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Abstract The mesoscopic-loss mechanism is believed to be the most important at-

tenuation mechanism in porous media at seismic frequencies. It is caused by P-wave

conversion to slow diffusion (Biot) modes at material inhomogeneity on length scales

of the order of centimeters. It is very effective in partially saturated media, particu-

larly in the presence of gas. We explicitly extend the theory of wave propagation at

normal incidence to three periodic thin layers and using this result we obtain the five

complex and frequency-dependent stiffness components of the corresponding periodic

finely layered medium, where the equivalent medium is anisotropic, specifically trans-

versely isotropic. The relaxation behaviour can be described by a single complex and

frequency-dependent stiffness component, since the medium consists of plane homoge-

neous layers.The media can be dissimilar in any property, but a relevant example in

hydrocarbon exploration is the case of partial saturation and the same frame skele-

ton, where the fluid can be brine, oil and gas. The numerical examples illustrate the

implementation of the theory to compute the wave velocities (phase and energy) and
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quality factors. We consider two main cases, namely, the same frame (or skeleton) and

different fluids, and the same fluid and different frame properties. Unlike the two-phase

case (two fluids), the results show two relaxation peaks. This scenario is more realistic

since usually reservoirs rocks contain oil, brine and gas.

1 INTRODUCTION

An important wave-loss mechanism in porous media is wave-induced fluid flow, which

occurs at different spatial scales. The flow can be classified as macroscopic, mesoscopic

and microscopic. The mechanism predicted by Biot theory has a macroscopic nature

(Biot, 1956). It is the wavelength-scale equilibration between the peaks and troughs

of the P wave. The associated relaxation peak is located at high frequencies mainly,

compared to the seismic band. Another mechanism is the local fluid flow, or “squirt”

flow absorption mechanism, which has been extensively discussed in the literature

(e.g., Mavko et al., 2009; Carcione & Gurevich, 2011). In this mechanism, fluid-filled

micro-cracks respond with greater fluid-pressure changes than the main pore space.

The resulting flow at this microscopic level is the responsible for the energy loss. It

has been shown that this mechanism generally does not describe the measured levels

of dissipation at seismic frequencies (Diallo et al., 2003).

White et al. (1975) have shown that attenuation and velocity dispersion measure-

ments at the seismic band can be explained by the combined effect of mesoscopic-scale

inhomogeneities and energy transfer between wave modes. We refer to this mechanism

as mesoscopic loss (Pride et al., 2004; Carcione & Picotti, 2006; Carcione, 2014). The

mesoscopic-scale length is intended to be much larger than the grain sizes but much

smaller than the wavelength of the pulse. For instance, if the fluid compressibility varies

significantly from point to point, diffusion of pore fluid between different regions con-
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stitutes a mechanism that can be important at seismic frequencies. White et al. (1975)

considered two periodic dissimilar porous layers, alternately saturated with two fluids,

brine and gas, specifically.

In this work, we present a generalization of the approach given in White et al.

(1975) to the presence of N thin layers, e.g., if N =3 we may have gas, oil and brine

and the same frame, which is a common situation in hydrocarbon rocks. We compute

the P-wave complex modulus of a layered periodic medium in the direction perpendic-

ular to the layering by following Norris (1993). Moreover, we extend results of Norris

(1993) valid for two fluids to the case of three fluids. Then, we obtain the five stiffness

components of the equivalent anisotropic medium at long wavelengths, applying the

approach of Krzikalla Müller (2011) and Carcione et al. (2011), i.e., exploiting the 1D

character of the fluid pressure equilibration process between the poroelastic layers. Be-

cause the fluid-flow direction is perpendicular to the layering plane, there is only one

relaxation function, corresponding to the symmetry-axis P-wave stiffness. Therefore,

knowing this relaxation function and the high- and low-frequency elastic limits of the

stiffness tensor, the five complex and frequency-dependent stiffnesses of the equivalent

poro-viscoelastic medium are obtained.

