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JOSÉ M. CARCIONE1, FABIO CAVALLINI1, FRANCESCO MAINARDI2,

and ANDRZEJ HANYGA3

Abstract—Kjartansson’s constant-Q model is solved in the time-domain using a new modeling

algorithm based on fractional derivatives. Instead of time derivatives of order 2, Kjartansson’s model

requires derivatives of order 2c, with 0 < c < 1=2, in the dilatation-stress formulation. The derivatives are

computed with the Grünwald-Letnikov and central-difference approximations, which are finite-difference

extensions of the standard finite-difference operators for derivatives of integer order. The modeling uses the

Fourier method to compute the spatial derivatives, and therefore can handle complex geometries. A

synthetic cross-well seismic experiment illustrates the capabilities of this novel modeling algorithm.

Key words: Viscoelastic waves, fractional calculus, numerical modeling, seismology.

1. Introduction

Constant-Q models provide a good parameterization of seismic attenuation in

rocks, in oil exploration and seismology. By reducing the number of parameters they

allow an improvement of seismic inversion. Moreover, there is physical evidence that

attenuation is almost linear with frequency (therefore Q is constant) in many

frequency bands. BLAND (1960) and KJARTANSSON (1979) discuss a linear attenuation

model with the required characteristics, but the idea is much older (SCOTT-BLAIR,

1949). Kjartansson’s constant-Q model is based on a creep function of the form t2c,
where t is time and c � 1 for seismic applications. This model is completely specified

by two parameters, i.e., phase velocity at a reference frequency and Q. Therefore, it is

mathematically far simpler than any nearly constant Q, as for instance, a spectrum of

Zener models (CARCIONE et al., 1988). Due to its simplicity, Kjartansson’s model is

used in many seismic applications, mainly in its frequency-domain form. MAINARDI
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and TOMIROTTI (1997) interpreted the constant-Q model in terms of fractional

derivatives and obtained its 1-D Green’s function.

Seismic modeling in inhomogeneous media can, in principle, be performed in the

frequency domain. However, the method is expensive when using differential

formulations, since it involves solution of many Helmholtz equations. The

alternative is to compute the solution through a time-convolution, although the

resulting algorithm is relatively expensive. A purely differential – as opposed to

integro-differential – formulation can be obtained by using fractional derivatives

(CAPUTO and MAINARDI, 1971). Instead of time derivatives of order 2, Kjartansson’s

model requires derivatives of order 2 � 2c with 0 < c < 1=2 in the dilatation

formulation of the wave equation, and 2c in the dilatation-stress formulation. The

equation becomes parabolic since the phase velocity has no upper bound. Fractional

derivatives appear also in Biot theory, related to memory effects in porous rocks at

seismic frequencies with c ¼ 1=4 (GUREVICH and LOPATNIKOV, 1995) and at low-

and high-frequency limits (FELLAH and DEPOLLIER, 2000). Fractional derivatives

can be computed with the Grünwald-Letnikov and central-difference approxima-

tions, which are finite-difference extensions of the standard finite-difference

approximation for derivatives of integer order (GRÜNWALD, 1867; LETNIKOV,

1868, GORENFLO, 1997). Unlike the standard operator of differentiation, the

fractional operator increases in length as time increases, since it must keep the

memory effects. However, after a given time period the operator can be truncated

(short memory principle).

In the first part of this work we review the constant-Q model and calculate the

complex modulus, phase velocity, and attenuation factor versus frequency. We then

recast the acoustic wave equation in the time-domain in terms of fractional

derivatives, and obtain the Grünwald-Letnikov and central-difference approxima-

tions. Then, we investigate the accuracy of the time discretization by comparing

the exact and the finite-difference (FD) phase velocities and attenuation factors. The

model is discretized on a mesh, and the spatial derivatives are calculated with the

Fourier method by using the Fast Fourier Transform. This approximation is

infinitely accurate for band-limited periodic functions with cutoff spatial wavenum-

bers smaller than the cutoff wavenumbers of the mesh. Finally, we test the modeling

algorithms with an analytical solution for a 2-D homogeneous medium, and illustrate

the method with seismic applications in inhomogeneous media.

