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Abstract
The anelastic properties of porous rocks depend on the pore characteristics, specifically, the pore aspect ratio and the pore 
fraction (related to the soft porosity). At high frequencies, there is no fluid pressure communication throughout the pore 
space and the rock becomes stiffer than at low frequencies, where the pore pressure is fully equilibrated. The models con-
sidered here include explicit pore geometry information in determining the poroelastic parameters. They are extensions of 
the EIAS (equivalent inclusion-average stress) and CPEM (cracks and pores effective medium) models to the whole fre-
quency range, based on the Zener model. Knowing the degree of stiffness dispersion between the low- and high-frequency 
limits, we fit experimental data in the whole frequency range and obtain the average crack aspect ratio and soft porosity as 
a function of effective pressure. Then, we compute the dispersion and quality factor of the bulk, shear and Young moduli, 
and the P- and S-wave seismic velocities and quality factors as a function of frequency. However, when measuring axial or 
volumetric motions along a cylindrical sample, there is fluid flow at the ends of the sample in the experiments considered 
here. This generates dispersion and attenuation due to axial flow of the pore fluid, which does not occur for a plane wave in 
unbounded media. This phenomenon is called “drained/undrained transition" Pimienta et al. (J Geophys Res Solid Earth; 
https ://doi.org/10.1002/2017J B0146 45, 2017). Actually, it is an axial version of the Biot–Gardner (BG) effect, and implies 
an “artificial" (mesoscopic) attenuation peak (and dispersion) due to the generation of slow (diffusion) Biot modes at the 
cylinder boundary, inducing a global flow at the scale of the sample. The classical BG effect is due to fluid flow along the 
radial direction, on the basis of open-pore conditions at the sides of the sample. In this case, the sides are sealed. To use the 
EIAS and CPEM models, the BG effect has to be removed to obtain the intrinsic Q of the rock. The models are applied here 
for measurements on sandstone. The axial BG effect is more evident if the intrinsic attenuation is weak or absent. An exam-
ple is Lavoux limestone, which has a bimodal porosity distribution, with an equal proportion of intragranular microporosity 
and intergranular macroporosity (round pores). In this case, the attenuation and dispersion are related to the BG effect, since 
no squirt flow is detected due to the absence of cracks. We verified that the bulk and Young moduli obtained from the axial 
and hydrostatic oscillations are consistent with each other, and that the theoretical description of the axial BG effect shows 
some discrepancies with the data.
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1 Introduction

Wave propagation in porous saturated rocks shows anelastic 
properties, namely, velocity and stiffness dispersion and dis-
sipation of energy depending on frequency (e.g., Jones 1986; 
Carcione 2014; Zhang et al. 2019). Anelasticity has gained 
much attention in recent years from a practical point of view. 
The applications cover a variety of fields, including physics 
and geophysics, engineering and soil mechanics, underwater 
acoustics, etc. In particular, in the exploration of oil and gas 
reservoirs, it is important to predict the rock porosity, perme-
ability and the presence of fluids (type and saturation). These 
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microstructural properties and in situ rock conditions can 
be obtained, in principle, from seismic properties, such as 
wave velocity and attenuation (Müller et al. 2010; Carcione 
et al. 2010).

At seismic frequencies, Gassmann equation describes the 
wave velocities, but this model does not include the explicit 
dependence of the elastic behaviour on pore structure, basi-
cally, crack aspect ratio and density (soft porosity), and 
cannot predict the high-frequency behaviour. Soft or crack 
porosity is very sensitive to effective pressure (lithostatic 
minus pore) and greatly affects the rock stiffnesses, unlike 
equant or stiff porosity, which occupies almost all the pore 
space. To describe the stiffness and velocity dispersions and 
dissipation factor as a function of frequency, including the 
rock microstructure, we consider the EIAS model (Benven-
iste 1987; Endres and Knight 1997). This model is consistent 
with the Gassmann equation at low frequencies and with 
the Hashin–Shtrikman bounds when applied to two-phase 
systems regardless of the pore shape spectrum. This model 
is a generalization of that from Budiansky and O’Connell 
(1980), based on the model of Kuster and Töksoz (1974). 
To verify the robustness of the EIAS model, we also con-
sider the model developed by Adelinet et al. (2011) (CPEM), 
based on a different approach. This model also consists on an 
isotropic distribution of spherical pores or elliptical cracks. 
They compared the theoretical predictions with the data 
obtained on a basaltic rock and found a good agreement.

