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Abstract Hydraulic fracturing in shales generates a cloud of seismic – tensile and

shear – events that can be used to evaluate the extent of the fracturing (event clouds)

and obtain the hydraulic properties of the medium, such as the degree of anisotropy

and the permeability. Firstly, we investigate the suitability of novel semi-analytical

reference solutions for pore-pressure evolution around a well after fluid injection in

anisotropic media. To do so, we use cylindrical coordinates in the presence of a forma-

tion (a layer) and spherical coordinates for a homogeneous and unbounded medium.

The involved differential equations are transformed to an isotropic diffusion equation

by means of pseudo-spatial coordinates obtained from the spatial variables re-scaled

by the permeability components. We consider pressure-dependent permeability com-

ponents, which are independent of the spatial direction. The analytical solutions are

compared to numerical solutions to verify their applicability. The comparison shows
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2

that the solutions are suitable for a limited permeability range and moderate to minor

pressure dependences of the permeability.

Once the pressure evolution around the well has been established, we can model

the microseismic events. Induced seismicity by failure due to fluid injection in a porous

rock depends on the properties of the hydraulic and elastic medium and in-situ stress

conditions. Here, we define a tensile threshold pressure above which there is tensile

emission, while the shear threshold is obtained by using the octahedral stress criterion

and the in-situ rock properties and conditions. Subsequently, we generate event clouds

for both cases and study the spatio-temporal features. The model considers anisotropic

permeability and the results are spatially re-scaled to obtain an effective isotropic

medium representation. For a 3D diffusion in spherical coordinates and exponential

pressure dependence of the permeability, the results differ from those of the classical

diffusion equation. Use of the classical front to fit cloud events spatially, provides good

results but with a re-scaled value of these components. Modeling is required to evaluate

the scaling constant in real cases.

Keywords microseismicity · hydraulic fracturing · shale gas · permeability · non-linear

diffusion

1 Introduction

Porous media exhibit elastic and inelastic deformations. In many cases, a pressure

transient analysis based on constant rock properties, particularly permeability, can

lead to significant errors in parameter estimation. Porous media with relatively high

pore compressibilities, for example shales, can be affected by the injection of fluids

under high pressure, which may lead to permeability changes as a function of pore
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pressure. Wu and Pruess (2000) have shown that assuming a pressure-independent

permeability may lead to large errors in the pressure profile.

A realistic approach requires the modeling of shear and tensile events. Rutqvist et

al. (2015) conducted three-dimensional coupled fluid-flow and geomechanical modeling

of fault activation and seismicity associated with hydraulic fracturing stimulation of a

shale-gas reservoir, during a 3-h hydraulic fracturing stage. The results are consistent

with field observations. The simulations show that shale-gas hydraulic fracturing results

in numerous small microseismic events, as well as aseismic deformations along with the

fracture propagation. The rupture zone is clearly associated with tensile and shear

failure extended to a maximum radius of about 200 m from the injection well.

Kikani and Pedrosa (1991) have taken into account the effect of a pressure-dependent

permeability using an exponential dependence. They obtained an analytical solution

in terms of a regular perturbation series for a radial, infinite reservoir. Their solution

corresponds to a line source well with a constant discharge rate inner boundary con-

dition in a cylindrical system. Yeung et al. (1993) considered a simplified form of the

equations used by Kikani and Pedrosa (1993) to describe spherical, cylindrical and

linear flow in pressure sensitive formations. The solutions apply to a large-diameter

borehole with a constant pressure boundary condition.

Here, we implement two typical cases in fluid injection. First, Wu and Pruess’s

solution for a constant mass flow in cylindrical coordinates and second Yeung et al.’s

solution for a constant injection pressure in spherical coordinates. We generalise both

approaches to the anisotropic case. In fact, shales are elastically and hydraulically

anisotropic and fluid-rock interaction has to be described by a non-linear diffusion

equation in an anisotropic medium as shown by Hummel and Shapiro (2013). These

authors have analysed spatio-temporal characteristics of induced seismicity recorded
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during a hydraulic fracturing treatment in the Barnett Shale. To model the diffusion

of pore-fluid pressure, they introduced a new model with a non-linear permeability

based on a pressure power law, where the pressure dependence is independent of the

diffusion direction. We consider an exponential relation between pore-fluid pressure

and permeability (Hummel and Müller, 2009; Hummel and Shapiro, 2012; Hummel,

2013), which has been found to be in agreement with most experimental data (Shi and

Durucam, 2016). Usually, the anisotropy of hydraulic permeability is much

stronger than the anisotropy of elastic properties and this approximation is

implicit in the present formulation. Moreover, Wu and Preuss (2000) model

anisotropy of the transport properties (permeability), although the elastic

properties satisfy isotropy. In any case, the major effect is on seismic waves

and here we do not compute seismograms, but just determine the emission

cloud.

To analyse the effects of injection and fracturing, we consider the pressure solution

in spherical coordinates and obtain tensile and shear seismic sources generated by fluid

injection. Fluid injection in a borehole causes an increase of the pore pressure in the

surrounding rock formation, which implies a decrease of the effective stress. In turn,

such a reduction can induce micro-earthquakes in zones of weakness. Tensile and shear

failure occur as a consequence of the injection and the common criterion for failure is

based on a critical fluid pressure for fracturing that exceeds a given tectonic stress. The

criterion to obtain the critical fluid pressures that we adopt here is based on Lal (1999).

These thresholds are assumed to vary on a fractal manner based on the von-Kármán

correlation function (e.g., Carcione and Gei, 2009; Carcione et al., 2015). Langenbruch

and Shapiro (2014) show that the elastic heterogeneity of rocks obtained from sonic

and density logs along boreholes causes significant fluctuations of fracture reactivation
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and opening pressures. As a result, fluctuations of principal stress magnitudes are of

fractal nature. Langenbruch and Shapiro (2015) showed that stress changes in the

range of 103 to 107 Pa are capable of triggering brittle failure and associated seismicity

in rocks of the Earth’s crust. This result validates the concept of a nearly critical

state of stress in the Earth’s crust and suggests that already stress changes just above

perturbations caused by tidal forces (10 3 Pa) are enough to trigger rupturing in the

most critically stressed parts of rocks (Rothert and Shapiro, 2007). Here, we consider

variations of the order of 6 MPa. Correlation lengths of 0.2 m are assumed on the basis

that heterogeneities are smaller than the wavelength of a seismic signal. In the case of

fine layering values from tens of cm to 1 m are realistic. The evolution of the hydraulic

diffusivity of the medium (temporal and spatial) can be analysed from the envelope of

events by representing the distance of the events to the injection point as a function

of the emission times and from the shape and extent of the microseismic cloud.

2 The pressure equation

The fluid-flow model combines the equation of mass conservation and Darcy’s law

∂i(ρvi) = −∂t(φρ) and vi = −
κ(i)
η

∂ip, (1)

respectively (e.g., Wu and Pruess, 2000), where p is the fluid pressure, vi are the flux

components, ρ is the fluid density, φ is the formation porosity, κi are the components

of the permeability tensor (in its principal system), η is the dynamic viscosity, ∂i is the

spatial derivative with respect to the variable xi and ∂t or a dot above a variable denote

the time derivative. In the following, an italic subindex “i” denotes a spatial component

and a roman subindex “i” indicates initial state. The density and the porosity can be

pressure dependent in equation (1) and we have generalised the equation given in
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Wu and Preuss (2000) including anisotropy of the transport properties (permeability),

although the elastic properties satisfy isotropy.

