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Abstract

We use a poroelastic model to describe the propagation of ultrasonic waves through orange juice, which is subjected to a freezing
process. The theoretical results are compared with those obtained by ultrasound methods used to monitor the freezing of orange juice.
The ultrasonic properties of partially frozen orange juice, specifically, are characterized by the P-wave and S-wave velocities and their
respective attenuation coefficients, which are related to the amount of water in the juice in the liquid state. Kelvin’s model is used to
obtain the amount of unfrozen water in the juice as a function of temperature, and the Biot’s poroelastic theory provides the ultrasonic
properties of orange juice as a function of temperature, below the eutectic point. A model similar to the Kelvin’s model is used in the food
literature to describe the crystallization of ice as a function of temperature. In concurrence with the Kelvin’s model describing the for-
mation of ice crystals, the frame moduli of the ice-crystal matrix are obtained by a percolation model of ice formation. The model shows
a good agreement with the experimental data, regarding the wave velocities, and a qualitative agreement with the experimental attenu-
ation values. A critical temperature, at nearly 50% saturation, is related to the maximum attenuation of the fast P-wave, and maximum
velocity and minimum attenuation of the slow P-wave.
� 2006 Elsevier Ltd. All rights reserved.

Keywords: Frozen orange juice; Poroelastic model; P-waves; S-waves; Velocity; Attenuation

1. Introduction

Ultrasound is currently used to evaluate the quality of
foods (McClements et al., 1987; Povey & Mason, 1995;
Povey, 1997). The technique uses the P-wave and S-wave
velocities and respective attenuation factors to verify and
monitor the state of foods, such as fruit ripeness, fat con-
tent in oils and degree of freezing (Miles & Cutting,

1974). In particular, monitoring the freezing of foods is
important for quality purposes because the freezing process
may damage the structure of foods and consequently affect
their quality due mainly to the increase in size of the ice
crystals after nucleation. Recently, Sigfusson, Ziegler, and
Coupland (2004) Lee, Pyrak-Nolte, Cornillon, and
Campanella (2004) have performed ultrasound experi-
ments on gelatine gels, muscle proteins and orange juice
at frequencies of 2.5 MHz and 5 MHz respectively and
for a range of temperatures. Sigfusson et al. (2004) mea-
sured P velocities of the ultrasound waves through the gels
and muscle proteins whereas Lee et al. (2004) measured P-
and S-waves velocities and P-wave attenuation of freezing
orange juice, which showed a strong correlation with the
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amount of unfrozen water in the juice. Specifically, for
orange juice, the experimental data showed a strong veloc-
ity increase below �10 �C and an attenuation peak at
�20 �C, in correspondence with a proportion of unfrozen
water in the juice of nearly 20%.

We use a poroelastic model to describe the wave propa-
gation phenomenon and to obtain the wave velocities and
attenuation factors of partially frozen orange juice. Biot
developed a theory of propagation of elastic waves in por-
ous media, where the two-phase material is considered as a
continuum, thus ignoring the microscopic level (Biot, 1956,
1962; Carcione, 2001). Within this context, the macro-
scopic variables follow the laws of continuum mechanics.
Basically, the theory assumes that anelastic effects arise
from viscous interactions between the fluid and the solid.
The assumptions of the theory are the following: (i) the
wavelength of the propagating wave is large in comparison
with the dimensions of the pores. This is a requirement for
applying the theory of continuum mechanics, and implies
that scattering dissipation is neglected. (ii) Displacements
are small, so that the macroscopic strain tensor is related
to the displacements by the nearest second order approxi-
mation. (iii) The liquid phase is continuous, implying that
pores are connected and that disconnected pores are part
of the matrix frame, and (iv) the medium is isotropic and
fully saturated.

With this theory Biot demonstrated the existence of two
kinds of compressional (P) modes in a porous medium: a
fast P-wave in which the solid and the fluid displacements
are in phase, and a slow P-wave in which the displacements
of the liquid and the solid are out of phase. At low frequen-
cies, the medium does not support the slow wave, which
becomes diffusive, since the fluid viscosity effects dominate
(a thick boundary layer compared to the pore size). At high
frequencies, tangential slip takes place (thin boundary
layer), the inertial effects are predominant and the slow
mode may have a wave-like character. This wave contrib-
utes to the attenuation of the fast wave by mode conversion
at inhomogeneities.