We consider three fully saturated rock samples, namely, 
Lavoux limestone (Borgomano et al. (2017), and Wilken-
son and Bentheim sandstones (Pimienta et al. 2017). The 
fit of experimental data at the relaxed and unrelaxed states 
for the sandstones allows us to obtain the crack aspect ratio 
and fraction (soft porosity); while the frequency depend-
ence of the moduli, phase velocities and quality factors are 
described by a Zener model (e.g., Carcione 2014). Due to 
the measurement procedure used by Pimienta et al. (2017), 
there is an attenuation mechanism (relaxation peak) related 
to the geometry of the sample (of cylindrical shape). This 
mechanism, termed here axial Biot–Gardner (BG) effect, 
depends not only on intrinsic properties of the rocks, like 
elastic moduli, permeability, but also on the length of sam-
ple and the dead volumes (Pimienta et al. 2016a, b; Sun 
et al. 2019). It is the axial version of the classical effect, 
where the flow takes place at the sides of the sample in the 
radial direction (Gardner 1962; White 1986; Dunn 1987). 
This theory was verified by Mörig and Burkhardt (1989) 
who made measurements in a paraffin-saturated sandstone, 
and observed experimentally that the relaxation peak shifts 
to higher frequencies with decreasing radius of the sample.

Regarding the sandstones, we consider only the intrinsic-
loss mechanism, which is explained by the squirt-flow model 
and approximated with Zener mechanical elements (e.g., 
Carcione and Gurevich 2011), since the EIAS and CPEM 

models consider unbounded media. On the other hand, 
Lavoux limestone has no cracks, only round pores of dual 
size, and therefore, the observed attenuation peak is due to 
the BG effect (open-drained conditions were implemented 
experimentally). In this case, a Zener fit is performed to test 
the relation between the quality factors obtained from the 
bulk and Young moduli, since experimental data of these 
two stiffnesses are available.

2  Models of Effective Stiffness Moduli 
and Attenuation

Let us assume a solid background medium containing spher-
ical pores (1) and cracks (2), where the total porosity is � . 
The background medium (grains) has the bulk and shear 
moduli Ks and �s , respectively. The voids can be dry or filled 
with a liquid of bulk modulus Kf  and the cracks have an 
aspect ratio a. Moreover, let us define c and 1 − c as the 
crack and stiff-pore fractions, i.e., the fractions related to the 
soft and stiff porosities.

2.1  Relaxed and Unrelaxed Moduli

The poroelasticity theory provides expressions of the mod-
uli based on Gassmann equations (Gassmann 1951; Mavko 
et al. 2009; Carcione 2014), without taking into account 
explicitly the aspect ratio and crack fraction. The Gassmann 
bulk and shear moduli are

where Km and �m denote the dry-rock moduli, respectively. 
The Young modulus in isotropic media is given by

(Mavko et al. 2009, p. 23). These moduli correspond to the 
low-frequency limit or relaxed state.

The EIAS and CPEM models (Endres and Knight 1997; 
Adelinet et al. 2011) are illustrated in Appendices A and B, 
respectively. These models yield the low-frequency bulk and 
shear moduli, Kcom and �com , and the high-frequency bulk 
and shear moduli, Kiso and �iso as a function of the aspect 
ratio and crack fraction, where the subscripts “com" and 
“iso" indicate fluid pressure communication and isolated 
pores through the pore space, respectively.

Both the EIAS and CPEM models have their root in the 
work of Eshelby (1957). The difference between the two 
models lies in the calculation of Kcom . The CPEM model is 
directly based on Gassmann’s equations. The physics behind 

(1)KG =
Ks − Km + �Km

(
Ks∕Kf − 1

)

1 − � − Km∕Ks + �Ks∕Kf

and �G = �m,

(2)YG =
9KG�G

3KG + �G
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these models is as follows. At low frequencies, the excess pres-
sure is relieved and the fluid is isobaric at the scale of a repre-
sentative elementary volume; thus Gassman equation applies. 
However, at high frequencies, the fluid is “freezed" and the 
pressure in the cracks is higher than the pressure in the pores 
( Kiso > Kcom ). This effect increases as the crack aspect ratio 
decreases. At the same aspect ratio, when stiff pores start to 
be replaced by cracks, Kcom decreases much more rapidly than 
Kiso , but after a critical crack fraction, the dispersion decreases, 
because there is less pressure communication due to a decrease 
of stiff pores (Endres and Knight 1997). On the other hand, 
shear strains only affect the cracks (these are randomly ori-
ented), since the spherical pores maintain their shape, and this 
is the reason of the monotonically increase in shear dispersion.

2.2  Extension to the Whole Frequency Range

The generalized Zener model (Carcione 2014, Sect. 2.4.5–6) 
can be used to describe the frequency dependence of disper-
sion and attenuation, when there are several loss mechanisms. 
The model satisfies the Kramers–Kronig relations (Carcione 
et al. 2018) and consists of a parallel connection of L Zener 
elements and, therefore, provides L relaxation peaks (up to two 
peaks are observed in the experimental data of the examples 
presented here). Let us assume that from the data we have 
M0 , M∞ , Qel , and fl , l = 1,… , L , corresponding to the relaxed 
and unrelaxed moduli, peak quality factor and relaxation fre-
quency, respectively, where M represents any stiffness modu-
lus, i.e., the bulk modulus K, the shear modulus � , the Young 
modulus Y or the P-wave modulus E.