The isothermal fluid and pore compressibilities are

Cf =
1
ρ
∂ρ
∂p

and Cp =
1
φ
∂φ
∂p

, (2)

respectively (e.g., Carcione, 2014). Substituting these quantities in (1) gives

ṗ = − 1
φρC

∂i(ρvi), C = Cf + Cp (3)

where C is the total compressibility, assumed to be pressure independent in this study.

For constant density, we obtain

ṗ = − 1
φC

∂ivi. (4)

Equation (4) can be derived from Biot’s theory of poroelasticity and was used by

Carcione and Gei (2009) to obtain a diffusion equation describing fluid flow under

borehole conditions, where the compressibility has been modified to model uniaxial

stress conditions. Its expression is

φC =
α− φ
Ks

+
φ
Kf

+
α2

Km + 4
3µm

, (5)

where

α = 1− Km

Ks
(6)

(Gutierrez et al, 2002; Carcione and Gei, 2009), where Ks is the bulk modulus of the

grains, Kf = 1/Cf is the fluid bulk modulus, Km is the dry-rock bulk modulus and

µm is the dry-rock shear modulus.

Permeability varies with pressure mainly because cracks re-open when the pore

pressure exceeds a given threshold. There are several expressions for the pressure de-

pendence ranging from exponential laws (e.g., Louis, 1974; Pedrosa, 1986; Palmer and

Mansoori, 1998) to power laws (Gangi, 1978, 1981).
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2.1 Solution for radial horizontal flow

We consider a horizontal plane and invariant properties along the vertical z-direction

i.e. the problem becomes two-dimensional. Moreover, we assume an unbounded anisotropic

medium regarding transport properties (permeability), i.e. κ1 ̸= κ2. Combining equa-

tions (1) and (3) and eliminating vi, we obtain

ṗ =
1

φρηC
∂i(ρκi∂ip), i = 1, 2, (7)

where we have assumed constant viscosity and compressibility (Wu and Pruess, 2000).

Next, we assume pressure-dependent permeability components of the form

κi(p) = κ̄if(p), f(p) = exp[(p− pi)/p1], (8)

where pi is the initial pressure and p1 is a reference pressure; p1 → ∞ yields the

constant diffusivity case. The quantities κ̄i are pressure independent. This exponential

relation holds for many rocks (Hummel, 2013).

Let us now perform the following change of coordinates

x1 = x′1

√
κ̄1
κ̄
, x2 = x′2

√
κ̄2
κ̄
, κ̄ =

√
κ̄1κ̄2. (9)

Equation (7) becomes

ṗ =
1

φρηC
∂i(ρκ̄f(p)∂ip), (10)

where we have omitted the primes for simplicity. In this new system of coordinates, we

may treat the problem as isotropic and use the solution obtained by Wu and Pruess

(2000). This is a mathematical simplification but the physics remains anisotropic.

We now assume that the fluid is injected at a point-like location and consider

cylindrical radial coordinates r′. In this case, equation (10) becomes

1
r
∂r

[
ρ(p)

κ̄
η
f(p)r∂rp

]
= C(p)ρ(p)φ(p)ṗ. (11)
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8

Note that any solution of the pressure equation in the physical domain should consider

that

r′ =

√
κ̄
κ̄1

x21 +
κ̄
κ̄2

x22. (12)

The solution of equation (11) subject to a constant injection flux Q at r0 is given in

Appendix A (equation (42)).

2.2 Solution in spherical coordinates

Here, we assume an unbounded transversely isotropic and homogeneous medium, i.e.

κ1 = κ2 ̸= κ3. From equation (1), eliminating vi, we obtain

ṗ = ∆ap, (13)

where

∆a = D1(∂
2
1 + ∂22) +D3∂

2
3 (14)

is a modified Laplacian differential operator and

Di =
Nκi
η

, N ≡ 1
φC

(15)

are the diffusivity components.

Let us perform the following change of coordinates

x′i = xi

√
D0

Di
, D0 = (D2

1D3)
1/3 (16)

where the primes denote the coordinates in the transformed coordinate system (Shapiro

et al., 1999; Carcione and Gei, 2009), which transforms ∆a into a pure Laplacian

differential operator ∆′. Using (16), equation (13) becomes

ṗ = D0∆
′p (17)
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where

∆′ = ∂21′ + ∂22′ + ∂23′ . (18)

In this new system of coordinates, we may treat the problem as isotropic. This is a

mathematical simplification but the physics remains anisotropic. Any solution of the

pressure equation in the physical domain should consider that

r′ =

√
D0

D1
(x21 + x22) +

D0

D3
x23. (19)

We now assume that the fluid is injected at a point-like location and consider

spherical radial coordinates r′. In this case, equation (17) becomes

ṗ =
1

r2
∂r

(
D0r

2∂rp
)
, (20)

where we have omitted the primes for simplicity.

Next, we generalise (20) to a non-linear pressure equation in the sense that the

permeability depends on the pressure field, meaning that also the diffusivity varies

with pressure. Such a non-linear pressure equation can be expressed as

ṗ =
1

r2
∂r

[
D(p)r2∂rp

]
. (21)

In summary, we are assuming that the non-linear behavior is exactly the same along

various principal directions of the diffusivity tensor. This model was first proposed and

its applicability demonstrated for a Barnett Shale case study by Hummel and Shapiro

(2013) (see also Section 4.3 of Shapiro, 2015).

The following diffusivity-pressure relation is given in Louis (1974) and Pedrosa

(1986),

D(p) = D0 exp[(p− pi)/p1] (22)

(see equation (8)). Usually, observed data shows an exponential dependence of perme-

ability on effective pressure. This dependence holds for sandstones (David et al., 1994)
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and even shales (Best and Katsube, 1995). Recently, Shi and Durucan (2016) have

shown that the exponential and nearly-exponential dependences closely describe the

behaviour of permeability in many rocks. There is a detailed discussion of permeability

laws in Shapiro (2015) (Section 2.9, pp 114-116).

The flow is represented by a step function of magnitude p0 at a given radius r0

away from borehole. Then, the following boundary conditions hold, i.e.

p(r0, t) = p0, p(r, 0) = pi, p(r → ∞, t) = pi. (23)

This is equivalent to an injection pressure source. The solution of equation (21) subject

to the non-linear diffusivity (22) and boundary condition (23) is given in Appendix B,

equation (54). It is also given a solution for the injection flux rate at r0 (equation (60)).

On the basis of the pressure-dependence (22), the diffusivity components in the

principal system are given by

D1 exp[(p− pi)/p1] and D3 exp[(p− pi)/p1]. (24)

On the other hand, Gangi and Carlson (1996) have shown that another suitable

power law is

D(p) = D0

(
p− pi
p1

)n

, (25)

where n is a non-linear exponent. D becomes the classical diffusivity D0 for n = 0.