The amount of unfrozen water in the juice was related to
the temperature by means of the Kelvin’s model (Hudson,
1992), which is similar to a model used to describe ice for-
mation in frozen foods (Karel & Lund, 2003). Use of Biot’s
model requires the moduli of the dry matrix, which are
obtained by a percolation model (Arbabi & Sahimi, 1988;
Leclaire, Cohen-Ténoudji, & Aguirre-Puente, 1994). The
high-frequency flow of the liquid is described by a viscody-
namic correction on the basis of the dynamic tortuosity
obtained by Johnson, Koplik, and Dashen (1987) (see also
Carcione, 2001).

2. Poroelastic model

By applying Biot’s theory (Biot, 1956, 1962; Carcione,
2001) to orange juice during the freezing process, we
assume that the solid phase is frozen water, and the liquid
phase is the unfrozen juice. We neglect the presence of solid

particles (pulp) at the initial (unfrozen) state, although
their presence may cause a freezing point depression, as
can be seen in the experimental data reported by Lee
et al. (2004). Hereafter, ice and water will indicate the fro-
zen and liquid juice, respectively.

2.1. Water proportion versus temperature

In order to interpret the experimental results of Lee
et al. (2004), let us clarify the concepts of initial freezing
temperature and eutectic point for the freezing of orange
juice. Orange juice can be thought as to be a solution of
approximately 10% non-fat polysaccharides (essentially
soluble solids) in water. At ambient temperature, there will
only be one phase present, i.e. the solution. If we cool down
the solution, pure ice will form at the initial freezing tem-
perature of that solution, usually less than 0 �C because
the initial freezing point is depressed by the presence of
the solute. Upon freezing ice is formed. Intermolecular
forces such as van der Waals interactions, electrical forces
and hydrogen bonding determine the strength of the
formed ice lattice. The presence of solute breaks up the reg-
ular pattern of the lattice and decreases the freezing or
melting temperature. In general, the greater the concentra-
tion of solutes, the more the freezing point will be
depressed. If we continue to lower the temperature and
more ice is formed, we are essentially removing water from
the solution so the solute concentration in the solution
increases thus lowering further the freezing point of the
solution. It is important to note that for food materials
freezing occurs in a range of freezing temperatures. By low-
ering the temperature still further we finally approach the
eutectic temperature. At this point, the solute concentra-
tion in the juice reaches a maximum and the unfrozen
liquid that contains the solute starts to freeze as a non-pure
ice mixture. However, due to viscosity effects, it is unlikely
that the solute will crystallize at the eutectic temperature
and the freeze-concentration process may proceed beyond
this point.

Thus, the mass fraction of the unfrozen juice, related to
the mass fraction of the ice formed, is extremely important
to describe the system. Several approaches have been used
to estimate the amount of ice (or the amount of unfrozen
juice) as a function of the temperature. An approach is
based on an equation that is derived from the colligative
properties of binary solutions, specifically the decrease of
the freezing point of a binary solution (Singh, 1995) due
to the presence of the solute. That equation, however,
has to be corrected by the amount of unfreezable water,
a parameter that is very difficult to measure and has been
the object of considerable debate. Therefore, we preferred
using an equation to estimate the crystallization of ice par-
ticles (Karel & Lund, 2003). That equation has also been
used to describe the crystallization of ice cream (Hartel,
1998). The equation is similar to the Kelvin’s equation that
relates the equilibrium of a liquid drop to its radius of cur-
vature r at constant external pressure (Hudson, 1992). By
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considering the formation of ice crystals the equation can
be written as:

ln
T
T 0

� �
¼ � 2r

r
V

DHF

� �
ð1Þ

where T is the melting temperature of an ice particle of ra-
dius r, T0 is the freezing point of a flat ice particle, r is the
interfacial free energy between the ice and the surrounding
liquid, V is the molar specific volume of ice and DHF is la-
tent heat of fusion of water. We write the radius of curva-
ture of the ice particle as:

r ¼ r0

ln T 0

T

� � ð2Þ

where r0 ¼
2rV
DH F

.