2 BASIC EQUATIONS FOR POROUS MEDIA

Let us consider isotropic poroelastic layers and denote the time variable by t, the

frequency by f and the position vector by x = (x, y, z) = (x1, x2, x3). Let us(x) =

(us1, u
s
2, u

s
3) and uf (x) = (uf1 , u

f
2 , u

f
3 ) indicate the time Fourier transform of the dis-

placement vector of the solid and fluid (relative to the solid) phases, respectively (if

Uf is the fluid displacement vector, uf = φ(Uf − us), where φ is the porosity). Also,

set u = (us, uf ), let σij(u) and pf (u) denote the time Fourier transform of the total
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stress and the fluid pressure, respectively, and let ǫij(u
s) be the strain tensor of the

solid phase.

2.1 Stress-strain relation

The frequency-domain stress-strain relations of a single plane layer n in a sequence of

N layers, are (Carcione 2014):

σkl(u) = 2µ(n) εkl(u
s) + δkl

(

λ
(n)
G ∇ · us + α(n)M (n)∇ · uf

)

, (1)

pf (u) = −α(n)M (n)∇ · us −M (n)∇ · uf . (2)

For each layer n, the coefficient µ is the shear modulus of the bulk material, considered

to be equal to the shear modulus of the dry matrix. Also

λG = KG −
2

3
µ, (3)

with KG the bulk modulus of the saturated material (Gassmann modulus). The coef-

ficients in equations (1) and (2) can be obtained from the relations (Carcione 2014)

α = 1−
Km

Ks
, M =

(
α− φ

Ks
+

φ

Kf

)−1

,

KG = Km + α2M, (4)

where Ks,Km and Kf denote the bulk moduli of the solid grains, dry matrix and

saturant fluid, respectively. The coefficient α is known as the effective stress coefficient

of the bulk material.

2.2 Equation of motion

Let ρs and ρf denote the mass densities of the solid grains and fluid, respectively, and

let

ρ = (1− φ)ρs + φρf (5)
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denote the mass density of the bulk material. We define the matrices

P =

(
ρI ρfI

ρfI mI

)

and B =

(
0I 0I

0I bI

)

. (6)

which are positive definite and non-negative, respectively. Here, I is the 3 × 3 identity

matrix, the mass coupling coefficient m represents the inertial effects associated with

dynamic interactions between the solid and fluid phases, while the coefficient b includes

the viscous coupling effects between such phases. They are given by the relations

b =
η

κ
, m =

T ρf
φ

, (7)

where η is the fluid viscosity, κ is the frame permeability and T is known as the

structure or tortuosity factor. Next, let L(u) be the second-order differential operator

defined by

L(u) =
[
∇ · σ(u),−∇pf (u)

]⊤
. (8)

Then, if ω = 2πf is the angular frequency, Biot’s equations of motion, stated in the

space-frequency domain, are

− ω2Pu(x,ω) + iωBu(x, ω)−L[u(x, ω)] = 0, (9)

which are complemented with equations (1) and (2). We have ignored external sources

in equation (9). Over the seismic band of frequencies, the inertial (acceleration) term

( −ω2Pu(x,ω)) is always negligible relative to the viscous resistance and can be dis-

carded. Therefore, at this frequency band, the effects of wave-induced fluid flow are

described by the quasi-static Biot theory, i.e., stress equilibrium within the porous ma-

trix and Darcy’s flow of pore fluid. Then, the system equation to solve is the diffusion

equation

iωBu(x, ω)− L[u(x, ω)] = 0, (10)
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2.3 Equivalent medium

Let us consider x1 = x and x3 = z as the horizontal and vertical coordinates, respec-

tively. As shown by Gelinsky & Shapiro (1997), the medium behaves as a TI medium

with a vertical symmetry axis (the x3-axis) at long wavelengths. They obtained the

relaxed and unrelaxed limits, i.e., the low- and high-frequency limit real-valued stiff-

nesses, respectively. At all frequencies, the medium behaves as an equivalent (or effec-

tive) TI viscoelastic medium with complex and frequency-dependent stiffnesses, pIJ ,

I, J = 1, . . . , 6.