Hummel and Shapiro (2012) use basically this model, where the factor pn1 has been

combined with the diffusivity D0 into a single parameter that can be computed by

fitting real data. The power law is predicted by the asperity model introduced by

Gangi (1978) (Carcione, 2014, Section 7.4). However, Shi and Durucan (2016) show that

Gangi’s power law equations for both intact and fractured rock can be approximated,

over the range of effective stresses of practical interest (10-50 MPa), by exponential
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equations. The characteristics of the diffusion field and the triggering front are analysed

in Appendix C.

3 The failure criteria for tensile and shear seismic sources

Induced seismicity by failure due to fluid injection in a porous rock depends on the

properties of the medium and the in-situ stress conditions. Fluid injection creates both

tensile and shear failures. By convention, stress and pressure have the same sign in the

following. Let us define the three principal effective stress components as

σi = si − p, (26)

where si denote the total stress components. For instance, the confining (vertical)

pressure is s3 and the two horizontal in-situ stresses are s1 and s2. Tensile failure

depends on the critical tensile pressure PT and occurs when

min(σi)− PT ≤ 0. (27)

On the other hand, shear failure can be modelled by the octahedral-stress (Drucker-

Prager) criterion (e.g., Lal, 1999; Colmenares and Zoback, 2002). Defining the effective

mean and octahedral stresses as

σ̄ =
1
3
(σ1 + σ2 + σ3) and τ =

1
3

√
(σ1 − σ2)2 + (σ1 − σ3)2 + (σ2 − σ3)2 (28)

respectively, the shear failure criterion is

τ −
√
8

3− sin θ
(σ̄ sin θ + c cos θ) ≥ 0 (29)

(Lal, 1999), where

tan θ ≡ µ (30)
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is the internal friction coefficient and c is the cohesive strength. The parameters θ and

c can be measured by triaxial tests at different hydrostatic confining stresses under the

application of an axial load until failure. More realistic is the determination of these

parameters from well logs, as for instance sonic logs, since compaction is the key factor.

Lal (1999) proposes

sin θ =
vP − 1
vP + 1

and c =
5(vP − 1)

√
vP

= 10 tan θ, (31)

where vP is the P-wave velocity given in km/s and c is given in MPa.

The Drucker-Prager criterion represents a smoothed version of the Mohr-Coulomb

frictional failure criterion. Lal (1999) discusses the determination of the parameters

and concludes that it is desirable to obtain them from wire-line data. In fact, his Fig. 3

plots the velocity based strength estimates, computed from both laboratory measured

and sonic log-derived velocities (reported for different core depths in the North Sea),

along with the measured strength data. Both dynamic estimates are fairly good, which

demonstrates that this correlation is applicable with sonic log derived velocities. The

sonic correlation is also found to be fairly satisfactory for formations other than shale.

Shear failure occurs under certain in-situ conditions, where shear stress can develop

to induce it. If the state of stress is isotropic, i.e. if σ1 = σ2 = σ3, failure does not occur

since the octahedral stress is zero for any value of the pore pressure. Let us assume

isotropic stress on a horizontal plane, i.e, s1 = s2 = γs3, with γ ≤ 1, meaning that the

horizontal stresses are usually smaller than the vertical (lithostatic) stress (Engelder,

1993). Then, the tensile criterion (27) is

σ1 − PT = γs3 − p− PT ≤ 0. (32)
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Consider now the shear failure. Let us define

A =

√
8 sin θ

3− sin θ
, B =

√
8c cos θ

3− sin θ
= 10A,

where we have used equation (31). Condition (29) becomes

s3[
√
2(1− γ)− A(2γ + 1)] + 9Ap− 30A ≥ 0. (33)

There is a failure pressure p = PS , such that the equal sign holds in equation (33):

PS =
10
3

− s3
9A

[
√
2(1− γ)− A(2γ + 1)], (34)

in MPa. Octahedral stress criteria has been used in Carcione et al. (2006) and Carcione

and Poletto (2013) to describe salt viscoelasticity and the brittle-ductile transition,

respectively.

Here, we assume that PS < PT < p0, so that the injection pressure is high enough

to generate seismic emission. This may not occur always, since we assume a fractal

behaviour of the thresholds PS and PT around an average value. Then, we apply the

procedure described in Appendix D. The approach is similar to that of Rothert and

Shapiro (2003), where these authors consider a single threshold.

4 Results

Finite-element numerical solutions are obtained by solving the equation of mass con-

servation and Darcy’s law using the commercial software Comsol Multiphysics (Com-

sol, 2014). Exploiting the symmetry of the domain, the model is designed in an axis-

symmetric formulation using a quarter of a circular ring with an internal radius of r0

= 0.5 m and an external radius of 2000 m. The domain is discretized in the radial

direction by a set of logarithmically spaced nodes with a resolution of 0.2 m near the

internal radius and increasing to 70 m at the external boundary. This discretization
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leads to about 21800 iso-parametric and arbitrarily distorted triangular elements con-

nected by 44155 nodes. The choice of second-order shape functions assures a good

numerical accuracy.

First, we compare the radial-flow analytical solution for a constant mass injection

at the wall of the borehole (see Appendix A) to the numerical results. A constant

pressure pi of 10 MPa is applied at the external boundary, after having verified that the

boundary is far enough to not affect the numerical solution. The hydraulic diffusivity is

represented by an anisotropic diagonal tensor, whose elements are pressure-dependent,

following equation (22). The model is highly non linear due to the permeability-pressure

exponential law. We consider the properties given in Table 1, with p1 = 5.5 MPa. Wu

and Pruess (2000) developed two solutions, namely their set of eqs. (25,30) and eqs.

(28,31) (Appendix A), which provide different accuracy. Their performance can be seen

in Figure 1, which shows the comparison for sandstone and shale at different injection

times corresponding to the x- and y-directions, as indicated in the caption. As can

be seen, the analytical solution is not suitable to describe pressure diffusion in shales.

In contrast, increasing the permeability to values realistic for sandstones, i.e. κ1 =

0. 2 darcy and κ2 = 0.4 darcy, the match improves. From this we conclude that Wu

and Pruess’s solution is only applicable for high permeability cases. However, in this

particular case, the pressure build-up is very small due to the fast fluid diffusion. The

best fit for the exponential case is obtained with the set of eqs. (28, 31) of Wu and

Pruess (2000).

To verify how the analytical solutions are affected by the permeability, we cal-

culated the misfit between the analytical and the numerical solutions for increasing

permeability values by measuring the normalized root mean square error (RMSE),

Page 14 of 41AUTHOR SUBMITTED MANUSCRIPT - JGE-101521.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



15

defined as:

RMSE =

√∑
k(p

an
k − pnumk )2∑
k(p

an
k )2

. (35)

The RMSE is computed for different κ1 (from 0.2 darcy to 2 µdarcy) and κ2 (from 0.4

darcy to 4 µdarcy) (see Figure 2). The misfit significantly increases with decreasing

permeability.

Subsequently, we consider the solution in spherical coordinates, corresponding to a

constant pressure injection:

p̂ = −p̂1 ln

[
1− [1− exp(−1/p̂1)]

r̂
erfc

(
r̂ − 1

2
√
t̂

)]
(36)

(equation (55) in Appendix B). The pressure and permeability profiles as a function

of the spherical radial distance from the well are shown in Figure 3 (in this case

p1 = 1.5 MPa). Due to the functional dependence with pressure (see equations (24)

and (36)), the logarithm of the permeability follows qualitatively the pressure curve.