If we define the parameter Ql = Qel∕L , an approximation 
of the complex modulus can be expressed as

where i =
√
−1 and f is the frequency. The unrelaxed modu-

lus ( f → ∞ ) is

For one relaxation peak (one Zener element), it can be 
shown that the following relation between attenuation and 
dispersion holds,

(3)
M(f ) =

M0

L

L∑

l=1

Ql + i(f∕fl)(Rl + 1)

Ql + i(f∕fl)(Rl − 1)
,

Rl =

√
1 + Q2

l
,

(4)M∞ =
M0

L

L∑

l=1

Rl + 1

Rl − 1
.

(5)Q =
2
√
M∞M0

M∞ −M0

.

2.3  Dispersion, Phase Velocity and Quality Factor

The real modulus and quality factor are

(Carcione 2014), respectively. If the P-wave modulus is

the phase velocities and quality factors are

and

respectively, where c denotes cP or cS , the complex and fre-
quency-dependent P-wave and S-wave velocities

(Carcione 2014), respectively, where � is the mass density.

3  Examples

The experimental data can be found in Borgomano et al. 
(2017) (Lavoux limestone) and Pimienta et  al. (2017) 
(Wilkenson and Bentheim sandstones) under either glyc-
erine or water saturation. They provide data for the Young 
modulus, Y. Table 1 shows the micro-structural properties 
of these rocks. Wilkenson sandstone shows a large quan-
tity of feldspars. Assuming bulk and shear moduli of 37.9 
GPa and 44.3 GPa for quartz and 37.5 GPa and 15 GPa for 
feldspar, respectively, we obtain the properties reported in 
the table using the Hill average (Mavko et al. 2009). For 
Bentheim sandstone, we perform a similar calculation. For 
Lavoux limestone, we use the properties of calcite (Mavko 
et al. 2009) and the bulk modulus of glycerine is taken from 
Bridgman (1931).

3.1  Evaluating and Removing the Biot–Gardner 
Effect

The measurements used here, performed on cylindrical sam-
ples, are affected by the sample boundary effect (Pimienta 
et al. 2016a; Sun et al. 2019). The related attenuation is 
caused by drained (open-pore) or partially drained boundary 

(6)Mr = Re(M) and QM =
Re(M)

Im(M)

(7)E = K +
4

3
�,

(8)cp =
[
Re

{
1

c

}]−1

(9)Q =
Re{c2}

Im{c2}
,

(10)cP =

√
E

�
and cS =

√
�

�
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conditions and the generation of diffusion Biot modes at the 
ends of the sample, and is not due to the intrinsic attenu-
ation of the rock. The fluid is allowed to flow axially out 
of the sample. Sealing the sample is not effective and may 
introduce additional loss mechanisms (Dunn 1987; Pimienta 
et al. 2016a).

This phenomenon is called here axial Biot–Gardner effect 
(Pimienta et al. 2016a, 2017) in analogy with the radial 
effect. The latter is quantified, for instance, by Eq. (3) in 
White (1986) and Eq. (9) in Johnson and Kostek (1995). 
Therefore, we have to distinguish between this effect and 
the peak related to the intrinsic dissipation given by the und-
rained/unrelaxed transition (squirt-flow loss in this case). 
Pimienta et al. (2016a, b) report the two peaks in quartz-pure 
Fontainebleau sandstones of low porosity. In particular, the 
peak observed in Lavoux limestone is solely due to the axial 
BG effect, so that in this case we merely apply the Zener fit, 
without using the EIAS and CPEM petrophysical models, to 
test the relation between the bulk and Young moduli qual-
ity factors. In addition, we also report the relaxation peak 
obtained from the radial and axial BG effects for comparison 
(see Appendices C and D for the relevant equations).

The sandstones have the two relaxation peaks, with the 
first (weaker) one corresponding to the axial BG effect, 
which is not described by the EIAS and CPEM models. The 
stronger peak corresponding to the undrained/unrelaxed 
transition is the local squirt-flow dissipation mechanism 
(Pimienta et al. 2017), well described by Zener elements 
(e.g., Carcione and Gurevich 2011). Since the amount of dis-
persion is higher than the actual intrinsic dispersion, because 
of the presence of the BG effect, we have to remove from 
the data the first peak (and the related dispersion). Figure 1 
shows an example similar to that of Wilkenson sandstone at 
an effective pressure pe = 1 MPa, presented below. The plot 
shows the dispersion (a) and dissipation factor (b) for the 
two peaks together (dots) and each single peak separately 
(solid lines). The parameters of the two peaks together (dots) 
are Y0 = 16.4 GPa, Y∞ = 28.8 GPa, f1 = 0.2 Hz, f2 = 40 Hz, 
Q1 = 15 and Q2 = 2.25. If the sample is perfectly sealed, 
the BG effect would disappear, and we should observe an 
increase in the Young modulus from the undrained regime 

