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Abstract

We simulate wave propagation in a partially saturated porous medium, where the novel feature is the presence of a second
slow wave due to capillary forces. The pores are filled with a wetting fluid and a non-wetting fluid, and the model, based
on a Biot-type three-phase theory, predicts three compressional waves and one shear wave. Moreover, the theory models
the realistic attenuation levels observed in rocks. Attenuation is modeled with exponential relaxation functions which allow
a differential formulation based on memory variables. The wavefield is obtained with a grid method based on the Fourier
differential operator and a Runge–Kutta time-integration algorithm. Since the presence of slow quasi-static modes makes
the differential equations stiff, a time-splitting integration algorithm is used to solve the stiff part analytically. The modeling
is second-order accurate in the time discretization and has spectral accuracy in the calculation of the spatial derivatives.
Surface-tension effects in the fluids, which are not considered in the classical Biot theory, cause the presence of a second slow
wave, which is faster than the classical Biot slow wave. The present modeling algorithm can be used to study the conditions
for which this new wave can be detected in laboratory experiments.
© 2003 Elsevier B.V. All rights reserved.

1. Introduction

The acoustics of porous media is an important field of research in seismic exploration[4,6,19]. Regional explo-
ration seismology aimed at the discovery of hydrocarbon reservoirs has been largely based on simplified rheological
models. The new exploration scenario is confined to reservoir areas and involves the presence of oil wells, and data
from seismic logs and well seismics, which have enough resolution to “see” the effects of bulk properties, porosity,
permeability, fluid saturation and fluid–solid interaction on the seismic pulse. The correct description of the reservoir
response requires to model reservoir rocks by porous media and use numerical simulation based on the full wave
equation.

Biot [3] developed a theory of propagation of elastic waves in porous media, where the two-phase material is
considered as a continuum, ignoring the microscopic level. Within this context, the macroscopic variables follow
the laws of continuum mechanics. Basically, the theory assumes that anelastic effects arise from viscous interaction
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between the fluid and the solid. Biot demonstrated the existence of two kinds of compressional waves in a porous
medium: the fast wave for which the solid and fluid displacements are in phase, and the slow wave for which
the displacements are out of phase. At low frequencies, the slow wave becomes diffusive, since viscosity effects
dominate (the boundary layer is thick compared to the pore size). At high frequencies, tangential slip occurs (the
boundary layer is thin), the inertial effects are predominant and the slow wave is a propagation mode. Plona[23]
was the first to observe the second (slow) P wave in water-saturated sintered glass beads. This wave contributes to
the attenuation of the fast wave by mode conversion at inhomogeneities.

However, Biot’s theory considers a fully saturated medium. i.e., a single fluid. A generalization of Biot’s theory
to partial saturation is given in[25–27]. When the pore space is filled with two immiscible fluids, capillary forces
are important, and the theory predicts a third compressional wave (i.e., a second slow wave). The presence of slow
waves constitutes a mechanism of attenuation of the primary (fast) compressional wave by mode conversion. Chin
et al.[10] have analyzed Plona’s data[23] and are able to assess the attenuation in Plona’s experiments. They used
a generalized ray expansion algorithm, where multiple reflections and converted modes can be easily identified.

Moreover, it is well known that Biot-type theories do not appropriately model the levels of wave attenuation
observed in rocks[20]. Gurevich et al.[14] performed experiments on a sample made of sintered glass beads, and
used the Biot’s pore form factor as a fitting parameter to model the amplitudes. This factor controls the behavior
of the dynamic permeability/tortuosity function. However, although this approach successfully describes the wave
propagation properties of synthetic porous media such as sintered glass beads, in natural porous media such as
sandstone, discrepancies between Biot theory and measurements are due to complex pore shapes and the presence
of clay, which are not present in synthetic media. This complexity gives rise to a variety of relaxation mechanisms
that contribute to the attenuation of the different wave modes. Stoll and Bryan[28] show that attenuation is controlled
by the anelasticity of the skeleton (friction at grain contacts and interaction with the fluid) and by viscodynamic
causes. Thus, we model realistic attenuation levels by generalizing the elastic moduli to time-dependent relaxation
functions, implying the introduction of additional differential equations[5].

