In this stress-strain relation [6, 8], the mean stress (i.e., the
trace of the stress tensor) is only affected by the purely dilata-
tional complex modulus M. Moreover, the deviatoric stress
components solely depend on the shear complex moduli, de-
noted by My, M3 and M,. The trace of the stress tensor
is invariant under transformations of the coordinate system.
This fact assures that the mean stress depends only on A in
any system. '

The complex stiffnesses for an orthorhombic medium are
given by

4
P = CI(;) -D+ KM] + EGMJ, (18)
=123,
1
pry =crg—D+ KM, +2G (1 — EMJ) (19)
I.J=1,2,3;1#J,

Daa = csaMy, pss = c55Ms, pes = ces My, (20)
where
4
K=D- §G (21)
and
18 1
D= EZCH’, G = EECU' (22)

The index & can be chosen 2, 3 or 4. Transverse isotropy
implies equation (4), My = M3 = M, and pgg = cg¢ +
G(M; —1).

This rheology has the advantage that the stiffnesses have a
simple time domain analytical form, allowing the numerical
solution of the viscoelastodynamic equations in the space-
time domain.

2. Attenuation and quality factors

Substitution of the stress-strain relation for plane waves into
the equations of momentum conservation gives the complex
Christoffe] equation. The eigenvalues of the Christoffel ma-
trix are closely related to the complex velocities of the three
propagating modes [8]. For homogeneous viscoelastic waves,
the complex velocity V is a fundamental quantity since it de-
termines uniquely both the attenuation and the guality factors.
For instance, the three waves propagating in the (z, z)-plane
of an orthorhombic medium have the following velocities
along the coordinate axes:

Ves(0) = Vs(90) = v/pss/p, :

Vep(0) = vpas/p, Vop(90) = /pu/p, (23)

Vsa(0) = v/pas/p, Vsu(90) = /pss/p,
where 0 cerresponds to the z-axis and 90 to z-axis. The
magnitude of the attenuation vector is given by

a=-w(Vv'l) (24)
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and the quality factor by
_ Re(V?)
Q= Tm(V?) (25)

[8]. Note that V" and ) depend on the unrelaxed elasticities,
the complex moduli and the propagation direction.
Attenuation and () factor are related by

a=w (\/QT - Q) Re(V—1). (26)

For low-loss solids, where ¢} *> 1, a Taylor expansion yields

o W =1y — 7f
@V ) = G

where f is the frequency and V,, is the phase velocity given
by :

(27)

Von = [Re(V )]~ (28)
Equation (26) is the weil-known relation between attenuation
and quality factor [9].

In the case of inhomogeneous waves in weakly anisotropic
TI media, the propagation and attenuation vectors are still
expressible in closed forms, albeit more cumbersome [5].
In the next section both homogeneous and inhomogeneous
waves will be used,

3. Examples

3.1. Hydrocarbon source rock

Shale source rocks have a very low porosity, and ultrasonic
velocities normal 10 bedding are much lower than velocities
parailel to bedding. In addition, they present a high level of
wave attenuation [17], due to the kerogen content. Bakken
shales, for instance [18), are a composite system made of
illite, with velocities, densities and assumed Q factors

VP =45kmfs, Vg =3kms,
P= 2.73’(!!113, Ql = 801 Q2 = 60:

respectively; and kerogen, with velocities and Q) factors

Ve =2.7kmvs, Vs =1.5kmis,
p= 14 glcms, Q1 == 30, Qz = 20,

respectively. Let us assume that 60 percent of the shale is
illite. Figure 1a shows a polar representation of the quality
factor, corresponding to model 1. Only a quarter of the (z, z)-
plane is plotied due to symmetry considerations. In the ideal
case of parallel plane stratification, the quality factor curves
obtained from model 1 approach the “exact” ones as the ratio
of the thickness of the thickest layer to the pulse wavelength
approaches zero [15]. Figures 1b and lc display the curves

for models 2 and 3, respectively, with parameters chosen so
that their results be close to those of model 1, taken as giving
synthetic data on which to test the flexibility of models 2 and
3. The best fit is obtained with model 2, since four kernels
with Q()l =22, Qoz = 53, Qo3 =255 and QM = 62 are
used. Model 3 uses two kernels with Qg1 = 160 and Qg2
= 22, giving a quite good fit for the coupled modes and
underestimating the value of the S-wave quality factor along
the horizontal direction. ’

3.2. Orthorhombic media

The elasticity matrix representing the orthorhombic stiffness
constants for human femoral bone is given in Voigt notation
by [19]

18 998101 0 O
998 202107 0 0
101107276 0 0

0 0 0 623 0

0 0 0 o0 561 0

0 0 0 0 0 452

oo oO

in GPa. Figure 2 shows sections of the energy velocity (a),
attenuatien (b) and quality factor surfaces (c) across the three
symmetry planes, obtained with model 2. The dotted line cor-
responds to the quasi-compressional wave and the polariza-
tions are represented in the energy velocity curves. The model
uses six distinct complex moduli, whose dimensionless qual-
ity factors are defined as Qo; = [A;(00)/As(00)]Qos, I =
1,...,6, Withoa =30.