(when � → 0) to the isolated regime ( � → ∞ ). The solid 
blue line representing the intrinsic squirt-flow peak has 
Ycom(exp) = Y0(R1 + 1)∕(R1 − 1) , i.e., the undrained (high-
frequency limit) limit of the BG peak, with Q1 = 30 and 
Q2 = 4, which are approximately twice the previous quality 
factors (it is exactly twice for Q ≫ 1). Basically, to capture 

Table 1  Rock properties

� permeability, p
e
 effective pressure, ca calcite, qu quartz, fe feldspar

Rock � � Ks �s Kf pe Fluid Minerals
(%) (mD) (GPa) (GPa) (GPa) (MPa)

Lavoux 23 10 77 32 4.36 2.5 Glycerine ca (100 %)
Bentheim 24.8 500 37.9 43.1 2.5 1 Glycerine qu-fe (98-2 %)
Bentheim 24.8 500 37.9 43.1 2.5 10 Glycerine qu-fe (98-2 %)
Wilkenson 9.1 0.003 37.7 26.3 2.21 1 Water qu-fe (51-49 %)
Wilkenson 9.1 0.003 37.7 26.3 2.21 2.5 Water qu-fe (51-49 %)
Wilkenson 9.1 0.003 37.7 26.3 2.21 20 Water qu-fe (51-49 %)

(b)

(a)

Fig. 1  Distinction between the Biot–Gardner and intrinsic losses. 
Dispersion (a) and dissipation factor (b) as a function of frequency. 
Two peaks together (dots) and each single peak (solid lines)
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the second peak, one sets Q2 = Q2(exp) = Qe2 = 4 from the 
data (dots) and obtain the unrelaxed modulus as

In this example, Yiso(exp) = 28.79 GPa. The theoretical 
relaxed and unrelaxed Young moduli due to the intrinsic-
loss peak are

(Mavko et al. 2009), respectively. 

3.2  The Dispersion Index

We define

as the normalized bulk and shear dispersion indices, respec-
tively. Figure 2 shows the moduli (a) and dispersion indices 
(b) corresponding to Wilkenson sandstone at 1-MPa effective 
pressure and a = 0.01. The results are similar from a practi-
cal point of view, with the CPEM model predicting slightly 
higher values of the bulk modulus. There is no bulk disper-
sion at c = 0 and 1, while the shear dispersion increases from 
zero to a maximum at c = 1, as shown by Endres and Knight 
(1997) and Adelinet et al. (2011). When a single pore shape 
is present (c = 0 or 1), the incremental fluid pressure is the 
same at all pores, causing no bulk dispersion at these limits. 
For mixed pores shapes, the induced fluid pressure change 
in the cracks is greater than in the spheres and dispersion 
occurs. The dependence of D (for K) on the crack fraction 
has a maximum. The initial replacement of the spheres by 
cracks leads to a faster increase in pore space compress-
ibility (because of pressure equilibration), compared to the 
isolated case. After the maximum (critical crack fraction), 
the decrease of equant pore space results in a smaller pres-
sure gradient and D approaches zero at c = 1. However, the 
CPEM curves should be taken cautiously, since this model is 
based on a non-interactive approximation, unlike the EIAS 
model, i.e., low crack density.

3.3  Estimation of the Pore Structure

Fit of the experimental relaxed and unrelaxed moduli yields 
an estimation of the aspect ratio a and crack fraction c. It is 
not possible to invert for aspect ratio a and crack fraction c 
uniquely. We have the following set of non-linear equations 
with two unknowns to solve

(11)Yiso(exp) = Y0 ⋅
R1 + 1

R1 − 1
⋅

R2 + 1

R2 − 1
.

(12)Ycom =
9Kcom�com

3Kcom + �com

and Yiso =
9Kiso�iso

3Kiso + �iso

(13)DK =
Kiso − Kcom

Kcom

and D� =
�iso − �com

�com

where Ycom(a, c) and Yiso(a, c) are given by Eq. (12), and 
“exp" refers to the experimental values. This type of equa-
tions may have no solution or several solutions. We span the 
range of physical solutions a = [0, 0.1] and c = [0, 0.1] and 
choose those satisfying

with the minimum � , but solutions with too small aspect 
ratios are to be avoided, since the shear modulus tends to 
zero for a → 0.