The poro-viscoelastic differential equations have the formẇ = Mw, wherew is the wavefield vector andM
the propagation matrix (the dot denotes time differentiation). As in the poroacoustic case[9], all the eigenvalues
of M have negative real part. While the eigenvalues of the fast waves have a small real part, the eigenvalues of the
slow waves (in the quasi-static regime) have a large real part. The presence of these quasi-static modes makes the
differential equationsstiff [15]. Thus, seismic and sonic modeling are unstable when using explicit time-integration
methods. Carcione and Quiroga-Goode[9], in the poroacoustic case, and Carcione[7] and Carcione and Seriani[8]
in the poroelastic case, solved this problem by using a splitting or partition method. The propagation matrix can be
partitioned into a stiff part and a non-stiff part asM = Mr + Ms, where r indicates the regular matrix, and s the
stiff matrix. The stiff part is solved analytically and the non-stiff part is solved with an standard explicit method.
Snapshots and time histories are obtained by solving the equations of motion with a direct grid algorithm based on
the Fourier pseudospectral method for computing the spatial derivatives[6]. An example of wave propagation in a
partially saturated sandstone illustrates the potentialities of the theory and simulation algorithm.

2. Equation of motion

The differential equation of motion for a partially saturated porous medium, including capillary effects, have
been obtained by Santos et al.[25–27]from first physical principles. The equations of momentum conservation and
constitutive equations are given below.

2.1. Conservation of momentum

We consider a porous rock saturated by two immiscible fluids, and denote with the subscripts (and superscripts)
w and n quantities related to the wetting and non-wetting phases, respectively. Letvs, v̄n, and v̄w denote the
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particle-velocity vectors of the solid grains, non-wetting fluid and wetting fluid, respectively, and letτij be the total
stress. We define the relative particle velocitiesvn

i = φ(v̄n
i − vs

i ) andvw
i = φ(v̄w

i − vs
i ). Then, the equations of

momentum conservation in two-dimensional space (the(x, z)-plane) can be written as

τix,x + τiz,z = ρv̇s
i + ρnSnv̇

n
i + ρwSwv̇

w
i , τn,i = ρnSnv̇

s
i + g1v̇

n
i + g3v̇

w
i + S2

n

(
ηn

κn

)
vn
i ,

τw,i = ρwSwv̇
s
i + g3v̇

n
i + g2v̇

w
i + S2

w

(
ηw

κw

)
vw
i , (1)

whereS, η, ρ, andκ denote saturation (Sn + Sw = 1), viscosity, density and permeability, respectively,i = 1 and
3 indicate the spatial variablesx andz, and a dot above a variable denotes time differentiation. The stressesτn and
τw are defined inEq. (5). The density coefficients are

ρ = (1 − φ)ρs + φ(Snρn + Swρw), g1 = SnρnFs

φ
, g2 = SwρwFs

φ
, g3 = 0.1

√
g1g2, (2)

whereρ is the total density,φ the effective porosity, andFs a structural factor, which can be estimated as[2],

Fs = 1

2

(
1 + 1

φ

)
. (3)

The quantitiesg1, g2 andg3 are mass coupling coefficients, representing the inertial effects associated with dynamic
interactions between the three phases. The permeabilities are given by

κn = κ

(
1 − 1 − Sn

1 − Srn

)2

and κw = κ

(
1 − Sn − Srw

1 − Srw

)2

, (4)

whereκ is the absolute permeability, andSrn andSrw are residual saturations. These relations are based on laboratory
experiments performed on various porous rocks during imbibition and drainage processes (neglecting hysteresis
effects).

2.2. Stress–strain relations

We defineξ̇n = −∇ · vn andξ̇w = −∇ · vw, whereξ is the variation of fluid content. Letpn andpw denote the
infinitesimal changes of the wetting and non-wetting pressures with respect to the absolute pressuresp̄n andp̄w,
respectively, letεij denote the strain components of the solid grains, and letϑ = ε11 + ε33 denote the dilatation
field. Then, the stress–strain relation have the form