2. Constant-Q Model

2.1. Stress-strain Relation

Stress r and strain � in a 1-D linear anelastic medium are related by a

convolutional relation (BLAND, 1980),
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rðtÞ ¼ wðtÞ � _��ðtÞ ð1Þ

where w is the relaxation function, t is the time variable, the symbol ‘‘�’’ denotes time

convolution, and a dot above a variable indicates time differentiation.

Let us define the relaxation function (KJARTANSSON, 1979)

wðtÞ ¼ M0

Cð1 � 2cÞ
t
t0

� ��2c

HðtÞ ; ð2Þ

where M0 is a bulk modulus, C is Euler’s Gamma function, t0 is a reference time, c is a

dimensionless parameter, and H is the Heaviside step function. The parameters M0, t0
and c have precise physical meanings, which will become clear in the following

analysis. Let us take the Fourier transform of equation (1). We obtain

~rrðxÞ ¼ Fð _wwðtÞÞ~��ðxÞ � MðxÞ~��ðxÞ ; ð3Þ

where F is the Fourier transform operator, MðxÞ is the complex modulus, and a

tilde denotes the Fourier transform. After some calculations we gain

MðxÞ ¼ M0
ix
x0

� �2c

; ð4Þ

where x0 ¼ 1=t0 is the reference frequency.

2.2. Phase Velocity and Attenuation Factor

The complex velocity is

V ¼
ffiffiffiffiffi
M
q

s
; ð5Þ

where q is the density. The phase velocity c is the frequency x divided by the real part

of the complex wavenumber. Then,

c ¼ Re
1

V

� �� ��1

: ð6Þ

Substituting equations (4) and (5) in (6) yields

c ¼ c0
x
x0

����
����
c

ð7Þ

with

c0 ¼
ffiffiffiffiffiffi
M0

q

s
cos

pc
2

� 	h i�1

: ð8Þ
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The attenuation factor is given by

a ¼ �x Im
1

V

� �
¼ tan

pc
2

� 	
sgnðxÞx

c
: ð9Þ

The quality factor is defined as the peak energy stored during a cycle divided by the

energy loss during the cycle. It is given by (e.g., CARCIONE and CAVALLINI, 1994)

Q ¼ ReðV 2Þ
ImðV 2Þ ¼

1

tanðpcÞ : ð10Þ

Firstly, we derive from equation (7) that c0 is the phase velocity at x ¼ x0, the

reference frequency, and that

M0 ¼ qc20 cos2
pc
2

� 	
: ð11Þ

Secondly, it follows from equation (10) that Q is independent of frequency, so

that

c ¼ 1

p
tan�1 1

Q

� �
ð12Þ

parameterizes the attenuation level. Hence we see that Q > 0 is equivalent to

0 < c < 1=2. Moreover, c ! 0 when x ! 0, and c ! 1 when x ! 1. It follows

that very high frequencies of the signal propagate at almost infinite velocity, and the

differential equation describing the wave motion is parabolic (e.g., PRÜSS, 1993).

2.3. Wave Equation in Differential Form

Let us consider a 2-D wave equation of the form

@bw
@tb

¼ DDwþ f ; ð13Þ

where wðx; z; tÞ is a field variable, b is the order of the time derivative, D is a positive

parameter, D is the 2-D Laplacian operator

D ¼ @2

@x2
þ @2

@z2
; ð14Þ

and f is a forcing term. Consider a plane wave

exp½iðxt � kxx� kzzÞ� ; ð15Þ

with x real and ðkx; kzÞ the complex wavevector. Substituting the ansatz (15) in the

wave equation (13) with f ¼ 0 yields the dispersion equation

ðixÞb þ Dk2 ¼ 0 ; ð16Þ
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where k ¼ ðk2
x þ k2

z Þ
1=2 is the complex wavenumber. Equation (16) is the Fourier

transform of equation (13). The properties of the Fourier transform when it acts on

fractional derivatives are well established, and a rigorous treatment is available in the

literature (e.g., DATTOLI et al., 1998). Since k2 ¼ qx2=M , comparison of equations

(16) and (4) yields

b ¼ 2 � 2c; and D ¼ M0

q
x�2c

0 : ð17Þ

Equation (13), together with (17), is the wave equation corresponding to Kjartans-

son’s stress-strain relation (KJARTANSSON, 1979). In order to obtain realistic values of

the quality factor, corresponding to wave propagation in rocks, c � 1 and the time

derivative in equation (13) has a fractional order.