Denoting by τij the stress tensor of the equivalent TI medium, the corresponding

stress-strain relations, stated in the space-frequency domain, are (Carcione, 1992, 2014)

τ11(u) = p11 ǫ11(u
s) + p12 ǫ22(u

s) + p13 ǫ33(u
s), (11)

τ22(u) = p12 ǫ11(u
s) + p11 ǫ22(u

s) + p13 ǫ33(u
s), (12)

τ33(u) = p13 ǫ11(u
s) + p13 ǫ22(u

s) + p33 ǫ33(u
s), (13)

τ23(u) = 2 p55 ǫ23(u
s), (14)

τ13(u) = 2 p55 ǫ13(u
s), (15)

τ12(u) = 2 p66 ǫ12(u
s), (16)

where we have assumed a closed system. This can be done for the undrained composite

medium, for which the variation of fluid content ζ = −div uf is equal to zero. This

approach provides the complex velocities of the fast modes. To obtain also the complex

velocity of the slow Biot wave, one needs to consider the stiffness coefficients related to

the variation of fluid content and fluid pressure, where the stiffness matrix has a 7 × 7

dimension (Carcione 2014). The pIJ are the complex and frequency-dependent Voigt
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stiffnesses given in the next section. Then, we can determine the corresponding phase

velocities and quality factors.

3 MESOSCOPIC-FLOW ATTENUATION THEORY FOR

ANISOTROPIC POROELASTIC MEDIA

White’s mesoscopic attenuation theory of interlayer flow as generalised by Norris (1993)

to many dissimilar layers, based on the theory by White et al. (1975), describes the

equivalent viscoelastic medium of a stack of thin alternating porous layers of thickness

Lj , j = 1, . . . , N , such that the period of the stratification is L =
∑

j Lj . The theory

gives the complex and frequency dependent stiffness p33 (see Appendix A). White

model has been generalized by Krzikalla & Müller (2011) to anisotropic media, i.e.,

they have obtained the five stiffnesses of the equivalent transversely isotropic medium

as

pIJ (ω) = cIJ +

(
cIJ − crIJ
c33 − cr33

)

[p33(ω)− c33], (17)

where crIJ and cIJ are the relaxed and unrelaxed stiffnesses, which are given in Gelinsky

& Shapiro (1997) [their eqs. (14) and (15)] (see Appendix A in Carcione et al. (2011)

and Carcione et al., 2013). Using the notation of this paper those stiffnesses can be

found in Carcione, (2014), equations (7.451) and (7.452), respectively.

The assumptions in Krzikalla & Müller (2011) theory are:

i) The stiffnesses matrix is symmetric (see Carcione (2014), eq. (2.24) and related

discussion);

ii) The fluid-flow direction (perpendicular to layering) is independent of the loading

direction and the relaxation behaviour is described by a single relaxation function or

stiffness, i.e., p33(ω). This means that that the theory is valid for plane layers and that

a single relaxation function cannot be used in the case of 2D or 3D heterogeneities;



8

iii) The stiffness p33 used here corresponds to a periodic medium (period =
∑

j Lj).

The fact that the relaxed and unrelaxed shear moduli coincide implies that there is

no shear loss along the directions perpendicular and parallel to layering. The qSV wave

is dispersive due to its coupling with the qP wave, but the horizontally polarized SH

wave is not dispersive, since c55 = cr55 and c66 = cr66 imply p55 = c55 and p66 = c66,

according to eq (17). Moreover, an alternating sequence of thin layers saturated with

different fluids but having the same shear modulus does not generate anisotropy. If there

are no changes in the shear moduli, the long-wavelength equivalent Backus medium is

isotropic.

Following Gelinsky Shapiro (1997), the average medium has the density

ρ̄ = 〈ρ〉, (18)

where ρ is given in eq (5).