τxx = Kcϑ + N(εxx − εzz) − B1ξn − B2ξw, τzz = Kcϑ − N(εxx − εzz) − B1ξn − B2ξw,

τxz = 2Nεxz, τn = −(Sn + β + ζ)pn + (β + ζ)pw = B1ϑ − M1ξn − M3ξw,

τw = −(Sw + ζ)pw + ζpn = B2ϑ − M3ξn − M2ξw, (5)

whereN is the dry-rock shear modulus,Kc the undrained (closed) bulk modulus (in 2D space,Kc = λc +N, while
in 3D space,Kc = λc + 2N/3, whereλc is an undrained Lamé constant). It is

Kc = Ks(Km + G)

Ks + G
, (6)

whereK denotes bulk modulus,Km the dry-rock bulk modulus,

G = Kf (Km − Ks)

φ(Kf − Ks)
, (7)
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Kf = α

(
γSn

Kn
+ Sw

Kw

)−1

, (8)

α = 1 + (Sn + β)(γ − 1), (9)

B1 = θKc[(Sn + β)γ − β + (γ − 1)ζ], B2 = θKc[(Sw + (1 − γ)ζ], (10)

θ =
[
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, (11)

M1 = −M3 − B1

δKm
, M2 = rB2

q
+ ζ

q
, M3 = −B2

[
r

q
+ 1

Kmδ

]
− ζ

q
, (12)

β = pca

p′
ca
, ζ = p̄w

p′
ca
, (13)

wherepca is the capillary pressure (i.e., the difference between the non-wetting and wetting absolute pressures),
andp′

ca its derivative with respect toSn,

δ = 1

Ks
− 1

Km
, (14)

γ =
(

1 + p′
caSnSw

Kw
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caSnSw

Kn
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, (15)
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Ks
+ 1
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[
qB2 + (Sn + β)
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Ks
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, (16)

q = φ
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Kn
+ 1
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caSnSw

)
. (17)

The capillary pressure is obtained with the following relation:

pca = A

[
(Sn + Srw − 1)−2 −

(
Srn

Sn

)2

(1 − Srn − Srw)
−2

]
. (18)

Having introduced the momentum-conservation and stress–strain equations, we proceed in the next section to recast
these equations in the velocity-stress formulation and incorporate viscoelastic dissipation.

3. Velocity-stress formulation

The velocity-stress formulation are first-order (in the space and time variables) differential equations, where the
unknown variables are the particle velocities and stress components. The equations of momentum conservation(1)
can be rewritten as

v̇s
i = γ11Π

s
i + γ12Π

n
i + γ13Π

w
i , v̇n

i = γ12Π
s
i + γ22Π

n
i + γ23Π

w
i ,
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s
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n
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w
i , (19)

where

Πs
i = τix,x + τiz,z, Πn

i = τn,i − S2
n

(
ηn

κn

)
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i , Πw

i = τw,i − S2
w

(
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)
vw
i , (20)
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are the rate of generalized momenta, andγnm are the components of the following symmetric matrix:

D−1 =




ρ ρnSn ρwSw

ρnSn g1 g3

ρwSw g3 g2




−1

. (21)

The equations corresponding to the stress components are obtained by differentiatingequations (5)with respect to
the time variable, and noting that the rate of the strain components is[22]

ε̇ij = 1
2(vi,j + vj,i).

3.1. Extension to the poro-viscoelastic case

Wave velocities are generally expected to be lower at low frequencies, typical of seismic measurements, than at
high frequencies, typical of laboratory experiments. Since the magnitude of this effect cannot be entirely described by
Biot-type theories[6,20], additional relaxation mechanisms are required to model the velocity dispersion. Measure-
ments of dry-rock velocities contain all the information about pore shapes and pore interactions, and their influence
on wave propagation. Low-frequency wet-rock velocities can be calculated by using Gassmann’s equation, i.e.,
the low-frequency limit of the dispersion relation[12]. High-frequency wet-rock velocities are then given by the
unrelaxed velocities. Since dry-rock velocities are practically frequency-independent, the data can be obtained from
laboratory measurements.

Viscoelasticity is introduced into the poroelastic equations for modeling a variety of dissipation mechanisms.
One of these mechanisms is the squirt-flow[3,21], by which a force applied to the area of contact between two
grains produces a displacement of the surrounding fluid in and out of this area. Since the fluid is viscous, the motion
is not instantaneous and energy dissipation occurs.