Kjartansson’s wave equation (13) is a particular version of a more general wave

equation for variable material properties. The convolutional constitutive equation (3)

can be written in terms of fractional derivatives. In fact, it is easy to show, using

equations (4) and (17), that it is equivalent to

r ¼ qD
@2�b�

@t2�b
: ð18Þ

Coupled with the constitutive equation (18) are the momentum equations

@r
@x

¼ q
@2ux
@t2

; ð19Þ

@r
@z

¼ q
@2uz
@t2

; ð20Þ

where ux and uz are the displacement components. Redefining

� ¼ @ux
@x

þ @uz
@z

ð21Þ

as the dilatation field, differentiating and adding equations (19) and (20), the

substitution of equation (18) yields

Dq qD
@2�b�

@t2�b

� �
¼ @2�

@t2
; ð22Þ

where

Dq ¼ @

@x
1

q
@

@x
þ @

@z
1

q
@

@z
: ð23Þ

Multiplying by ðixÞb�2 the Fourier transform of equation (22) produces, after an

inverse Fourier transform, the inhomogeneous wave equation

@b�

@tb
¼ Dq qD�ð Þ þ s ; ð24Þ
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where we included the seismic source s. This equation is of type (13) if the medium is

homogeneous.

3. Numerical Algorithm

3.1. Grünwald-Letnikov and Central-difference Approximations

to the Fractional Derivative

The Grünwald-Letnikov and central-difference approximations to the Riemann-

Liouville fractional derivative of a function f are

@mf ðtÞ
@tm

 1

hm

XJ
j¼0

ð�1Þj m
j

� �
f ðt � jhÞ ð25Þ

and

@mf ðtÞ
@tm

� 1

hm

XJ
j¼0

ð�1Þj m
j

� �
f t þ m

2
� j

� 	
h

h i
; ð26Þ

respectively, where h is the time step, and J ¼ t=h� 1. These expressions are derived

in Appendix A. They are first- and second-order accurate, respectively. The

fractional derivative of f at time t depends on all the previous values of f . This is the

memory property of the fractional derivative, related to field attenuation in our

particular example. However, the binomial coefficients
m
j

� �
are negligible for j

exceeding an integer J . This allows us to use the short-memory principle and hence to

replace
PJ

j¼0 with
PL

j¼0, where L < J is the effective memory length (a small constant

integer).

3.2. Dilatation-stress Formulation

3.2.1. Time discretization

Use of the Grünwald-Letnikov approximation (25) in equation (24) results in an

implicit time-integration scheme, which can be expensive in terms of computer time

and storage. An explicit scheme can be obtained if the wave equation is written in the

dilatation-stress formulation. Using equations (18) and (22), and including the source

term yields

@2�

@t2
¼ Dqr þ s : ð27Þ

On the other hand, using (17), equation (18) becomes

r ¼ qD
@2c�

@t2c
: ð28Þ
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Equations (27) and (28) are discretized at t ¼ ðn� 1Þh and t ¼ nh, respectively, by

using the central-difference and Grünwald-Letnikov approximations. We obtain

�n ¼ h2ðDqr þ sÞn�1 þ 2�n�1 � �n�2 ð29Þ

from (26)–(27), and

rn ¼ qDh�2c
XJ
j¼0

ð�1Þj 2c
j

� �
�n�j ð30Þ

from (25) and (28).