Figures 3, 4, 5, 6 and 7 show the fit corresponding to 
the sandstones, and Tables  2 and 3 summarize the results, 
where, as indicated above (Fig. 1), we have fitted the second 
(intrinsic-loss) peak. For Wilkenson sandstone, we show the 

(14)
Ycom(a, c) = Ycom (exp) (� → 0), Yiso(a, c) = Yiso (exp) (� → ∞),

(15)
||||
1 −

Ycom(a, c)

Ycom (exp)

||||
+
||||
1 −

Yiso(a, c)

Yiso (exp)

||||
≤ �,

(a)

(b)

Fig. 2  Bulk and shear moduli (a) and bulk and shear dispersion, D
K

 
and D� (b) as a function of the crack fraction, c, for an aspect ratio a 
= 0.01. The rock is Wilkenson sandstone (1-MPa effective pressure). 
The terms “com" and “iso" mean relaxed and unrelaxed, respectively
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results of the EIAS and CPEM models (Figs.  3, 4 and 5). 
Tables 2 and 3 show that the aspect ratio decreases with 
increasing effective pressure, as expected, since the cracks 
tend to close. The crack fraction also decreases. The two 
models give similar results as can be expected from the 
comparison in Fig. 2, and the crack density of the EIAS 
model, computed with the stiffness moduli (see Appendix 
A) and not with the idealized expression (B.3) for ellipsoidal 
voids, is less than one. The results approximately agree with 
those of Pimienta et al. (2017). According to these authors, 
the average aspect ratio for Wilkenson sandstone is 0.0001 
and that of Bentheim sandstones lies between 0.001 and 
0.003. These estimations are based on the frequency of the 
relaxation peaks, assuming a squirt-flow attenuation mecha-
nism. Moreover, the volumetric strain reported in Fig. 3 of 
Pimienta et al. (2017) indicates a variation from 0.012 to 0.2 
(a relative variation of 17) between 1- and 20-MPa effective 
pressure for Wilkenson sandstone, similar to our results in 

Table 2, where that relative variation for the soft porosity 
is 19.

We can also obtain the phase velocities and quality factors 
of the body waves. Let us consider Wilkenson sandstone at 
1-MPa effective pressure. We calculate the complex bulk 
and shear moduli, K and � as follows. We assume a medium 
with K∕� = Kcom∕�com = � at the optimal solution for a 
and c ( � = 5/3 for a Poisson medium, i.e., the Poisson ratio 
is 0.25). This is a strong assumption, because the Poisson 
ratio varies with frequency [from 0.24 to 0.37 according to 
Pimienta et al. (2017)]. A more accurate calculation requires 
the implementation of this variation. Then, we can express 
the P-wave modulus, E, and S-wave modulus, � , as

(16)E =
(1 + 3�)(4 + 3�)

27�
⋅ Y and � =

1 + 3�

9�
⋅ Y ,

Fig. 3  Fit with the EIAS and CPEM models (black curve and blue 
circles) of the real part of the Young modulus, Y

r
 , and dissipation fac-

tor (inverse quality factor), 1000∕Q
Y
 , as a function of frequency, cor-

responding to Wilkenson sandstone ( p
e
 = 1 MPa)
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where Y is given by equation (3) (one Zener, the intrinsic 
loss). Figure 8 shows the phase velocities and dissipation 
factors. Since both waves have the same amount of disper-
sion, the relaxation peak is the same and equal to that of the 
Young modulus.

3.4  Matching the Biot–Gardner Effect

Figure 9 shows the fit of the data corresponding to Lavoux 
limestone with a Zener element, where K0 is M0 . We recall 
that this peak corresponds to the axial BG effect and the EIAS 
and CPEM models cannot be applied. In this case, we compute 
the theoretical Young modulus from the following equation:

(17)Y(�) =
9K(�)�

3K(�) + �
,

where � = 8.75 GPa (Borgomano et al. 2017, Fig. 10c), since 
there is no shear attenuation. Figure 10 compares the Young-
modulus data (Borgomano et al. 2017, Fig. 9a, b) to the real 
modulus Yr = Re(Y) and quality factor QY obtained from 
Eqs. (6) and (17) and those computed from the radial and 
axial BG effects [Eqs. (C.1), (D.9)(“drained") and (D.11) 
(with a dead volume Vd = 60 mL) in appendices C and D]. 
The properties of Table 1 are used, and Km =15 GPa, � = 
8.94 GPa, � = 1 Pa s, L = 8 cm and r0 = 2 cm. While the 
Young modulus obtained with the Zener model and Eq. (17) 
has an excellent agreement, the theoretical expression of 
the axial BG effect is not matching the experimental data, 
mainly the location of the relaxation peak, while the level 
of attenuation is acceptable. Peculiarly, the radial BG equa-
tions provide a better fit, although the sample is sealed at the 
lateral boundaries. This problem is also addressed by Tan 
et al. (2019), using a modified Gassmann equation that takes 
into account the dead volume, and by Sun et al. (2019), who 
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established a 3D model. The cause of the discrepancy can 
be a partial radial flow at the sides of the sample that it is not 
taken into account by the 1D model and this is probably the 
reason why the radial effect provides a better fit.