Thus, Eq. (2) represents the ice formation in the pres-
ence of water. We consider that r0 is a function of the inter-
facial free energy between the ice and the surrounding
liquid, the molar latent heat of fusion and the specific
molar volume of ice. But here we used it as a free parame-
ter, to take into account that ice forms gradually as the
temperature decreases below 0 �C. T0 is equal to 273 K
for pure water, but due to the presence of soluble solids
in the juice, its value for juice is lower and close to the
eutectic temperature. The ice/water interface has a curva-
ture given by the radius r. Thus, the functional form given
by Eq. (2) is used to obtain the radius of the capillary pore
using r0 and T0 as free parameters to fit the experimental
data. We obtain the proportion of unfrozen water, /w, ver-
sus temperature by using a Gaussian distribution for the
size of the ice particles. That is, using Eq. (2), we obtain:

/w ¼
A

Dr
ffiffiffiffiffiffi
2p
p

Z r0= lnðT 0=T Þ

0

e
�ðr�ravÞ2

2Dr2 dr ð3Þ

where rav is the average radius, Dr is the standard devia-
tion, and the temperature T is given in Kelvin. The quan-
tity r0 = 0.228 nm for the ideal case (Leclaire et al.,
1994). The constant A is obtained after normalization of
the Gaussian function from r = 0 to r =1. Thus, the
amount of unfrozen water as function of the temperature
can be calculated as:

/wðT Þ ¼
erfðfÞ þ erfðcÞ

1þ erfðcÞ ; f ¼
r0

ln
T 0
Tffiffiffi

2
p

Dr
; c ¼ ravffiffiffi

2
p

Dr
ð4Þ

2.2. Wave-velocity model

First, we obtain the shear and bulk moduli of the matrix
formed by the ice phase as:

lm ¼ lið1� /wÞ
3:8 ð5Þ

Km ¼ K ið1� /wÞ
3:8 ð6Þ

where li and Ki are the shear and bulk moduli of ice,
respectively. Eq. (5) is a percolation model of ice formation

(Leclaire et al., 1994). Arbabi and Sahimi (1988) performed
numerical simulations of elastic properties of three-dimen-
sional percolation networks and using Monte Carlo simu-
lations and finite-size scaling analysis, they found that the
exponent of Eqs. (5) and (6) should be 3.78 with an error
of about 3%. This exponent is a critical value that charac-
terizes the power-law behavior of the elastic moduli near
the percolation threshold.

The density of the frozen porous medium is:

q ¼ ð1� /wÞqi þ /wqw ð7Þ

where qi and qw are the ice and water densities, respec-
tively. Hence, according to Biot’s theory, the low-frequency
shear-wave velocity is:

vS ¼
ffiffiffiffiffiffi
lm

q

r
ð8Þ

The low-frequency bulk modulus of the partially frozen
medium is given by the Gassmann’s modulus as:

KG ¼
K i � Km þ /wKmðK i=Kw � 1Þ
1� /w � Km=K i þ /wK i=Kw

ð9Þ

where Kw is the bulk modulus of water.
The low-frequency P-wave velocity is

vP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KG þ 4=3lm

q

s
ð10Þ

A more convenient model is given by using the high-fre-
quency Biot’s theory because the experimental data from
Lee et al. (2004) was obtained at a frequency of 5 MHz.
This theory provides complex velocities, from which the
phase velocities and attenuation factors can be obtained
(Biot, 1962; Carcione, 2001). Johnson et al. (1987) obtained
an expression for the correction term to be applied at high
frequencies due to deviations of the fluid flow from the
Poiseuille (laminar) flow. They obtained an expression for
the dynamic tortuosity, which provides a good description
of both the magnitude and phase of the exact dynamic tor-
tuosity of large networks formed from a distribution of
random radii. For shear waves, the phase velocity and
attenuation factor are:

vs ¼
1

Re

1

vs
c

� �
ð11Þ

and

as ¼ xIm
1

vs
c

� �
ð12Þ

where the complex velocity vs
c can be calculated as:

vs
c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lm

q� ixq2
w

Y ðxÞ

s
ð13Þ

x is the angular frequency (x = 2pf) and Re and Im are the
real and complex parts of a complex number. The quantity
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Y(x) in Eq. (13) is a viscodynamic term, which is important
at high frequencies. It is given by:

Y ðxÞ ¼ ix
qws
/w

� �
þ gF ðxÞ

j
ð14Þ

where g is the water viscosity, s is the tortuosity of the pore
space, given by:

s ¼ 1þ b
1

/w

� 1

� �
ð15Þ

with b = 1/2 for spherical grains, and j is the permeability,
given by the Kozeny–Carman relation (Mavko, Mukerji, &
Dvorkin, 1998):

j ¼ 2j0/
3
w

ð1� /wÞ
2

ð16Þ

where j0 is a reference value at 50% water proportion; in
this work we used the value of 2.5 Darcy which is a value
commonly used for materials with relatively high porosity
like frozen foods. The viscosity correction term F(x) is gi-
ven by:

F ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4is2j

xK2/w

s
; x ¼ g/w

xjqw

ð17Þ

where K is a geometrical parameter, with 2/K being the sur-
face-to-pore volume ratio of the pore-solid interface. The
following relation between s, j, and K can be used:

nsj

/wK2
¼ 1 ð18Þ

where n = 12 for a set of canted slabs of fluid, and n = 8 for
a set of non-intersecting canted tubes.

The complex velocity of the P-waves can be obtained
from the following fourth-order equation:

avp
c

4 þ bvp
c

2 þ c ¼ 0 ð19Þ
where

a ¼ � q2
w þ

i

x
Y ðxÞq

� �
ð20Þ

b ¼ i

x
Y ðxÞEG þMð2aqw � qÞ ð21Þ

and

c ¼ MEm ð22Þ
The parameters Em, EG and a are the P-wave modulus of
the ice frame, the Gasmann P-wave modulus and the Biot
effective stress coefficient respectively, which can be calcu-
lated as:

Em ¼ Km þ
4

3
lm ð23Þ

EG ¼ KG þ
4

3
lm ð24Þ

a ¼ 1� Km

K i

ð25Þ

whereas the parameter M can be calculated as:

M ¼ K i

1� /w � Km=K i þ /wK i=Kw

ð26Þ

The solution of Eq. (19) has two roots, corresponding to
the fast and slow P-waves. Let us denote the respective
complex velocities by vp�

c , where the signs correspond to
the signs of the square root resulting from the solution of
Eq. (19). The phase velocities are then:

vP� ¼
1

Re 1
v

p�
c

� � ð27Þ

and the attenuation factors are:

aP� ¼ �xIm
1

vp�
c

� �
ð28Þ

3. Results

The properties used in the calculations are given in
Table 1. The high viscosity value used (100 times the vis-
cosity of liquid water) is due to the presence of sugars in
the liquid and the low temperature. Fig. 1 shows the pro-
portion of water versus temperature, where the symbols
correspond to the experimental data, obtained by using a
NMR-based technique (Lee et al., 2004), and the trace of
the solid line are the results obtained from Eq. (4). At
�10 �C orange juice still contains a significant portion of
the juice (unfrozen water) in a liquid state; below this tem-
perature, more ice crystals will form. NMR data shows
that unfrozen water /w is approximately 15% at
T = �20 �C and /w = 5% at T = �50 �C. The calculated
P-wave and S-wave velocities at 5 MHz are compared to
the experimental data in Fig. 2. In order to obtain a good
fit of the velocities, the moduli of the fully frozen orange
juice slightly differ from that of pure ice (Ki = 8.5 GPa
and li = 3.7 GPa) as those indicated in Table 1. This can
be justified on the basis that the presence of pulp particles
modifies the frozen juice or ice true moduli.