3.2.2. FD complex velocity

The dispersion relation relates the frequency with the wavenumber and allows the

calculation of the phase velocity corresponding to each Fourier component. Time

discretization implies an approximation of the dispersion relation.

Assuming constant material properties and substituting the ansatz (15) with

t ¼ nh in equations (29) and (30) gives the following dispersion relation:

sin
xh
2

� �
¼ 1

2

ffiffiffiffi
D

p
kh1�c

Xn�2

j¼0

ð�1Þj 2c
j

� �
expð�ixjhÞ

" #1=2

; ð31Þ

where k is the complex wavenumber. The FD approximation to the complex velocity

is �VV ¼ x=k where x and k satisfy equation (31). If c = 0, this velocity is real and we

obtain the FD phase velocity

�cc ¼ c0
sincðhÞ ; ð32Þ

where sincðhÞ ¼ sinðhÞ=h and h ¼ xh=2. Equation (32) indicates that the FD velocity

is greater than the true phase velocity. If c 6¼ 0, the FD complex velocity can be

written as

�VV ¼
ffiffiffiffi
D

p
h�c

sincðhÞ
Xn�2

j¼0

ð�1Þj 2c
j

� �
expð�2ihjÞ

" #1=2

; ð33Þ

where equation (31) has been used.

3.3. Dilatation Formulation

3.3.1. Time discretization

An explicit scheme can be obtained with the central-difference approximation

(26). In this case, equation (24) is discretized at t ¼ nh. We obtain
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�nþb=2 ¼ hbDq qD�nð Þ �
XJ
j¼1

ð�1Þj b
j

� �
�n�jþb=2 þ sn : ð34Þ

In order to compute the spatial derivatives at nh we require an approximation for �n.

Since b � 2, the simplest approximation is �n � �n�1þb=2. Similarly, the source can be

introduced at times t ¼ ðn� 1 þ b=2Þh.

3.3.2. FD complex velocity

Substituting the ansatz (15) with t ¼ nh in equation (34) gives the FD complex

velocity

�VV ¼ 2ih
ffiffiffiffi
D

p
hb=2�1 expð�ihÞ 1 þ

Xn�1

j¼1

ð�1Þj b
j

� �
expð�2ihjÞ

" #�1=2

: ð35Þ

In the above formula we have written expð�ihÞ in place of expð�ibh=2Þ because of

the approximation �n � �n�1þb=2. Here lies, essentially, the difference between the

Grünwald-Letnikov and central-difference approximations.

3.4. Accuracy. FD Phase Velocity and Attenuation Factor

The FD phase velocity is given by

�cc ¼ Re
1
�VV

� �� ��1

; ð36Þ

and the FD attenuation factor is

�aa ¼ �x Im
1
�VV

� �
: ð37Þ

If h ! 0 (i.e., n ! 1), equation (33) becomes

�VV !
ffiffiffiffi
D

p 1 � expð�ixhÞ
h

� �c

; ð38Þ

where we used the property

ð1 � zÞ2c ¼
X1
j¼0

ð�1Þj 2c
j

� �
zj; z ¼ expð�ixhÞ ; ð39Þ

which is convergent if jzj < 1 (e.g., ITÔ, 1987). Using L’Hôpital rule as h ! 0 in

equation (38) yields

�VV ¼
ffiffiffiffi
D

p
ðixÞc ; ð40Þ

which by virtue of equations (4), (5) and (17) gives the complex velocity V .
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Similarly, when h ! 0, equation (35) becomes

�VV ¼
ffiffiffiffi
D

p
ðixÞ1�b=2 ; ð41Þ

which is equivalent to (40).

Using the same arguments, the attenuation factor (9) is obtained from equation

(37) if h ! 0.