As can be seen, variations in pore pressure of less than 1 MPa induce variations in

permeability of one order of magnitude. The pressure evolution along the x-direction

as a function of the distance from the well is displayed in Figure 4, while Figure 5

shows the pressure field at 48 h for (a) p1 = 3 MPa and (b) p1 = 1.5 MPa. The solid

and dashed lines refer to the analytical solutions and the symbols correspond to the

numerical solution obtained with Comsol. It is shown that Yeung et al.’s approximation

cannot be used when there is a strong non-linearity as it is the case in (b). We have

performed additional simulations to show how the non-linearity affects the accuracy

of the analytical solutions. Comparing the analytical and numerical solutions in the

isotropic case (κ1 = κ3 = 2 µdarcy), it is clear that the misfit among the solutions

increases as the non-linearity becomes higher (see Figure 6). The RMSE is computed

for different p1 values from 1.5 to 5.5 MPa with a step of 0.5 MPa. It is worth noting
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that the misfit significantly increases with decreasing p1. This is a consequence of

failure to comply the condition exp[(p− pi)/p1] ≈ 1, for which the analytical solutions

is accurate.

Let us now obtain the threshold values for the generation of tensile and shear events

in order to generate seismic waves. With the properties given in Table 1 (p1 = 5.5 MPa),

and assuming ρs = 2650 kg/m3, ρf = 1000 kg/m3, we obtain vP = 2.9 km/s from

Gassmann equation (KG = Km+α2M , α = 1−Km/Ks and vP =
√

(KG + 4µm/3)/ρ,

where ρ = (1− φ)ρs + φρf ). In the following, we assume p0 = 20 MPa, PT = 15 MPa

(e.g., Wu, 2006), γ = 0.9, vP = 2.9 km/s and s3 = 38 MPa. We obtain µ = 0.56, θ

= 29o, A = 0.55, B = 5.48 MPa and c = 5.57 MPa. According to equation (33), the

equal sign is obtained for p = PS = 14 MPa. For pore pressures above this value, shear

failure occurs.

Figure 7 shows a vertical section of the fractal distribution of PT , where the medium

has 165 × 165 cells with a grid spacing of 40 m/165 = 0.24 m along the horizontal

and vertical directions. The fractal parameters are P0 = PT (P0 = PS in the shear

case), with ∆Pm = 60 % P0, ν = 0.18, l = 0.2 m and d = 3. If PT or PS are smaller

than or equal to 10.1 MPa (slightly above pi), we set their value to 10.1 MPa, since

at hydrostatic values of the pore pressure we assume no seismic emission. In order to

obtain the seismic emission cloud, we have to compute the pressure field around the

well. This field and the threshold values computed above determine the emission points

as stated in the previous section. The pressure field for p1 = 1.5 MPa obtained with

the Comsol software is represented in Figure 8 in 3D, where the anisotropic character

of the diffusion becomes clear. The field diffuses faster into the formation along the

x-direction, since the permeability is higher than that of the vertical z-direction.
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Figure 9 shows the tensile (a) and shear (b) emission sources after 48 h of injection,

where the number of induced events is 2255 and 3081, respectively, (based on equation

(48)), the scaled radius r′0 at the borehole radius r0 for a given event location (x, z) is

given by r′0 = r0
√

(D0/D1) cos2 α+ (D0/D3) sin
2 α, where α = tan(z/x). The outer

front in Figure 9 is a fit with equation (64),

|r′ − r′0|√
D0

≈

√
x21 + x22

D1
+

x23
D3

=
√

2tξ =
√
6t, (37)

assumingD1 = 2.1 × 10−4 m2/s andD3 = 5.2 × 10−5 m2/s (8 times the actual values),

while the inner front (solid line) corresponds to the actual values of the (initial, at

p = pi) diffusivity components, i.e.D1 = 2.6 × 10−5 m2/s andD3 = 6.6 × 10−6 m2/s (ξ

is the space dimension). This discrepancy is expected since equation (37) is the diffusion

front based on pressure-independent diffusivity components. Laboratory experiments

on rock samples and hydraulic fracturing analysis show that shear failure precedes the

occurrence of tensile failure (Amadei and Stephansson, 1997). Consequently, we have

assumed PS < PT , even though close. This justifies why the shear and tensile failure

front are similar, even if on average the shear front is slightly advanced with respect

to the tensile front.

The event cloud can be re-scaled (Hummel and Shapiro, 2013). The scaling ap-

proach transforms a cloud of seismic events from one medium corresponding to an ef-

fective hydraulically homogeneous anisotropic non-linear one into a microseismic cloud

corresponding to an equivalent hydraulically homogeneous isotropic medium. This pro-

cedure applied to real data allows the identification of the degree of non-linearity on

the basis of the behaviour of the triggering front (Shapiro et al., 1999). The re-scaled

coordinates are given by xi =
√

D0/D1x
′

i according to equation (16) and the envelope
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(64) becomes the circle

x21 + x23 = 6D0t, (38)

where D0 = 1.32 × 10−4 m2/s is used to obtain a good fit. Note that the actual D0

= 1.65 × 10−5 m2/s, i.e. 8 times lower, and that equation (38) is strictly valid for a

linear diffusion equation (pressure-independent permeability). The results for the shear

events at 24 h and 48 h are shown in Figure 10.

Next, we use the r-t plot of induced events to obtain the envelope or triggering

front in a more accurate way than the preceding 2D fronts. We consider the shear

events at 5 h and 48 h diffusion times (in order to verify the trend of the front) and

use equation (67),

r = (at)b, (39)

to compute the envelopes. The results are shown in Figure 11, where the solid and

dashed lines correspond to cubic and square root behaviours, i.e. b = 1/3 and b =

1/2, with a = 0.01 m3/s and a = 0.0018 m2/s, respectively (a) and a = 0.013 m3/s

and a = 0.001 m2/s, respectively (b). As can be seen, the cubic root triggering front

provides a better fit, as it is the case of Barnett Shale (Hummel, 2013). Hummel and

Shapiro (2013) found that the permeability follows a pressure-dependence in Barnett

Shale described by a pn power law, with n larger than 7, and a t1/3 envelope after 5

h of injection (see their Fig 1 and compare it to our Figure 11a). However, a better

fit at 24 h emission time is obtained with a triggering front of the form (at)b, where a

= 0.008 m1/0.355/s and b = 0.355 as can be seen in Figure 12, where the events with

a maximum time of 24 h are shown. It can be shown that using equation (36) with

p1 = 1.5 MPa, the triggering front follows a square root time dependence, indicating

the importance of using accurate pressure solution for estimating the front evolution.
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Although we obtain almost a similar exponent as Hummel and Shapiro (2013) (0.355

against 0.357), we have used an exponential function while the authors consider a p7

dependence.