4  Conclusions

We use the EIAS and CPEM models to obtain the aspect 
ratio and crack fraction from the Young-modulus disper-
sion, specifically from the low- and high-frequency limits. 
The models are extended to the whole frequency range on 
the basis of the Zener model, to describe intrinsic loss. The 
sandstone data follow the Kramers–Kronig relation, since 
the fit of the dispersion and quality-factor experimental data 
is satisfactory. Since the sandstone data suffer from the axial 
Biot–Gardner effect, the dispersion due to this mesoscopic-
loss mechanism is removed. The aspect ratio decreases with 
increasing effective pressure, as expected, since the cracks 
tend to close, and the crack fraction also decreases. The two 
models give similar results.

Lavoux limestone has no cracks and the observed disper-
sion is solely due to the Biot–Gardner effect. In this case, 
we fit the bulk-modulus data with a Zener element and then 
compute the complex Young modulus. Its attributes are 
compared to the data and to the Biot–Gardner dispersion 
and quality-factor curves. The agreement with the experi-
ment is excellent, when using the Zener model and the rela-
tion between the Young modulus and the bulk and shear 
moduli. However, the theoretical Biot–Gardner curves show 
some differences compared to the experimental data, with 
the radial one providing a better fit, possibly indicating that 
a component of radial flow is present and that the 1D axial 
theory cannot describe the data.

−3 −2 −1 0 1 2 3 4 5 6
36

38

40

42

44

46

48

50

52

54

log[Frequency (Hz)]

Y
ou

ng
 m

od
ul

us
 (

G
P

a)
Experimental data
EIAS

Bentheim Sandstone
Glycerine−saturated
p
e
 = 10 MPa

−3 −2 −1 0 1 2 3 4 5 6

0

20

40

60

80

100

120

log[Frequency (Hz)]

10
00

/Q
Y

Experimental data
EIAS

Fig. 7  Fit with the EIAS model of the real part of the Young modu-
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function of frequency, corresponding to Bentheim sandstone ( p
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MPa)

Table 2  EIAS results Rock pe Y
com

Y
iso

a c �

(MPa) (GPa) (GPa)

Wilkenson Sandstone 1 17.55 28.79 0.00105 0.0915 4.38 × 10−6

Wilkenson Sandstone 2.5 23.98 35.41 0.00080 0.0433 4.52 × 10−7

Wilkenson Sandstone 20 34.83 44.98 0.00021 0.0048 2.43 × 10−6

Bentheim Sandstone 1 33.83 44.45 0.00215 0.0268 1.71 × 10−6

Bentheim Sandstone 10 39.02 48.25 0.00165 0.0137 3.46 × 10−7

Table 3  CPEM results Rock pe Y
com

Y
iso

a c �

(MPa) (GPa) (GPa)

Wilkenson Sandstone 1 17.55 28.79 0.00105 0.1014 1.83 × 10−6

Wilkenson Sandstone 2.5 23.98 35.41 0.00092 0.0554 5.20 × 10−7

Wilkenson Sandstone 20 34.83 44.98 0.00027 0.0069 9.35 × 10−7



Rock Anelasticity, Pore Geometry and the Biot–Gardner Effect  

1 3

Acknowledgements We are grateful to two anonymous reviewers 
for detailed comments that highly improved the paper. This research 
was supported by The Cultivation Program of the “111 Plan”, China 
(Grant BC2018019), The Fundamental Research Funds for the Cen-
tral Universities, China (Grant 2016B13114), National Natural Science 
Foundation of China (Grant 41974123, 41704109), Jiangsu Innovation 
and Entrepreneurship Plan, Specially-Appointed Professor Program of 
Jiangsu Province.

Compliance with Ethical Standards 

 Conflict of interest We declare that we do not have any commercial or 
associative interest that represents a conflict of interest in connection 
with this work.

Appendix A: EIAS (Equivalent 
Inclusion‑Average Stress) Model

The so-called isolated pores or high-frequency moduli, pre-
dicted by Endres and Knight (1997; Eqs. (32) and (33)), are

where (Endres and Knight 1997; Eqs. (54) and (55)),

and (Berryman 1980a, b, 1995; Mavko et al. 2009, p. 187),

(A.1)
Kiso = Ks +

�(Kf − Ks)�

1 − �(1 − �)
,

�iso =
�s(1 − �)

1 − �(1 − �)
,

(A.2)
� = (1 − c)P1 + cP2,

� = (1 − c)Q1 + cQ2
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dissipation factors of the two waves are the same
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where P1 and Q1 correspond to spherical pores and P2 and Q2 
are approximations for penny-shaped cracks. Actually, there 
are (more complex) exact expressions for P and Q, which 
hold for any aspect ratio of the oblate spheroidal pores, 
including spherical pores and thin cracks: P =