4. Examples

Attenuation measurements in a relatively homogeneous medium (Pierre shale)

were made by MCDONAL et al. (1958) near Limon, Colorado. They reported a

constant-Q behavior with attenuation a ¼ 0:12f , where a is given in dB per 1000

ft and the frequency f in Hz. Conversion of units implies a (dB/1000 ft) = 8.686

a (nepers/1000 ft) = 2.6475 a (nepers/km). For low-loss solids, the quality factor

is

Q ¼ pf
ac

;

with a given in nepers per unit length (TOKSÖZ and JOHNSTON, 1981). Since c is

approximately 7000 ft/s (2133.6 m/s), the quality factor is Q ’ 32.5. We consider

a reference frequency f0 = x0=ð2pÞ = 250 Hz, corresponding to the dominant

frequency of the seismic source used in the experiments. Then, c = 0.0097955,

b = 1.980409, and c0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
M0=q

p
= 2133.347 m/s. The phase velocity (6) and

attenuation factor (9) versus frequency f ¼ x=2p are shown in Figures 1a and 1b,

respectively, where the open circles are the experimental points, the broken and

dotted lines are the FD approximations (36) and (37), using the dilatation-stress and

dilatation formulations, respectively. The memory lengths are 120 and 60,

respectively. The curves correspond to a time step h = 0.05 ms. The dilatation

formulation is more accurate because it is based on the central-difference

approximation (26), and because the decay of the binomial coefficients in the series

expansion is faster than in the dilatation-stress formulation. The latter fact is

illustrated in Figure 2, which shows the logarithm of the absolute value of the

binomial coefficients versus the summation index for the dilatation-stress formu-

lation (m ¼ 2c, continuous line) and for the dilatation formulation (m ¼ b, broken

line).

The medium is discretized on a numerical mesh, with uniform vertical and

horizontal grid spacings of 2 m, and 77 � 77 grid points. The spatial derivatives are

calculated with the Fourier method by using the fast Fourier transform (FFT)

(KOSLOFF and BAYSAL, 1982). The source, applied at the center of the mesh, is a

Ricker-type wavelet, whose amplitude spectrum is a Gaussian function centered at

250 Hz. A band-limited source, such as a Butterworth filter with a low cut-off
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frequency, should be used to avoid aliasing problems, since the phase velocity

approaches zero at zero frequency. The maximum allowed frequency is

fmax ¼ cmin=ð2dÞ, where d is the grid spacing and cmin is the phase velocity at the

low cut-off frequency. However, this effect can be neglected, in virtue of the form of

the phase-velocity curve (Fig. 1a) and because the energy of the Ricker wavelet is

concentrated around its central frequency. The time step used in this simulation is

0.05 ms. Figure 3 compares two snapshots of the dilatation field computed at 36 ms,

where (a) corresponds to the lossless case (c = 0), and (b) to a lossy model of Pierre

shale. The attenuation is evident in the latter case.

A 2-D analytical solution of equation (24) in a homogeneous medium can easily

be obtained. The solution to the acoustic (lossless) equation is the zero-order Hankel

Figure 1

Phase velocity (a) and attenuation factor (b) versus frequency in Pierre shale (continuous line) as given by

Eqs. (6) and (9), respectively. The broken and dotted lines are the FD approximations using the dilatation-

stress (33) and the dilatation formulations (35), respectively. The memory lengths are, respectively, 120 and

60. The open circles are the experimental data reported by MCDONAL et al. (1958).
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function of the second kind (MORSE and FESHBACH, 1953, sec. 11.2; CARCIONE et al.,

1988a),

Gðx; z; x0; z0;xÞ ¼ �ipH ð2Þ
0

xr
c0

� �
ð42Þ

where ðx0; z0Þ is the source location, and

Figure 2

Decimal logarithm of the absolute value of the binomial coefficients versus the summation index for the

dilatation-stress formulation (m ¼ 2c ¼ 2� 0:0097955) (continuous line) and for the dilatation formulation

(m ¼ b ¼ 1:980409) (broken line).

Figure 3

Snapshots of the dilatation field in a lossless medium equivalent to Pierre shale (a), and in a dissipative

model of Pierre shale (b).
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r ¼ ðx� x0Þ2 þ ðz� z0Þ2
h i1=2

: ð43Þ

The viscoacoustic solution is obtained by invoking the correspondence principle

(BLAND, 1960), i.e., by substituting the acoustic velocity c0 with the complex velocity

(5). We set Gð�xÞ ¼ G�ðxÞ, where the superscript � denotes complex conjugation.