Hummel and Shapiro (2012) show for an exponential dependence of permeability

versus pressure, a square root of time triggering front is obtained. This seems to be

the case for relatively high-permeability rocks, such as sandstones. Here, we found that

we pass from a square-root behavior for sandstones to an almost cubic-root behavior

for shales. In addition, we performed tests with a uniform random distribution in the

range [10,20] MPa for the critical pressures and an exponential dependence for the

permeability. From these tests, we obtained exponents b decreasing from 0.5 (for sand-

stones) to 0.4 (for shales), i.e., it depends on the permeability and also on the degree

of non-linearity p1. Clearly, depending on the level of non-linearity and permeability,

the nature of the triggering front changes. Considering an exponential dependence of

permeability on pressure as well as a point injection source, the triggering front is char-

acterized by the square root of time behavior (Hummel and Shapiro, 2012). Once the

point injection source changes into a source of finite extent, this nature changes from

a square-root into a cubic-root of time dependence. However, this change depends on

the permeability as well as on the non-linearity. This is an issue to test in future pub-

lications, i.e, the influence of the extent of a finite source on the change of the nature

of the triggering front, In summary, if the injection source is a point (or the event is

far away from a finite injection cavity), the exponential diffusion should in principle

produce a square root, subject to the previous conditions. The finite-source effect may

lead to an apparent cubic-root behaviour.

It is shown that the triggering front induced by fluid injection contains information

about the permeability dependence on pore pressure and the anisotropic properties of
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the hydraulic diffusivity. These features can univocally be resolved as a function of the

injection time and distance from the borehole, as shown by the modeling results. The

comparison of synthetic and real data (see Fig. 5 in Hummel and Shapiro, 2013) shows

differences in the event distributions. While the synthetic seismicity distribution shows

a very sharp triggering front, the real data is characterized by a diffuse boundary.

This is explained by the heterogeneity of the real medium, while here we are assuming

an equivalent homogenous medium. Moreover, in the modeling, we consider a radially

symmetric medium. Therefore, possible radial heterogeneity around the borehole may

affect the distribution of events and the triggering front. In spite of these differences in

the event distributions, we observe some general agreements as in the case of Barnett

Shale.

An important issue is the interaction of the induced fractures with natural fracture

systems/networks in hydraulic-fracturing processes. The planar nature of the induced

fractures may become three-dimensional, since the orientation of the (re-)activated

fractures is generally perpendicular to the main hydraulic fracture orientation. The

presence of these re-activated natural fractures explains the anisotropic 3D character

of the triggering front. Together, natural and induced fractures form a complex fracture

network whose interaction may affect the event cloud (Gale et al., 2007).

Another aspect of hydraulic fracturing considers the type fluid being injected. Hy-

draulic fracturing treatments across the various unconventional shale plays around the

globe are seldom carried out considering pure brine as a treatment fluid. More than

often, additives (proppants) are used for numerous purposes and reasons and special

care needs to be applied when handling such treatment fluids. This issue is in some

way a “limitation” of the modeling conducted in this work.Generally, the pressure

decreases after the injection and the increasing effective normal stress stabilizes the
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rock, closing the induced cracks and fractures. This can be prevented by the use of

proppants, leading to a post-injection enhanced hydraulic permeability. To model this

situation, Hummel and Shapiro (2016) and Johann et al. (2016) introduced the con-

cept of “frozen diffusivity” and implemented numerical models considering a different

behaviour of the hydraulic diffusivity after the injection stop, since the microseismic

activity continues after the termination of the injection. Non-linearity is also reflected

in the post-injection regime. However, this, goes beyond the scope of this paper and

requires further analysis/investigation.

The amplitude of a microseismic event is proportional to its seismic mo-

ment. The size of the event cloud can be related to the seismic moment

as M0 = µmSd, where S is the fracture area and d is the displacement.

Magnitudes (or rupture scale) can be included statistically to a given trig-

gered hypocenter. Shapiro et al (2011) approximated a stimulated volume

by an ellipsoid and compared the statistics of induced events with that

of randomly distributed thin flat disks modeling rupture surfaces. They

quantified the impact of the geometry of that volume on the Gutenberg-

Richter-type frequency-magnitude distribution, showing that monitoring

the spatial growth of seismicity in real time can help to constrain the risk

of inducing damaging earthquakes. In another paper Shapiro et al (2013)

have derived lower and upper bounds of the probability to induce a given-

magnitude event. The bounds depend on the minimum principal axis of

the stimulated volume. The observed frequency-magnitude curves seem to

follow mainly the lower bound, with exceptions of some large-magnitude

events clearly deviating from this statistic. However, regarding magnitudes,

it would be an important step towards further understanding of induced
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event physics. Yet, determination of magnitudes is beyond the scope of the

work presented here and should be considered as an issue for future works.

5 Conclusions

Shale gas extraction requires that a treatment fluid is injected at high flow rates to

enhance permeable flow paths around the borehole. This process, which increases the

medium permeability, is described by a non-linear diffusion equation, i.e. the perme-

ability and the hydraulic diffusivity depend on pressure. We have solved this equa-

tion and establish fracture criteria to model the emission of tensile and shear events

caused by the injection. Snapshots and r-t plots are particularly useful to characterise

the fracturing and obtain information of the medium properties. The model considers

anisotropic permeability and the results are spatially re-scaled to obtain an effective

isotropic medium.

We considered two typical cases of fluid injection. First, Wu and Pruess’s solution

for a constant mass flow in cylindrical coordinates and second Yeung et al.’s solution

for a constant injection pressure in spherical coordinates, generalising both approaches

to the anisotropic case. The first solution only hold for high permeabilities and the

second solution can be used for shales but for moderate pressure dependence of the

permeability.

For a 3D fluid diffusion in spherical coordinates and a strong exponential pressure

dependence, we have used numerical solutions provided by the Comsol software. The r-

t curves in the re-scaled domain reveal a t1/3 signature (as already observed in Barnett

Shale). Use of the classical front (permeability pressure-independent,
√
t signature) to

fit cloud events spatially, provides good results but with a re-scaled value of the (initial)
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permeability components. Modeling is required to evaluate the scaling constant, which

in the example presented here is close to eight for all diffusion times.

In summary, the location of the events in depth can then be used to obtain the

diffusivity and the permeability if the stiffness of the formation is known, for instance,

from seismic or sonic data. Moreover, the event cloud yields the anisotropy of the

medium and its evolution during the injection. Modeling is required to quantify the

extension of the cloud along the three spatial dimensions. In the example we have

considered an exponential pressure dependence of permeability but the approach can

be applied to other functions such as power laws.

Page 23 of 41 AUTHOR SUBMITTED MANUSCRIPT - JGE-101521.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



24

References

1. Amadei, B. and Stephansson O.,1997, Rock stress and its measurement, Chapman &
Hall, London.

2. Best, M. E. and Katsube, T. J., 1995, Shale permeability and its significance in hydro-
carbon exploration: The Leading Edge, 14, 165-170.

3. Carcione, J. M., 2014, Wave Fields in Real Media. Theory and numerical simulation
of wave propagation in anisotropic, anelastic, porous and electromagnetic media, 3rd
edition, Elsevier.

4. Carcione, J. M., Da Col, F., Currenti, G., and Cantucci, B., 2015, Modeling techniques to
study CO2-injection induced micro-seismicity: International Journal of Greenhouse Gas
Control, 42, 246-257.