The approximate transition frequency separating the relaxed and unrelaxed states

(i.e., the approximate location of the relaxation peak) is (Carcione 2014)

f0 =
8κMEm

πηL2EG
, (19)

where M , Em = Km + 4µ/3, EG = KG + 4µ/3, η and L refer to each single layer. At

this reference frequency, the Biot slow-wave attenuation length equals the mean layer

thickness or characteristic length of the inhomogeneities (see next paragraph). Eq (19)

indicates that the mesoscopic loss mechanism moves towards the low frequencies with

increasing viscosity and decreasing permeability, i.e., the opposite behaviour of the

Biot relaxation mechanism.

The mesoscopic loss mechanism is due to the presence of the Biot slow wave and

the diffusivity constant is D = κMEm/(ηEG) (Carcione, 2014). The critical fluid-

diffusion relaxation length is Lr =
√

D/ω. The fluid pressures will be equilibrated if
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Lr is comparable to the period of the stratification. For smaller diffusion lengths (e.g.,

higher frequencies) the pressures will not be equilibrated, causing attenuation and

velocity dispersion. Notice that the reference frequency (19) is obtained for a diffusion

length Lr = L1/4.

The phase and energy velocities and quality factors, which depend on frequency

and propagation direction, are given in Appendix B of Carcione et al. (2011). The

calculations using these equations requires to take the complex conjugate of p33 with

respect to Norris (1993), since he used the opposite sign convention to define the Fourier

transform.

4 EXAMPLES

We combine equations (17) and (61) to obtain the five stiffness components of a 3-layer

periodic medium. Equations (64) are solved, through straightforward computations, to

obtain Aj , Bj for j = 1, 2, 3. One obtains p33 (equation (61)) by substituting the

values of Aj , Bj so obtained, together with (33) (dj), (24) (Rj), (54) (a1, b1, a2 and

b2), (58) (a3 and b3), (35) (Zj), and (53) (C1, S1, C2 and S2).

4.1 Example 1

The first example considers the same frame and three thin layers of period L = 60 cm

saturated with brine, oil and gas, where the properties of the rock, frame and saturant

fluids are listed in Table 1. The thicknesses are Li = LSi. Figure 1 shows the phase

velocity (a) and dissipation factor (b) for each case indicated in Table 2. Since the

shear modulus is constant, the medium is isotropic (e.g., Berryman et al., 1999; Mavko

et al., 2009) and because there is no P-S coupling the shear waves are lossless. Unlike

the second case (where brine has the highest saturation) the other curves show two
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attenuation peaks. On the basis of the transition frequency (19) the lower- and higher-

frequency (mesoscopic) attenuation peaks are related to the presence of oil and gas,

respectively. When both transition frequencies are similar, we can see one peak as in

Case 2. For instance, the transition frequencies for Case 1 are 142 Hz (brine), 0.5 Hz

(oil) and 13 Hz (gas), while those of Case 2 are 43, 1 and 37 Hz, respectively. On the

other hand, as can be seen from equation (19), the peaks move to the low frequencies

if the period of the layering increases.

4.2 Example 2

The next example assumes three layers of different porosity saturated with oil. The

porosity affects the permeability and the dry-rock moduli as follows. Porosity and

permeability are related by the Kozeny-Carman relation

κ =
Bφ3D2

(1− φ)2
(20)

(Mavko et al., 2009), where D is the grain diameter and B = 0.003, where D = 80 µm

here (sandstone).

We use the model of Krief (Mavko et al., 2009) to obtain the dry-rock moduli Km

and µm. The porosity dependence is consistent with the concept of critical porosity,

since the moduli should be small above a certain value of the porosity (usually from

0.4 to 0.6). The moduli are given by

Km = Ks(1− φ)3/(1−φ),

µm = Kmµs/Ks,

(21)

where Ks and µs are the bulk and shear moduli of the grains.