The values of the quality factor along the symmetry axes
for the inner curves are given by Qo7, I = 1,...,6. We
define the attenuation parameters for model 3 such that the
Q) factors along the symmetry axes coincide with those of
model 2, ie, Qm = 200, Q02 = 4[.35, Q03 = 37.23 and
Qo4 = 30. Figure 3 shows sections of the energy velocity (a),
attenuation (b) and quality factor surfaces {c) across the three
symmetry planes, corresponding to model 3.

Although the @ factors coincide along the cartesian axes
(at least for the quasi-shear waves), the models yield quite
dissimilar results out of the symmetry axes.

3.3. Modeling of experimental attenuation data

Yin [12] presents experimental results of stress-induced ve-
locity and attenuation anisotropy of rocks. The following
are the elastic constants of Massilon sandstone under triax-
ial loading conditions (o, = Oyy = 1.72 MPa, 0, =5.71
MPa):

cnn = 16.97 Cl1z = 3.17
Cla = 4.39 Ciz = 20.18
css = 1.75 cge — 6.9

where the unit is GPa. For simplification of the analysis we
assume that these elastic constants are unrelaxed, though the
measurement is carried out at a finite frequency. On the other




ACUSTICA - acta acustica

Vol. 84 (1998} Carcione: Anisotropic attenuation and material symmetry 501
0 MAGNITUDE OF ATTENUATION VECTOR (Neper/m)
(@) £ 150
,';3 125
30 £ 100
S 2 75
93 f 50
_ 25
N
X e— ] 50 100 150 200 250 300 350 400
x-axis (vertical)
qP
10
ATTENUATION FACTOR {Neper/m)
400
350 b
0 - *
1] 10 20 30 40 g 300
{@x § 250
=
40-¢ ] g 200
\ ) % 5
\ 5 gS qP
30 100
50
gs \S
N 100 200 300 400 500
g0 X- axis
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qP for inhomogeneous waves (a) and attenuation coefficient (b) for
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10 laboratory sample (Hosten et al., [5]. The real part of the complex
stiffnesses has been taken from {5], while its imaginary part has been
computed from model 2 using (o1 = 150 (quasi-dilatational), Qo2
= 15 (quasi-shear), Qgs = 500 (shear) and Qg4 = 5 (shear).
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Hosten et al. [5] obtained the following elastic constants

Figure 4. Polar tepresentation of the quality factors for Massilon
sandstone, comresponding to model 2 (a) and model 3 (b). The dots
are the experimental values measured by Yin [12].

hand, Yin's quality factors versus the propagation angle @,
measured from the axis of rotational symmetry, are

Q,p(0) = 19.23
Q,p(90) = 17.03
Qqs(0) = 40.16
Qsu(90) =30

Figure 4 shows the quality factors corresponding to models
2 and 3. The experimental values arc represented by dots.
Model 2 uses three parameters to fit the data, with Qg = 15,
Qo3 =40, Qos =30 and Qg1 = Qy3, while for model 3, Qo1
= 9.8 and Qo2 = 40. The latter describes fairly well the g
factor.

for a carbon-epoxy composite:
Ci1 = 15 Cia2 = 7.7
Ci3 = 3.4 C33 = 87
Cr5 = 7.8 Cep = 39

given in GPa. They also obtained the imaginary part of the
stifiness matrix by measuring the aftenuation of inhomoge-
neous viscoelastic waves on a sample immersed in water. We
recall that for inhomogeneous waves, equiphase planes do
not coincide with equiamplitude planes. The best fit of the .
experimental data is obtained with model 2 (Figure 5a), with
Qor = 150, Qoz = 15, Qo3 = 500 and Qo4 = 5. Figure 5b
shows the attenuation curves for homogeneous viscoelastic
waves.

By comparing Figures 5a and 5b we conclude, as Hosten
et al. [5], that homogeneous waves are inadequate to de-
scribe such anisotropic attenuation phenomena, whereas the
analysis with inhomogeneous waves gives realistic results.
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4. Conclusions

Because the anisotropic attenuation properties are closely re-
lated to the material symmetry given by the elastic constants,
a proper anisotropic anelastic comstitutive equation and a
few experimental values of the quality factor should give a
realistic description of the quality factor surfaces. This is
confirmed by a test of two anelastic stress-strain relations on
a composite material. However, application of the models to
an orthorhombic medium yields quite dissimilar results out
of the symmetry axes, where the Q factor can be arbitrarily
defined.

The emphasis in our paper is on constitutive laws, not on
inversion algorithms. Thus, as a preliminary step towards
a sound data-fitting procedure, we have used a naive trial-
and-etror procedure based on viswal inspection. Therefore,
our results may be viewed as encouraging rather than dis-
appointing, although a quantitative error analysis is not yet
possible and some slight misfit is still present, as in Figure
5a. In any case, the scarse available experimental data on
anisotropic attenuation are not enough for a proper model
verification.
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