5. Carcione, J. M., and Gei, D., 2009, Theory and numerical simulation of fluid-pressure
diffusion in anisotropic porous media: Geophysics, 74, N31-N39.

6. Carcione, J. M., Helle, H. B., and Gangi, A. F., 2006, Theory of borehole stability when
drilling through salt formations: Geophysics, 71, F31-F47.

7. Carcione, J. M., and Poletto, F., 2013, Seismic rheological model and reflection coefficients
of the brittle-ductile transition: Pure and Applied Geophysics, DOI 10.1007/s00024-013-
0643-4.

8. Carslaw, H. S., and Jaeger, J. C., 1959. Conduction of heat in solids, Clarendon Press.
9. Colmenares, L. B., and Zoback, M. D., 2002, A statistical evaluation of intact rock failure

criteria constrained by polyaxial test data for five different rocks: Int. J. Rock Mech. Min.,
39, 695-729.

10. Comsol Multiphysics, 2014, Reference Manual 5.0, Comsol Ab, 1262 pp, Stockholm, Swe-
den.

11. David, C., Wong, T.-F., Zhu, W., and Zhang, J., 1994, Laboratory measurement of
compaction-induced permeability change in porous rocks: Implications for the genera-
tion and maintenance of pore pressure excess in the crust: Pure and Applied Geophysics,
143, 425-456.

12. Engelder T., 1993, Stress regimes in the lithosphere, Princeton University Press.
13. Gale, J. F. W., Reed, R. M., and Holder, J., 2007, Natural fractures in the Barnett Shale

and their importance for hydraulic fracture treatments: AAPG Bulletin, 91, 603-622, doi:
10.1306/11010606061.

14. Gangi, A.F., 1978, Variation of whole and fractured porous rock permeability with con-
fining pressure: International Journal of Rock Mechanics and Mining Sciences and Ge-
omechanics Abstracts, 15, 249-257.

15. Gangi, A.F., 1981, The variation of mechanical and transport properties of cracked rock
with pressure: Proceedings of U.S. Symposium on Rock Mechanics, 22, 85-89.

16. Gangi, A. F., and Carlson, R. L., 1996, An asperity-deformation model for effective
pressure: Tectonophysics, 256, 241-251.

17. Gutierrez, M. S., and Lewis, R. W., 2002, Coupling of Fluid Flow and Deformation in
Underground Formations: Journal of Engineering Mechanics, July Issue, 779-787.

18. Hummel, N., 2013, Pressure-dependent hydraulic transport as a model for fluid induced
earthquakes, PhD thesis, Freie Universität Berlin.

19. Hummel, N., and Müller, T. M., 2009, Microseismic signatures of non-linear pore-fluid
pressure diffusion: Geophysical Journal International, 179, 1558-1565.

20. Hummel, N., and Shapiro, S. A., 2012, Microseismic estimates of hydraulic diffusivity in
case of non-linear fluid-rock interaction: Geophysical Journal International, 188, 1441-
1453.

21. Hummel, N., and Shapiro, S. A., 2013, Nonlinear diffusion-based interpretation of induced
microseismicity: A Barnett Shale hydraulic fracturing case study: Geophysics, 78, B211-
B226.

22. Hummel, N., and Shapiro, S. A., 2016, Back front of seismicity induced by non-linear
pore pressure diffusion: Geophysical Prospecting, 64, 170-191.

23. Johann, L., Dinske, C., and Shapiro, S. A., 2016, Scaling of seismicity induced by nonlin-
ear fluid-rock interaction after an injection stop, Journal of Geophysical Research Solid
Earth, 121, doi:10.1002/2016JB012949.

24. Kikani, J., and Pedrosa, O. A. Jr., 1991, Perturbation analysis of stress-sensitive reser-
voirs: SPE Form. Eval., 6, 379-386.

25. Lal, M., 1999, Shale stability: Drilling fluid interaction and shale strength: SPE 54356.

Page 24 of 41AUTHOR SUBMITTED MANUSCRIPT - JGE-101521.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



25

26. Langenbruch, C., and Shapiro, S. A., 2015, Quantitative analysis of rock stress het-
erogeneity: Implications for the seismogenesis of fluid-injection-induced seismicity, Geo-
physics, 80, WC73-WC88.

27. Langenbruch, C., and S.A. Shapiro, S. A., 2014, Gutenberg-Richter relation originates
from Coulomb stress fluctuations caused by elastic rock heterogeneity: Journal of Geo-
physical Research Solid Earth, 119, 1220-1234.

28. Louis, C., 1974, Rock hydraulics, in Rock Mechanics, edited by L. Müller, pp. 300-387,
Springer Verlag, New York.

29. Palmer, I. D, and Mansoori, J., 1998, How permeability depends upon stress and pore
pressure in coalbeds: A new model: SPE Reservoir Evaluation & Engineering, December
Issue, 539-543.

30. Pedrosa, O. A. Jr., 1986, Pressure transient response in stress-sensitive formations, SPE
California Regional Meeting, Soc. Pet. Eng., Oakland, April 2-4.

31. Rothert, E. and Shapiro, S.A., 2003, Microseismic monitoring of borehole fluid injections:
data modelling and inversion for hydraulic properties of rocks: Geophysics, 68, 685-689.

32. Rothert, E., and Shapiro, S. A., 2007, Statistics of fracture strength and fluid- induced mi-
croseismicity: Journal of Geophysical Research, 112, B04309, doi: 10.1029/2005JB003959.

33. Rutqvist, J., Rinaldi, A. P., Cappa, F., and Moridis, G. J., 2015, Modeling of fault
activation and seismicity by injection directly into a fault zone associated with hydraulic
fracturing of shale-gas reservoirs: Journal of Petroleum Science and Engineering, 127,
377-386.

34. Shapiro, S. A., 2015, Fluid-induced seismicity, Cambridge University Press.
35. Shapiro, S. A., Audigane, P., and Royer, J. J., 1999, Large-scale in situ permeability

tensor of rocks from induced microseismicity: Geophysical Journal International, 137,
207-213.

36. Shapiro, S. A., and Dinske, C., 2009, Scaling of seismicity induced by nonlinear fluid-rock
interaction: Journal of Geophysical Research, 114, doi: 10.1029/2008JB006145.
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Table 1. Medium properties, dimensions and conditions.

φ 0.14 Q 0.1 kg/s
Ks 40 GPa h 100 m
Km 20 GPa r0 0.5 m
µm 15 GPa p0 20 MPa
κ1 2 µdarcy pi 10 MPa
κ2 4 µdarcy tmax 48 h
κ3 0.5 µdarcy
Kf 2.3 GPa
η 0.001 Pa s
ρi 1000 kg/m3

Hummel (2013); Hummel and Shapiro (2013).

A : Solution of the pressure equation in cylindrical coordinates and
constant mass injection

The solution presented here is an integral solution for a 1D radial flow and considers the
fluid injection in an infinite horizontal reservoir of constant thickness, and the formation is
saturated with a single fluid. The solution, which can be found in Wu and Pruess (2000)
has been originally tested against the numerical code MULKOM-GWF. These authors claim
that the solutions provide a good approximate solution to a general non-linear governing flow
equation with arbitrary constitutive correlations of permeability, porosity and fluid density as
functions of pore pressure.