1

3
Tiijj and 

Q =
1

5
(Tijij − P) , where Tiijj and Tijij are given in Appendix A 

(A.3)

P1 =
Ks + 4�s∕3

Kf + 4�s∕3
,

P2 =
Ks

Kf + �a�
, � = �s ⋅

3Ks + �s

3Ks + 4�s

,

Q1 = 1 + �s∕� , � =
�s

6
⋅

9Ks + 8�s

Ks + 2�s

,

Q2 =
1

5

[

1 +
8�s

�a(�s + 2�)
+ 2 ⋅

Kf + 2�s∕3

Kf + �a�

]

,

of Berryman (1980b) or in page 189 of Mavko et al. (2009). 
The expressions P1 and Q1 for spherical pores are exact, 
while the approximations P2 and Q2 slightly deviate from 
the exact expressions at high aspect ratios of the cracks.

The effective moduli, when complete fluid pressure 
communication occurs (low frequencies), are (Endres and 
Knight 1997; Eqs. (34) and (35)),

where

where

The moduli Kcom and �com [Eqs. (34) and (35) in Endres and 
Knight (1997)], with Kf = 0 , are the dry-rock moduli to be 
used in Gassmann equations, i.e.,

since those moduli with Kf ≠ 0 [equations (A.4)], are identi-
cal to the Gassmann moduli [Eqs. (52) and (53) in Endres 
and Knight (1997)]. Values of a and c can be obtained by 
fitting the relaxed and unrelaxed moduli.

The EIAS model has no restrictions on the crack den-
sity, since it considers the interactions between cracks. 
Endres and Knight (1997) also developed a dilute approxi-
mation given by their Eqs. (48)–(51), which shows a better 
agreement with the CPEM model (see next section) than 
the EIAS model.

For this model, we evaluate the crack density based on 
the stiffness moduli as in O’Connell and Budiansky (1974) 
and Budiansky and O’Connell (1976), which is summa-
rized in page 187 of Mavko et al. (2009), identifying � 
with the uncracked Poisson ratio (obtained from Ku and 
�u ), and �∗

SC
 with �iso (the same for the bulk modulus). The 

(A.4)

Kcom = Ks +
�Ks(Kf − Ks)�0

(1 − �)(Ks − Kf ) + [Kf + �(Ks − Kf )]�0
,

�com =
�s(1 − �)

1 − �(1 − �0)
,

(A.5)
�0 = (1 − c)P01 + cP02,

�0 = (1 − c)Q01 + cQ02,

(A.6)

P01 = P1(Kf = 0) = 1 +
3Ks

4�s

,

P02 = P2(Kf = 0) =
Ks

�a�
,

Q01 = Q1(Kf = 0) = Q1,

Q02 = Q2(Kf = 0) =
1

5

[

1 +
4�s

�a
⋅

�s + 8�

3�(�s + 2�)

]

.

(A.7)Km0 =
Ks(1 − �)

1 + �(�0 − 1)
, �m0 =

�s(1 − �)

1 + �(�0 − 1)
,
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uncracked wet-rock moduli Ku and �u are obtained from 
Kiso and �iso by setting the crack fraction c = 0.

Appendix B: CPEM (Cracks and Pores 
Effective Medium) Model

Adelinet et al. (2011) proposed alternative equations to the 
EIAS model, based on the non-interactive crack approxima-
tion, i.e., valid for low crack density. The high-frequency 
wet-rock moduli are obtained from

and

where

is the crack density,

and

are the mineral Young modulus and Poisson ratio, 
respectively.

The high-frequency dry-rock moduli can be obtained 
from equations (B.1) and (B.2) by taking �p → ∞ and 
�c → ∞ , so that �p∕(1 + �p) = 1 and �c∕(1 + �c) = 1 . The 
low-frequency wet-rock moduli Kcom and �com are given by 
Gassmann equations (1), where Km and �m are the high-
frequency dry-rock moduli previously obtained.