This equation ensures that the inverse Fourier transform of the Green’s function is

real. The frequency-domain solution is then given by wðxÞ ¼ GðxÞF ðxÞ, where F is

the Fourier transform of the source. Because the Hankel function has a singularity at

x = 0, we assume G ¼ 0 for x = 0, an approximation that has no significant effect

on the solution (note, moreover, that F ð0Þ is small). The time-domain solution wðtÞ is

obtained by a discrete inverse Fourier transform. We have tacitly assumed that w and

dw=dt are zero at time t ¼ 0.

Figure 4 compares numerical (dotted and broken lines) and analytical (solid line)

solutions in the lossy case, at 40 m from the source. In this case, we used the

dilatational formulation with memory lengths 20 (broken line) and 40 (solid line).

The agreement is excellent for L = 40, while L = 20 yields a degraded numerical

solution.

Finally, we provide an example of seismic wave propagation in inhomogeneous

media. The geological model is shown in Figure 5, and the material properties are

indicated in Table 1, with the same reference frequency f0 = 80 Hz for all the media.

The low velocity and low quality factor of medium 4 simulate an unconsolidated

sandstone. Absorbing strips, of width 18 grid points, are implemented at the four

boundaries of the mesh (CARCIONE et al., 1988). The source is a Ricker wavelet with

central frequency of 80 Hz, and the wavefield is computed by using a time step of 0.2

ms. The synthetic seismograms recorded in the receiver well, corresponding to the

lossless case (a) and lossy case (b), are shown in Figure 6. The simulation based on

the dilatation formulation is 4.5 times faster than the simulation based on the

dilatation-stress formulation.

Figure 4

Comparison between numerical and analytical solutions at 400 m from the source. The dotted and broken

lines correspond to memory lengths 40 and 20, respectively, and the solid line is the analytical solution. The

medium is Pierre shale.
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5. Conclusions

The concept of fractional derivative has been used to simulate constant-Q wave

propagation (Pierre shale). The equations were expressed in the dilatation-stress and

dilatation formulations. The second approach is more accurate and efficient, however

our numerical experiments indicate that the absorbing-boundary algorithm performs

better with the first formulation. The validity and accuracy of the algorithms are

verified by comparison with a novel 2-D analytical solution. The modeling is

illustrated with a cross-well seismic experiment, using a Kjartansson’s attenuation

model, but this approach can provide important applications for porous media as

Figure 5

Geological model.

Table 1

Material properties

Medium c0 (km/s) q (g/cm3) Q

1 3.2 2.5 100

2 3.3 2.52 110

3 3.6 2.58 120

4 2.9 2.4 30

5 3.6 2.7 140

6 3.7 2.71 150

7 3.85 2.72 165
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well, since fractional derivatives appear in Biot theory, related to viscodynamic

effects at seismic frequencies.

Further research goals on this subject include: (i) an optimal finite-difference

approximation of the fractional-derivative operator to reduce numerical dispersion

Figure 6

Acoustic (a) and viscoacoustic (b) synthetic seismograms of the dilatation field, corresponding to the model

illustrated in Figure 5.
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[OðhnÞ, n � 2] and memory storage. The latter is closely related to the memory length,

which in the present case exceeds the number of memory variables used in nearly

constant-Q modeling algorithms based on mechanical models; (ii) to improve the

absorbing-boundary algorithm in the dilatation formulation; (iii) the generalization

to the elastic P-SV case; and (iv) applications of the method to wave propagation in

porous media.