We solve equation (11) subject to the initial condition

p(r, 0) = pi (40)

and boundary condition

−
2πr0h

η
[ρ(p)κ(p)∂rp]r=r0

= Q, (41)

where κ = κ̄f(p), Q is the mass injection rate, r0 is the borehole radius and h is the thickness
of the formation. We recall here that r is actually r′ as given in equation (12) because we have
omitted the primes for simplicity.

We consider the case when the compressibility is small and pressure independent and the
fluid density is a linear function of pressure (Wu and Pruess, 2000). In this case the solution is

p(r, t) = pi −
ηQ

2πhρ(p0)κ(p0)

(
1 +

1

2β

)
ln

[
2(r/r0)

1 + β
−
(

r/r0
1 + β

)2
]
, r0 ≤ r ≤ r0 + d(t),

p(r, t) = pi, r > r0 + d(t)
(42)

where p0(t) and d(t) are the borehole pressure and penetration distance, respectively, with
β = d/r0 (Wu and Pruess, 2000; eq. (28)).

An additional equation can be obtained from the mass balance equation,

t+
r20ρiφCη

ρ(p0)κ(p0)

(
1 + 2β

2β

)[
−β

(
2 +

3

2
β
)
+ 2(1 + β)2 ln(1 + β)

−
1

2
[1− 4(1 + β)2] ln

[
1 + 2β

(1 + β)2

]]
= 0

(43)

(Wu and Pruess, 2000; eq (31)). The solution p is obtained by solving simultaneously equations
(42) and (43) at r = r0 for p0(t) and β(t) and then substituting these values into (42). Another
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solution developed by Wu and Pruess (2000) (not reported here) is given by their set set of
eqs. (25,30), which provides less accuracy as shown in the Results section.

The assumed constitutive equations are

ρ(p) = ρi + υ(p − pi),

κ(p) = κ̄f(p),
(44)

where ρi and υ are constants (υ = 0 in this work). Porosity and density are assumed to be
constant, since its variations can be neglected. Permeability changes are mainly due to opening
of cracks, i.e. compliant porosity is negligible.

The exact solution of equation (11) when there is no pressure dependence is

p(r, t) = pi +
Qη

4πρκ̄h
E1

(
φηCr′2

4κ̄t

)
(45)

(Wu and Pruess, 2000; eq. (38)), where E1(x) = −Ei(−x) is an exponential integral, κ̄ is given
in equation (9) and r′ in equation (12).

B : Solution of the pressure equation in spherical coordinates and
constant pressure injection

The equations obtained in this appendix are based on Yeung et al. (1993)’s approximate
solutions to the diffusive problem with pressure-dependent permeability, assuming a constant-
pressure injection regime in an infinitely large porous medium.

Substituting equation (22) into the pressure equation (21) we obtain

1

p1
(∂rp)

2 +
2

r
∂rp + ∂2

rrp =
1

D0
ṗ exp[−(p− pi)/p1]. (46)

Let us define the dimensionless variables

p̂ =
pi − p

pi − p0
, t̂ =

D0t

r′0
2
, r̂ =

r

r′0
, p̂1 =

p1
pi − p0

, (47)

where

r′0 =

√
D0

D1
(x2

0 + y20) +
D0

D3
z20 , (48)

where (x0, y0, z0) correspond to the radial distance r0, and here, for clarity, we have used the
notation (x1, x2, x3) = (x, y, z). Then, equation (46) becomes

−
1

p̂1

(
∂p̂

∂r̂

)2

+
2

r̂

∂p̂

∂r̂
+

∂2p̂

∂r̂2
=

∂p̂

∂ t̂
exp[p̂/p̂1]. (49)

Let us define the transformed variable

q = p̂1[1− exp(−p̂/p̂1)], (50)

such that

p̂ = −p̂1 ln
(
1−

q

p̂1

)
. (51)

Equation (49) reduces to
2

r̂

∂q

∂r̂
+

∂2q

∂r̂2
=
(
1−

q

p̂1

)
−1 ∂q

∂ t̂
. (52)

In the limit p̂1 → ∞, we have q = p̂ and we obtain the classical diffusion equation.
Pedrosa (1986) and Kikani and Pedrosa (1991) obtained an approximate solution of the

spherical flow problem and Yeung et al. (1993) use this approximation to solve equation (52)
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by expanding q in terms of p̂1. They show that for a given range of values of this parameter,
the following zero-order term solution is accurate enough:

2

r̂

∂q0
∂r̂

+
∂2q0
∂r̂2

=
∂q0

∂ t̂
(53)

(Yeung et al., 1993; eq. (20)). We can verify that this equation is a consequence of the approx-
imation q/p̂1 ≪ 1 in equation (52). According to (50) this means 1 − [1 − exp(−p̂/p̂1)] ≈ 1
or 1 − [1 − exp[(p − pi)/p1)] ≈ 1. Thus, the solution is accurate for values of r satisfying this
condition.

Equation (53) is similar to the constant diffusivity equation. The solution is

q0 =
p̂1
r̂
[1− exp(−1/p̂1)]erfc

(
r̂ − 1

2
√
t̂

)
(54)

(Carslaw and Jaeger, 1959) and, consequently,

p̂ = −p̂1 ln
[
1−

[1− exp(−1/p̂1)]

r̂
erfc

(
r̂ − 1

2
√
t̂

)]
, (55)

where erfc is the complementary error function. If the diffusivity is constant (p̂1 → ∞), we
obtain the classical solution

p̂ =
1

r̂
erfc

(
r̂ − 1

2
√
t̂

)
. (56)

Let us obtain now the volumetric injection rate at r0 corresponding to the constant pressure
injection. The definition is

Q = −4πr20
κ1

η

∂p

∂r

∣∣∣
r=r0

= −4πr20
D1

N
exp[(p − pi)/p1]

∂p

∂r

∣∣∣
r=r0

, (57)

where 4πr20 is the surface of the cavity of radius r0 and we have considered the horizontal
plane. In terms of dimensionless quantities we have

Q =
4πr20D1(pi − p0)

r′0N
Q̂, (58)

where

Q̂ = − exp(−p̂/p̂1)
∂p̂

∂r̂

∣∣∣
r̂=1

(59)

is the dimensionless flux. We obtain from equation (59),

Q̂ = p̂1[1− exp(−1/p̂1)]
[
1 +

1
√
πt̂

]
(60)

(Yeung et al., 1993; eq. (27)).