We generalize the effective moduli of the rockKc andN, to time-dependent relaxation functions, and assume
that the other coefficients in the potential energy are frequency-independent. The following terms inEq. (5)are
considered:Kcϑ, Nεxx, Nεzz andNεxz. Denoting, in general, those terms byMε, this is replaced byψ ∗ ε,t in the
viscoelastic case, where

ψ(t) = M

(
1 + 1

L

L∑
l=1

ϕl

)−1[
1 + 1

L

L∑
l=1

ϕl exp

(
− t

τσl

)]
H(t), (22)

H(t) is the Heaviside function,

ϕl = τεl

τσl
− 1 (23)

andτεl andτσl are sets of relaxation times.Eq. (22)corresponds to a parallel connection of standard linear solid
elements. For high frequencies (t = 0+) ψ = M.

As in the single-phase viscoelastic case[5], we introduce memory variables in order to avoid the time convolutions.
This approach implies the following substitution:

Mε → Mε +
L∑
l=1

el,

whereel, l = 1, . . . , L are the memory variables, satisfying

el,t = − 1

τσl


M

(
L +

L∑
m=1

ϕm

)−1

ϕlε + el


 . (24)
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In particular, if one mechanism is considered,Eqs. (5)become

τxx = Kcϑ + N(εxx − εzz) − B1ξn − B2ξw + e1 + e2,

τzz = Kcϑ − N(εxx − εzz) − B1ξn − B2ξw + e1 − e2, τxz = 2Nεxz + e3, (25)

and

e1,t = − 1

τσ1

[
Kc

(
1 − τσ1

τε1

)
ϑ̇ + e1

]
, (26)

e2,t = − 1

τσ2

[
N

(
1 − τσ2

τε2

)
(ε̇xx − ε̇zz) + e2

]
, (27)

e3,t = − 1

τσ2

[
N

(
1 − τσ2

τε2

)
(ε̇xy + ε̇xz) + e3

]
, (28)

are the memory-variable equations.
The calculation of the phase velocity and attenuation factor requires a Fourier transformation of the constitutive

equations to the frequency domain, implying the following substitution:

M → M̄,

where

M̄ = M

(
L +

L∑
l=1

ϕl

)−1 L∑
l=1

1 + iωτεl
1 + iωτσl

(29)

with ω the angular frequency. The relaxation times can be expressed in terms of aQ-factorQl and a reference
frequencyfl as

τεl = 1

2πflQl

[√
Q2

l + 1 + 1

]
(30)

and

τσl = 1

2πflQl

[√
Q2

l + 1 − 1

]
. (31)

4. Numerical algorithm

The velocity-stress differential equations can be written in matrix form as

ẇ = Mw + s, (32)

where

w = [vs
x, v

n
x, v

w
x , v

s
z, v

n
z , v

w
z , τxx, τzz, τxz, τn, τw, {e}]T (33)

is the velocity-stress vector,{e} represents the set of memory variables,

s = [0,0,0,0,0,0, sxx, szz, sxz, s
n, sw, {0}]T (34)

is the source vector, andM is the propagation matrix containing the spatial derivatives and material properties.
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The solution toEq. (32)subject to the initial conditionw(0) = w0 is formally given by

w(t) = exp(tM)w0 +
∫ t

0
exp(τM)s(t − τ)dτ, (35)

where exp(tM) is called evolution operator.
As in the poroacoustic case[9], the eigenvalues ofM have negative real parts and differ greatly in magnitude due

to the viscosity terms. The presence of large eigenvalues, together with small eigenvalues, indicates that the problem
is stiff. The differential equations are solved with the splitting algorithm introduced by Carcione and Quiroga-Goode
[9] for two-phase poroacoustic media, and Carcione[7] for two-phase poroelastic media, and generalized here for
three-phase porous media. The propagation matrix can be partitioned as

M = Mr + Ms, (36)

where subscript r indicates the regular matrix, and subscript s the stiff matrix. Let us discretize the time variable as
t = ndt, where dt is the time step. The evolution operator can be expressed as exp(Mr + Ms)t. It is easy to show
that the product formula

exp(M dt) = exp(1
2Ms dt)exp(Mr dt)exp(1

2Ms dt) (37)

is second-order accurate in dt (see[13,30]). Eq. (37)allow us to solve the stiff part separately. Using the Kronecker
product “⊗” of two matrices yields