Table 3 shows the different cases, where the porosities, dry-rock moduli and perme-

abilities of the three layers are indicated below. Figure 2 and 3 show the phase velocity
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(a) and dissipation factor (b) in the directions perpendicular and parallel to the layer-

ing, respectively. In general, there is a single relaxation peak at low frequencies (less

than 0.12 Hz). The Q factors due to frame heterogeneity along the layering plane are

very high and the velocity dispersion very small, as expected, since the mesoscopic loss

is more significant when there is partial saturation (the preceding example). Compare

also the Q factors in Figure 1 with those perpendicular to the layers in Figure 2. The

polar representation of the energy velocity and dissipation factor for Case 1 is displayed

in Figure 4, where the frequency is 0.06 Hz. That velocity defines the wavefront related

to each frequency if multiplied by one unit of time. As can be seen, the qP wave has a

stronger attenuation along the vertical direction and the qSV wave is lossless along the

layering plane and vertical direction. The observed attenuation is due to the coupling

with the qP wave. The SH wave is lossless since it is a pure mode, uncoupled from the

other two waves. Let us replace oil with brine. Figure 5 shows the phase velocity (a)

and dissipation factor (b) in the directions perpendicular to the layering. As can be

appreciated, the maximum attenuation occurs at higher frequencies, due to the lower

viscosity of brine, in agreement with equation (19).

4.3 Example 3

Finally, we consider the cases of Table 3, where layers 1 and 2 are saturated with

oil and layer 3 with gas. The phase velocity (a) and dissipation factor (b) versus

frequency perpendicular and parallel to the layering plane are presented in Figures 6

and 7, respectively. As expected, the presence of partial saturation increases drastically

the attenuation and velocity dispersion in comparison with the previous example.
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5 CONCLUSIONS

Mesoscopic loss is the most effective attenuation mechanism at seismic frequencies since

the amount of attenuation and velocity dispersion can be related to the microstruc-

tural characteristics of the rock and its pore fill. Information, such as permeability,

porosity, fluid modulus, and viscosity, may, in principle, be inferred from the ampli-

tude and relative propagation time of the seismic pulse. The amount of loss because of

partial saturation and porosity variations is more important compared to other causes,

such as variations of the grain and dry-rock frame moduli. Here, we have considered

three flat layers with different properties. In general, the effective medium, i.e., at long

wavelengths compared to the thickness of the layers, is anisotropic in velocity and at-

tenuation. We have explicitly solved the problem for three layers, which allows us to

consider three fluids, i.e., partial saturation with oil, brine and gas for instance, a more

realistic situation compared to the two-phase case considered in the literature. The

equations are valid for three different frames as well.

The first example considers the same frame saturated with brine, oil and gas. Since

the shear modulus is constant, the medium is isotropic and because there is no P-S

coupling, the shear waves are lossless. The curves show two attenuation peaks unlike

the two-fluid case. If the period of the layering increases, the peaks move to the low

frequencies. A second example assumes three layers of different porosity saturated with

oil. In general, there is a single relaxation peak at low frequencies. The Q factors due to

frame heterogeneity along the layering plane are very high and the velocity dispersion

very small, as expected, since the mesoscopic loss is more significant when there is

partial saturation (the preceding example). The qP wave has a stronger attenuation

along the vertical direction and the qSV wave is lossless along the layering plane and
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vertical direction. The observed attenuation is due to the coupling with the qP wave.

When replacing oil with brine, the maximum attenuation occurs at higher frequencies,

due to the lower viscosity of brine. Finally, partial saturation increases drastically the

attenuation and velocity dispersion in comparison with the previous case.
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A : MESOSCOPIC-LOSS THEORY FOR MANY LAYERS

The theory to obtain p33 is based on Norris (1993). For brevity, we refer to his equations when
necessary.

A.1 Single layer

A.1.1 Prerequisites

For convenience, eqs. (25-Norris), using our notation, are rewritten here as

P ′ = −
η

κ
W (22)

W ′ =
iω α

Km + 4
3
µ
(R−1 P − 1) (23)

where, by (26-Norris),

R =
αM

KG + 4
3
µ
. (24)

Equation (22) is the diffusion equation for the dimensionless pressure P and the prime indicates
the spatial derivative with respect to spatial variable z.