Appendix C: The Radial Biot–Gardner Effect

White (1986) [Eq. (3)] reports the complex Young modulus 
related to the Biot–Gardner effect,

(B.1)

Ks

Kiso

= 1 + �(1 − c)
3(1 − �s)

2(1 − 2�s)

(
�p

1 + �p

)

+ �c

16(1 − �2
s
)

9(1 − 2�s)

(
�c

1 + �c

)

(B.2)

�s

�iso

= 1 + �(1 − c)
15(1 − �s)

7 − 5�s
+ �c

[
16(1 − �s)

15(1 − 0.5�s)

+
32(1 − �s)

45

(
�c

1 + �c

)]

,

(B.3)�c =
3�c

4�a

(B.4)

�p =
2Ys

9(1 − �s)

(
1

Kf

−
1

Ks

)

, �c =
�Ysa

4(1 − �2
s
)

(
1

Kf

−
1

Ks

)

,

(B.5)Ys =
9Ks�s

3Ks + �s

and �s =
3Ks − 2�s

2(3Ks + �s)

where Jn are Bessel functions, r0 is the radius of the cylinder,

� is the fluid viscosity and � is the permeability [see Eqs. 
(2.20) and (3.3) in Gardner (1982), and Eqs. (7.16)–(7.18) 
in Carcione (2014)]. The factor i5∕2 , instead of i3∕2 , in the 
argument of the Bessel functions is due to the fact that we 
use here the opposite sign convention for the Fourier trans-
form ( � → −�).

The theory predicts a relaxation frequency of

(Pimienta et al. 2017).

Appendix D: The Axial Biot–Gardner Effect

Pimienta et al. (2016a) obtained the Skempton coefficient 
and bulk modulus in the case that the rock sample satisfies 
open (“drained") and semi-open boundary conditions at 
the ends, contrary to the Biot–Gardner theory, which holds 
for open conditions at the sides of the cylindrical sample 
(Gardner 1962; White 1986; Dunn 1987).

The Young modulus is

where � is assumed to be a real quantity and, according to 
Eqs. (9) and (11) in Pimienta et al. (2016a), the bulk modu-
lus is

(C.1)Y = 4� ⋅

U − Θ∗

V − Θ∗
, Θ =

2J1(x)

xJ0(x)
, x = i5∕2r0

√
�q,

(C.2)
U =

(3W∕4)(D + 4∕3)

W − D
, V =

(W + 1∕3)(D + 4∕3)

W − D
,

W =
KG

�
, D =

Km

�
,

(C.3)q =
bH

RP − Q2
,

(C.4)

H =P + R + 2Q = KG + 4�∕3, KG = Km + �2M,

P =Km + (� − �)2M +
4

3
�, Q = �M(� − �), R = �2M,

M =
Ks

1 − � − Km∕Ks + �Ks∕Kf

, � = 1 −
Km

Ks

,

b =
��2

�
,

(C.5)fBG ∝
�Km

�

(D.1)Y(�) =
9K(�)�

3K(�) + �
,
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where

The various quantities are as follow: z is the axial spatial 
variable, L is the length of the sample,

is the Skempton coefficient.

are the fluid modulus and Biot coefficient, respectively,

is the Gassmann bulk modulus,

is the hydraulic diffusivity,

is the storage coefficient, � is the fluid viscosity and � is the 
permeability. Performing the integration in Equation (D.2), 
we obtain

In real experiments, the “drained" condition is difficult to 
achieve, Pimienta et al. (2016a) combined the purely drained 
and undrained conditions, and obtained the more realistic 
“experimentally undrained" condition. An approximate solu-
tion for the pressure pf  is given by their Eq. (15) (see also 
Sun et al. 2019), which holds for equal dead volumes on 
both ends of the sample. Since the local volumetric strain is 
�v = (1∕Km)(P − �pf ) , where P is the applied source pres-
sure, it can be shown that we obtain Eq. (D.2) with

where SV = Vd∕Kf  is the storage capacity of the total dead 
volume, with Vd the dead volume and r0 the radius of the 

(D.2)K(�) =
LKm

B

[

L(B−1 − �) + � ∫
L

0

f (�, z)dz

]−1
,

(D.3)

f (�, z) =
sinh[k(L − z)] + sinh(kz)

sinh(kL)
, k = (1 + i)

√
�

2D
.

(D.4)B =
�M

KG

,

(D.5)M =
Ks

1 − � − Km∕Ks + �Ks∕Kf

, � = 1 −
Km

Ks

,

(D.6)KG = Km + �2M,

(D.7)D =
�

S�

(D.8)S =
�

BKm

(D.9)K(�) =
LKm

B

[

L(B−1 − �) +
2�[cosh(kL) − 1]

k sinh(kL)

]−1
.

(D.10)

f (�, z) =
cosh[k(L∕2 − z)]

b sinh(kL∕2) + cosh(kL∕2)
, b =

2�r2
0
S

kSV
,

rock sample [see Borgomano et al. (2017) for values of the 
dead volume and other properties (below their Eq. (28))].

Performing the integration of equation (D10) as above 
[see equation (D2)], we obtain

If b → 0 (e.g., infinite dead volume), equations (D.9) and 
(D.11) coincide.

Sun et al. (2019) developed the theory in three dimen-
sions, basically showing that in this case the peak frequency 
is lower than that predicted by the theory of Pimienta et al. 
(2016a), which indicates that the fluid flow needs more time 
to equilibrate the pore pressure.
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