Ms =
(

I ⊗ S 0
0 0

)
, (38)

whereI is the 2× 2 identity matrix. We should solve

v̇i = Svi (39)

for each Cartesian componenti, where

vi = [vs
i , v

n
i , v

w
i ]T, (40)

and the components ofS are

s11 = 0, s12 = −γ12bn, s13 = −γ13bw, s21 = 0,

s22 = −γ22bn, s23 = −γ23bw, s31 = 0, s32 = −γ32bn, s33 = −γ33bw, (41)

wherebn = S2
nηn/κn andbw = S2

wηw/κw.
The solution of the vector differentialequation (39)is given by

vs
i (t) = sTA−1(etA − I)

(
vn
i (0)

vw
i (0)

)
, (42)

(
vn
i (t)

vw
i (t)

)
= etA

(
vn
i (0)

vw
i (0)

)
, (43)

where

s = (s12, s13)
T, A =

(
s22 s23

s32 s33

)
, (44)

and, by Sylvester’s formula[24],

etA = 1

λ1 − λ2
[(λ1 eλ2t − λ2 eλ1t)I + (eλ1t − eλ2t)A] (45)

assumingλ1 �= λ2, with λ1 andλ2 eigenvalues ofA.
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The regular operator exp(Mr dt) is approximated with a fourth-order Runge–Kutta solver[7]. The output vector
is

wn+1 = w∗ + 1
6(dt)(∆1 + 2∆2 + 2∆3 + ∆4), (46)

where

∆1 = Mrw∗ + sn, ∆2 = Mr(w∗ + 1
2(dt)∆1) + sn+1/2, ∆3 = Mr(w∗ + 1

2(dt)∆2) + sn+1/2,

∆4 = Mr(w∗ + dt∆3) + sn+1,

andw∗ is the intermediate output vector obtained after the operation with the stiff evolution operator.
Note that two operations with(37) imply

exp(2M dt) = exp(1
2Ms dt)exp(Mr dt)exp(Ms dt)exp(Mr dt)exp(1

2Ms dt). (47)

Then,n−1 stiff operations can be saved inn time steps, if only snapshots of the wavefield atndt are to be computed.
Moreover,n(1 − 1/m) stiff operations can be saved when computing seismograms with a sampling rate ofm time
steps.

The resulting algorithm is second-order accurate in time and has spectral accuracy in the space variable. Use
of a fourth-order Runge–Kutta algorithm for the non-stiff part allows us to save computer time by using a larger
time step compared to lower order methods. The spatial derivatives are calculated with the Fourier method by using
the FFT[6,11]. This approximation is “infinitely” accurate for band-limited periodic functions with cutoff spatial
wavenumbers which are smaller than the cutoff wavenumbers of the mesh. If the source spectrum is negligible
beyond the Nyquist wavenumber, we can consider that there is no significant numerical dispersion due to the spatial
discretization.

The periodicity of the Fourier differential operator causes wraparound of the wavefield. In terms of wave propa-
gation, this means that a wave impinging on the left boundary of the grid will return from the right boundary (the
numerical artifact called wraparound). In order to eliminate wraparound, an absorbing strip can be implemented at
the boundaries of the mesh. This is achieved by replacing inEq. (32)the operatorM with M + �, where� is a
diagonal matrix whose entries are the damping coefficients defined by exponential functions in the spatial variables
[18]. Matrix � is zero everywhere except in a narrow band adjacent to the boundary where it is negative. The

Table 1
Material properties for Nivelsteiner sandstone

Grain Bulk modulus,Ks (GPa) 36
Density,ρs ( kg/m3) 2650

Matrix Bulk modulus,Km (GPa) 6.21
Shear modulus,N (GPa) 4.55
Porosity,φ 0.33
Permeability,κ (D) 5
Bulk loss,Q(Kc) 30
Shear loss,Q(N) 20
Reference frequency,f (kHz) 400

Gas Bulk modulus,Kn (GPa) 0.022
Density,ρn (kg/m3) 100
Viscosity,ηn (cP) 0.015

Water Bulk modulus,Kw (GPa) 2.223
Density,ρw (kg/m3) 1000
Viscosity,ηw (cP) 1
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solution to this equation is a wave traveling without dispersion, but whose amplitude decreases with distance at a
frequency-independent rate. A traveling pulse will, thus, diminish in amplitude without a change of shape.