C Triggering front

An approximation to the triggering front can be obtained when the properties are constant
and the diffusivity is pressure independent. Equation (17), with an external point source, can
be expressed as

ṗ = D0∆
′p+ δ(t)δ(r′ − r′0), (61)

where r′0 is the source location and δ is Dirac’s delta. The solution is the Green function

g(r′, r′0, t) =
1

(4πD0t)ξ/2
exp[−|r′ − r′0|

2/(4D0t)], (62)

where ξ is the space dimension (Carslaw and Jaeger, 1959; Carcione, 2014).
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The maximum of the function g(t) is located at

t =
|r′ − r′0|

2

2ξD0
. (63)

In the physical 3D space, combining equations (19) and (63), we obtain

|r′ − r′0|√
D0

≈

√
x2
1 + x2

2

D1
+

x2
3

D3
=
√

2tξ =
√
6t, (64)

indicating that the front is anisotropic, i.e. the front arrives at time t = (x2
1 + x2

2)/(6D1) at a

receiver located at distance
√

x2
1 + x2

2 from the source and at time t = x2
3/(6D3) at a receiver

located at distance x3 from the source. Equivalently, if the distances are the same, say r, the
front employs t1 = r2/(6D1) along the horizontal direction and t3 = r2/(6D3) along the z-
direction to travel the distance r. Equation (64) represents an ellipse. The previous reasoning
is an attempt of defining the triggering front on the basis of the Green function, but actually,
the triggering front is a heuristic quantity defining a beginning of a more-or-less significant
relaxation. It is “the distance traveled in time t by the phase front of a harmonic pore-pressure
diffusion wave of frequency 2π/t” (see p. 128 in Shapiro, 2015). For a given diffusivity D, it is√
4πDt and indeed proportional to

√
6Dt.

In the non-linear case, i.e. when the diffusivity is pressure dependent, the triggering front
differs substantially from equation (64). Shapiro and Dinske (2009) and Hummel and Shapiro
(2013) find that for a constant flow rate of injection Q and a power law diffusivity dependence
of the form (25) the triggering front is

r ∝ (D0Q
ntn+1)1/(3n+2) , (65)

which for n ≫ 1 yields
r ∝ (Qt)1/3. (66)

However, in real situations they have used the following equation:

r = (at)b, (67)

along a given direction, where a and b are constants.

D Fractal failure criterion

We vary the threshold P fractally. Let ∆Pm be the maximum deviation from the background
value P0. P at r is first subjected to the variations (∆P )r , such that

−∆Pm ≤ (∆P )r ≤ ∆Pm, (68)

where (∆P )r is obtained from a random generator, and the superindex “r” denotes random.
(Random numbers between 0 and 1 are generated and then scaled to the interval [−1, 1]∆Pm.)

The fractal variations can be described by the von Kármán autocovariance function. The
exponential function used by Rothert and Shapiro (2003) is a particular case of this function,
which is widely used in seismic applications (e.g., Carcione et al., 2003). The corresponding
wavenumber-domain power spectrum of the von Kármán function is

S(k1, k2, k3) = C(1 + k2l2)−(ν+d/2), (69)

where k =
√

k21 + k22 + k23 is the wavenumber, l is the correlation length, ν (0 < ν < 1) is
a self-similarity coefficient, C is a normalization constant, and d is the Euclidean dimension.
The von Kármán correlation function describes self-affine, fractal processes of fractal dimension
d+ 1− ν at scales smaller than l.

The threshold P is then calculated as

P (x, y, z) = P0 ±∆P (x, y, z), (70)

where
∆̃P (k1, k2, k3) = ˜(∆P )

r
(k1, k2, k3)S(k1, k2, k3), (71)

with ˜(∆P )
r
(k1, k2, k3) being the Fourier transform of (∆P )r(x, y, z). The tilde denotes the

space Fourier transform.
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(c)

(d)

(a)

(b)

(e)

(f )

(g)

(h)

Fig. 1 Pressure profile evolution along the x-direction (a, e, c and g) and y-direction (b, f, d
and h) as a function of the radial distance from the well. The top four panels correspond to
sandstone (κ1 = 0.2 darcy and κ2 = 0.4 darcy), while the four panels at the bottom correspond
to shale, whose permeability components are those of Table 1. The analytical solutions of the
left and right panels are obtained with eqs. (25,30) and eqs. (28,31) of Wu and Pruess (2000),
respectively, the latter corresponding to our equations (42,43). The solutions correspond to
cylindrical flow with a constant mass injection rate at 1 h (triangles ), 10 h (open circles) and
48 h (full circles). The solid lines refer to the analytical solution (pressure increases from left
to right) and the symbols are computations obtained with Comsol.
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Fig. 2 RMSE between the analytical and numerical solutions for different permeability values,
corresponding to the cylindrical flow solution.
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(a)

(b)

Fig. 3 Pressure (a) and permeability (b) as a function of the spherical radial distance from
the well. The solution correspond to spherical flow at 48 h with a constant pressure injection
(obtained with Comsol, p1 = 1.5 MPa). Due to the functional dependence with pressure (see
equations (24) and (36)), the logarithm of the permeability follows qualitatively the pressure
curve
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Fig. 4 Pressure profile evolution along the x-direction as a function of the radial distance
from the well. The solution correspond to spherical flow with a constant pressure injection at
48, 10 and 1 h (obtained with Comsol, p1 = 1.5 MPa).
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Fig. 5 Pressure field at 48 h along the x-direction corresponding to spherical flow: (a) p1 =
3 MPa; (b) p1 = 1.5 MPa. The solid and dashed lines refer to the analytical solutions with
pressure-dependent and pressure-independent permeability [equations (55) and (56)], respec-
tively. The symbols correspond to the numerical solution obtained with Comsol.
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Fig. 6 RMSE between analytical and numerical solutions for different p1 values, corresponding
to the spherical flow solution.
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PT

Fig. 7 Random distribution of the failure criterion PT (in MPa). The medium is divided into
165 × 165 cells. The fractal parameters are P0 = PT (P0 = PS in the shear case), with ∆Pm

= 60 % P0, ν = 0.18, l = 0.2 m and d = 3. The top and right plots corresponds to the yellow
vertical and horizontal lines. (See Wu (2006) for values of the tensile strength.)
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Fig. 8 Pressure field obtained with Comsol (p1 = 1.5 MPa) for an unbounded homogeneous
medium, where the permeability components along the x- and z-directions are given in Table
1. The anisotropic character of the diffusion becomes clear. The field diffuses faster into the
formation along the x-direction, since the permeability is higher than that of the vertical
z-direction.
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Fig. 9 Cloud of tensile (a) and shear (b) events after 48 h of fluid injection, where the number
of induced events is 2255 and 3081, respectively. The inner front (solid line) is obtained with
equation (64), while the outer front is obtained with the same equations but assuming 8 times
the diffusivity components D1 and D3.
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Fig. 10 Re-scaled events corresponding to the shear events at t = 24 h (a) (1959 events) and
t = 48 h (3081 events) (compare Figure 10b with Figure 9b). These clouds correspond to an
equivalent isotropic medium.
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Fig. 11 Location of the shear events (re-scaled) as a function of the emission time at 5 h (a)
and 48 h (b). The solid and dashed lines correspond to a triggering front with a t1/3 and t1/2

dependences. As can be seen, the cubic root triggering front provides a better fit, as it is the
case of Barnett Shale (Hummel, 2013).
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Fig. 12 Location of the shear events (re-scaled) as a function of the emission time at 24 h. The
solid line corresponds to a triggering front of the form (at)b, where a = 0.008 m1/0.355/s and
b = 0.355. It can be shown that using equation (36) with p1 = 1.5 MPa, the triggering front
follows a square root time dependence, indicating the importance of using accurate pressure
solution for estimating the front evolution. Although we obtain almost a similar exponent as
Hummel and Shapiro (2013) (0.355 against 0.357), we have used an exponential function while
the authors consider a p7 dependence.
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