Fig. 3 shows the calculated P-wave attenuation factor at
5 MHz, compared to the experimental data. There is a

Table 1
Material properties

Ice bulk modulus, Ki 10.3 GPa
Ice shear modulus, li 4 GPa
Ice density, qi 920 kg/m3

Water bulk modulus, Kw 2.25 GPa
Water density, qw 1030 kg/m3

Water viscosity, g 0.1 Pa s
Matrix permeability, j0 2.5 Darcy
Juice eutectic temperature, Te �10 �C
Average radius, rav 10 lm
Standard deviation, Dr 10 lm
r0 0.228 lm
b 0.02
n 8

14 J.M. Carcione et al. / Journal of Food Engineering 80 (2007) 11–17
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qualitative similarity between the curves, although the peak
temperatures do not coincide. The theoretical peak temper-
ature corresponds to 50% water saturation (50% ice con-
tent). In order to fit the experimental data, the reference
permeability j0, n and b have been chosen as shown in
the table. These values imply relatively low values of the
permeability and tortuosity of the matrix. It is highly prob-
ably that patchy inhomogeneities and scattering effects
play an important role, and that the attenuation due to
the Biot mechanism partially describes the observed dissi-
pation. The inhomogeneities not only cause scattering of
the P-waves but also are responsible of the mesoscopic
mechanism by which fast P-wave energy is converted to slow
P-wave energy (fluid-pressure energy diffusion) (White,
1975; Carcione, Helle, & Pham, 2003a; Pride, Berryman,
& Harris, 2004). Moreover, a refinement of the model

requires a better description of the effect of temperature
on viscosity using the Arrhenius equation (Fergurson &
Kemblowski, 1991), and the fact the decreasing tempera-
tures implies increasing viscosity due to increasing sugar
concentrations in the unfrozen juice solution.

Fig. 4 shows the calculated attenuation factor of the
shear wave, which is quite significant at the eutectic tem-
perature. For completeness, in Fig. 5, we show the calcu-
lated phase velocity (a) and the attenuation factor of the
slow P-wave. The velocity has a maximum and the attenu-
ation a minimum at nearly �12 �C and 50% saturation,
which seems to be a critical saturation of the partially sat-
urated medium. Despite the wave-like features of the slow
P-wave, its attenuation is very high, indicating a strong dif-
fusive character of the system. These characteristics indi-
cate why the slow P-wave cannot be observed in the
experiments.
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Fig. 1. Proportion of unfrozen juice as a function of temperature. The
symbols correspond to the experimental data (Lee et al., 2004).

Fig. 2. P-wave and S-wave velocities as a function of temperature. The
symbols correspond to the experimental data (Lee et al., 2004).
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Fig. 3. P-wave attenuation coefficient as a function of temperature. The
symbols correspond to the experimental data (Lee et al., 2004).

Fig. 4. S-wave attenuation coefficient as a function of temperature.
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4. Conclusions

We have developed a poroelastic model to predict the
degree of freezing of orange juice by means of the wave
velocity and attenuation factor. The adjustable parameters
of the model are the average radius and standard deviation
of the pores (i.e. the porous structure of the material) that
are used to obtain the liquid saturation. In addition the
stiffness moduli of the frozen juice to obtain the wave
velocities (although as expected these moduli did not signif-
icantly differ from those of pure ice) and the viscosity of the
juice and permeability of the ice frame are used to obtain
the maximum P-wave attenuation. The model shows an
excellent agreement with the experimental data, particu-
larly, the ultrasonic velocities. The attenuation curve of
the compressional wave shows a qualitative agreement with
the experimental curve, predicting a critical temperature at
50% saturation, for which the dissipation is maximum. In

addition, the model provides the properties of the slow
compressional wave, which shows a diffusive character at
ultrasonic frequencies.

Further research to improve the description of the atten-
uation mechanisms involves a better characterization of the
liquid viscosity as a function of temperature and the mod-
eling of the mesoscopic-loss mechanism. The viscosity-tem-
perature relationship of the fluid (juice) can be expressed in
the form of an Arrhenius equation. Moreover, since the
solids concentration in the juice increases with decreases
in temperature, viscosity should also increase. Regarding
the mesoscopic-loss mechanism, Biot’s theory for homoge-
neous media is often reported to underestimate velocity
dispersion and attenuation. As shown by White (1975),
these quantities are substantially affected by the presence
of partial (patchy) saturation. In our case, heterogeneities
(patches) in the different properties of the medium may
cause the mesoscopic loss (fluid-pressure energy diffusion
by slow-wave conversion to fast P-wave), and scattering
attenuation, which is not described by Biot’s theory,
but can be modeled by means of numerical simulations
(Carcione, Santos, Ravazzoli, & Helle, 2003b).
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