5. Examples

We consider wave propagation in Nivelsteiner sandstone[1,17]. It is a Miocene quartz sand with very low clay
content and has an average grain distribution of 100–300�m. The material properties of Nivelsteiner sandstone are

Table 2
Phase velocities and attenuation factors at 400 kHz

Wave Poro-elastic Poro-viscoelastic

vp (m/s) α (db/neper/km) vp (m/s) α (db/neper/km)

P1 2550.72 0.0262939/474.72 2498.59 1.16372/21448.5
P2 282.98 0.881056/0.143382× 106 282.89 0.896390/0.145920× 106

P3 427.05 1.46909/0.158420× 106 426.98 1.48060/0.159688× 106

S 1536.04 0.0305172/914.931 1498.62 1.39406/0.428387× 105

Fig. 1. Phase velocities of the four wave modes propagating in partially saturated Nivelsteiner sandstone versus frequency. Water saturation is
90%. The compressional waves are labeled P1–P3, and the shear wave is labeled S.



236 J.M. Carcione et al. / Wave Motion 39 (2004) 227–240

given inTable 1. For simplicity, we have assumed that the grains are made of pure quartz. In addition,Sw = 0.9,
Srn = Srw = 0.05,A = 3 kPa, and the absolute pressure of the wetting phase ispw = 30 MPa (equivalent to a
rock buried at approximately 3 km depth). We have obtained the matrix properties by fitting the experimental data
provided by Kelder and Smeulders[17], and assumed that the level of dissipation is that predicted by Biot’s theory
[1]. The properties of the saturated rock at 400 kHz are given inTable 2.

In the first example we assume no losses due to viscoelastic effects. We consider a 357× 357 mesh, with square
cells and a grid spacing of 0.175 mm in the ultrasonic range and 14 m in the seismic range. The source has a dominant
frequency of 400 kHz and 12.5 Hz, respectively. It is a bulk source (Sxx = Szz = Sxz = Sn = Sw). Fig. 1 shows
the phase velocities of the four wave modes versus frequency (Appendix A), where the compressional waves are
labeled P1–P3 (inner wavefront), and the shear wave is labeled S. The slow waves have a quasi-static character at
low frequencies and become overdamped due to the fluid viscosity. This phenomenon precludes the observation of
the slow waves at seismic frequencies.

Snapshots of the wavefield, in the three different phases, are shown inFigs. 2 and 3, for the ultrasonic and seismic
ranges. (The time steps, dt, are 12.5 ns and 1 ms, respectively.) As can be appreciated, the snapshots are in agreement

Fig. 2. Snapshots of the particle velocity at 15�s in the ultrasonic frequency range, corresponding to the rock frame (a), gas phase (b) and water
phase (c). The mesh has 357× 357 grid points and the grid spacing is 0.175 mm. The compressional waves are labeled P1–P3, and the shear
wave is labeled S. The relative amplitudes between the snapshots in (a), (b) and (c) is 1, 224 and 31, respectively, indicating that the slow modes
are much stronger in the fluid phases. The label P2 indicates the classical Biot slow wave (solid and fluid motions in opposite phase), and P3 is
the new slow wave, due to capillary forces (solid and wetting-fluid motions in opposite phase).
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with the predictions of the theory. P1 and S are the usual body waves which we observe in acoustics of material
media. They correspond to all the phases moving in phase, and propagate irrespective of the value of the frequency,
viscosity, permeabilities.

The numerical experiments show that the motion of the solid for the P2 wave is opposite to those of the fluids,
which are in phase. For this reason, we identify this mode with the classical Biot slow wave. With regard to the
faster of the two slow compressional waves, referred to as P3 wave, the solid moves in phase with the non-wetting
fluid and in opposite phase with the wetting fluid, i.e., the two fluids are in opposite phase. This is a new mode,
which is absent in fully saturated porous media.

The slow waves are quasi-static in the seismic range. They can be seen in the fluid phases (Fig. 3b and c) as static
modes at the center of the mesh. From the relative amplitudes between the snapshots, we deduce that the wave
propagation (in terms of energy) occurs in the solid phase.