Appendix A. The Fractional Derivative

The notion of fractional derivative here adopted can be easily introduced via

Fourier transform, since it is intended to generalize the rule of the Fourier transform

for the common derivative of integer order of a well-behaved function of time by

allowing noninteger powers of the frequency. If the time Fourier transform is defined

as

½F/�ðxÞ ¼
Zþ1

�1

e�ixt/ðtÞdt ; ð44Þ

it is well known that

F/ðnÞ
h i

ðxÞ ¼ ðixÞn F/½ �ðxÞ ; ð45Þ

where n is any positive integer number, and /ðnÞ is the n-th derivative of /. Our

fractional derivative is defined in such a way that

F/ðaÞ
h i

ðxÞ ¼ ðixÞa F/½ �ðxÞ ; ð46Þ

where now a is any positive real number. For a not integer, one can show that such a

derivative is a special pseudo-differential operator that can be properly defined by

introducing the integer m such that m� 1 < a < m and putting

/ðaÞðtÞ ¼ 1

Cðm� aÞ
dm

dtm

Z t

�1

/ðsÞ 1

ðt � sÞaþ1�m ds ð47Þ

or, equivalently,

/ðaÞðtÞ ¼ 1

Cðm� aÞ

Z t

�1

dm/ðsÞ
dsm

1

ðt � sÞaþ1�m ds : ð48Þ
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We note the possibility of interchanging the integer-order derivative with the integral,

since the function /ðtÞ is assumed to decay sufficiently fast to zero for t ! �1
together with its (relevant) derivatives.

Appendix B. Grünwald-Letnikov and Central-difference

Approximations to the Fractional Derivative

Consider the backward first-order approximation of the first derivative,

@f ðtÞ
@t

 f ðtÞ � f ðt � hÞ
h

: ð49Þ

This leads to the second derivative

@2f ðtÞ
@t2

 1

h
@f ðtÞ
@t

� @f ðt � hÞ
@t

� �
 f ðtÞ � 2f ðt � hÞ þ f ðt � 2hÞ

h2
ð50Þ

and to the third derivative

@3f ðtÞ
@t3

 f ðtÞ � 3f ðt � hÞ þ 3f ðt � 2hÞ � f ðt � 3hÞ
h3

: ð51Þ

The generalization is straightforward. The m-th derivative is

@mf ðtÞ
@tm

 1

hm
Xm
j¼0

ð�1Þj m
j

� �
f ðt � jhÞ; m ¼ 0; 1; 2; 3; . . . : ð52Þ

A more accurate (second-order) approximation for the first derivative is

@f ðtÞ
@t

� 1

h
f t þ h

2

� �
� f t � h

2

� �� �
: ð53Þ

This leads to the second-order accurate m-th derivative

@mf ðtÞ
@tm

� 1

hm
Xm
j¼0

ð�1Þj m
j

� �
f t þ h

m
2
� j

� 	
h

h i
; m ¼ 0; 1; 2; 3; . . . : ð54Þ

The upper summation limit may be replaced by any integer larger than m, for

example by t=h� 1, since

m
j

� �
¼ 0 for j > m:

There are no restrictions in the r.h.s. of equations (52) and (54) that require m to be

an integer. Replacing m by any positive real number m in equations (52) and (54) gives

the Grünwald-Letnikov approximation (25) and the central-difference approxima-
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tion (26), respectively (GORENFLO, 1997). The fractional binomial coefficients can be

defined in terms of Euler’s Gamma function as

m
j

� �
¼ Cðm þ 1Þ

Cðjþ 1ÞCðm � jþ 1Þ

and can be calculated by a simple recursion formula

m
j

� �
¼ m � jþ 1

j
m

j� 1

� �
;

m
0

� �
¼ 1 :

The extension of the upper limit from m to t=h� 1 has an important consequence.

While in equations (52) and (54) the series has vanishing terms beyond j ¼ m, in

equations (25) and (26) these terms are different from zero. The approximations (25)

and (26) are actually ‘‘differintegration’’ operators, since it can be shown that for

negative m they represent the generalized Riemann sums.

For more details on the theory and applications of fractional calculus, the reader

is referred to OLDHAM and SPANIER (1974), GORENFLO and MAINARDI (1997), and

PODLUBNY (1999).
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SCOTT-BLAIR, G. W., Survey of General and Applied Rheology (Pitman, London 1949).
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