In the last example we assume that the rock is viscoelastic, with one relaxation mechanism (L = 1) corresponding
to each effective modulus,Kc andN. TheQ-factor parameters inEqs. (30) and (31)areQ(Kc) = 30 andQ(N) = 20,
and the reference frequencies aref(Kc) = f(N) = 400 kHz. The values of the quality factors given inTable 1are
of the same order of magnitude of those given by Winkler and Nur[31] for partially saturated Massilon sandstone.

Fig. 3. Snapshots of the particle velocity at 1 s in the seismic frequency range, corresponding to the rock frame (a), gas phase (b) and water phase
(c). Water saturation is 90%. The mesh has 357×357 grid points and the grid spacing is 14 m. The labels P1 and S denote the fast compressional
and shear waves, and the relative amplitudes indicate that the energy is mainly in the solid phase.
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Fig. 4. Snapshot of the rock-frame vertical particle velocity at 15�s, where the upper half-space is poro-viscoelastic and the lower half-space is
poro-elastic. Water saturation is 90%.

Tao et al.[29] and Jones et al.[16] also report quality factor values of the same order for rocks. Finally, Arntsen and
Carcione[1] have used shear and dilatational quality factor equal to 10 to fit micro-seismograms from laboratory
experiments, at the same frequency indicated inTable 1. Table 2compares the values of the phase velocities and
attenuation factors for the poro-elastic and poro-viscoelastic cases. Rock viscoelasticity affects mainly the waves
of the first kind.Fig. 4 shows a snapshot of the rock-frame vertical particle velocity at 15�s, where the upper
half-space is poro-viscoelastic and the lower half-space is poro-elastic. The attenuation of the P1 and S waves in
the upper-half-space is evident.

6. Conclusions

We have developed a numerical algorithm for wave simulation in a partially saturated rock, including capillarity
pressure effects. A second slow wave due to these effects has been observed for the first time. (Capillarity effects
are not included in Biot’s classical theory.) The differential equations are based on a three-phase Biot-type theory,
and include viscoelastic effects to describe realistic wave attenuation. At seismic frequencies, the slow waves are
quasi-static and the governing equations stiff. The latter are partitioned in a non-stiff part and a stiff part, which
are solved by a standard explicit time-integration algorithm and analytically, respectively. The resulting algorithm
is second-order accurate in time and has spectral accuracy in the space variable. The algorithm, which allows
general material variability, provides snapshots and time histories of the different phases (particle velocities and
stress components). In our simulations, the second slow mode is the faster of the slow compressional waves, and
its particle motion is such that the solid and the non-wetting fluid are in phase. Future research involves the study
of the conditions for which this wave can be detected in laboratory experiments. Our simulations indicate that for
a clean (clay-free) partially saturated natural sandstone, subjected to a pore pressure of 30 MPa, the second slow
wave (labeled P3) is a propagating mode with a velocity of 300 m/s.

Appendix A. Phase velocity and attenuation factor

Following Santos et al.[26], the phase velocity of compressional waves is (e.g.[6]),
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vp =
[
Re

(
1

vc

)]−1

, (A.1)

wherevc is the complex velocity satisfying the eigenvalue equation

Mq = v2
c(D − iL)q (A.2)

with q the eigenvectors,D the density matrix defined inEq. (21),

M =

Kc B1 B2

B1 M1 M3
B2 M3 M2


 ,

the stiffness matrix, and

L = 1

ω
diag(0, bn, bw)

the friction matrix. The shear phase velocity has the form(A.1), where

vc = √
N

[
ρ − ρnSn(g

∗
2ρnSn − g3ρwSw) + ρwSw(g

∗
1ρwSw − g3ρnSn)

g∗
1g

∗
2 − g2

3

]

and

g∗
1 = g1 − ibn

ω
and g∗

3 = g3 − ibw

ω
.

At low frequencies (i.e., the seismic case) the compressional and shear velocities are

vp(P1) =
√

Kc + N

ρ
and vp(S) =

√
N

ρ
. (A.3)

The attenuation factor is given by[6],

α = −ω Im

(
1

vc

)
. (A.4)
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