Moreover, we need the diffusion coefficient given by (28-Norris), namely,

D =
κ

η
M

Km + 4
3
µ

KG + 4
3
µ

(25)

A.1.2 Rearrangement of (25a-Norris)

Differentiating (22) yields

P ′′ = −
η

κ
W ′

and hence, solving for W ′,

W ′ = −
κ

η
P ′′ (26)

A.1.3 Rearrangement of (25b-Norris)

Dividing (25) by (24) and rearranging, we get

Km +
4

3
µ =

Dαη

κR
(27)

which, substituted into (23), yields

W ′ =
iω κ

D η
(P −R) (28)



16

A.1.4 Derivation of (A1-Norris) and (A2-Norris)

Substituting (26) into (28) and rearranging, we get

P ′′ = −
ω

D
i (P −R) (29)

The coefficient in (29) may be rewritten as

ω

D
i = γ2 with γ := exp

(

i
π

4

) √
ω

D
(30)

so that (29) becomes
P ′′ = − γ2 (P −R) (31)

Assuming that γ and R are constants, the general solution of (31) is

P = P0 + R with P0 = A cos(γ z) + B sin(γ z) (32)

Equation (32) is made equivalent to the first of eqs. (A1-Norris) by defining

d := ℓ γ (33)

with ℓ representing the thickness of the layer, consistently with the second of eqs. (A2-Norris).
From (22) we get

W = −
κ

η
P ′

and hence, using (32),

W =
1

Z

[
A sin(γ z)−B cos(γ z)

]
(34)

which is made equivalent to the second of eqs. (A1-Norris) by defining

Z :=
η

κ γ
(35)

consistently with the first of eqs. (A2-Norris).

A.2 Many layers

Substituting (32) into (24b-Norris), namely,

1

p33
=

〈

1− αP

Km + 4
3
µ

〉

(36)

yields

1

p33
=

〈

1− αR

Km + 4
3
µ

〉

−

〈

α

Km + 4
3
µ
P0

〉

(37)

Using equation (4) and noting that

1− αR
(24)
= 1−

α2M

KG + 4
3
µ

(4)
=

Km + 4
3
µ

KG + 4
3
µ

we get
1− αR

Km + 4
3
µ

=
1

KG + 4
3
µ



17

and hence the first term at the r.h.s. of (37) is

〈

1− αR

Km + 4
3
µ

〉

=

〈

1

KG + 4
3
µ

〉

(13-Norris)
=

1

c33

(c33 = C∞ in Norris), so that (37) becomes

1

p33
=

1

c33
− 〈ψ P0〉 (38)

(p33 = C∗ in Norris), where, for convenience, we introduce

ψ :=
α

Km + 4
3
µ

(27)
=

κR

D η

(35)
=

R

DZ γ
(39)

A.3 Two layers

A.3.1 Averaging

Defining coordinate z so that z = 0 corresponds to the interface between the two layers, the
average of a function g over the two-layer structure is given by

〈g〉 :=
1

L

∫ L2

−L1

g(z) dz =
1

L

(∫ 0

−L1

g(z) dz +

∫ L2

0
g(z) dz

)

(40)

with L := L1 + L2.

A.3.2 Derivation of (A3-Norris)

Using (40), the averaged term in (38) is computed as follows:

〈ψ P0〉 =
1

L

(∫ 0

−L1

ψ(z)P0(z) dz +

∫ L2

0
ψ(z)P0(z) dz

)

=
1

L

(∫ 0

−L1

ψ1 P0(z) dz +

∫ L2

0
ψ2 P0(z) dz

)

=
1

L

(

ψ1

∫ 0

−L1

P0(z) dz

︸ ︷︷ ︸

:=I1

+ψ2

∫ L2

0
P0(z) dz

︸ ︷︷ ︸

:=I2

)

In the last equation, the first integral is

I1 =

∫ 0

−L1

P0(z) dz
(32)
=

=

∫ 0

−L1

[A1 cos(γ1 z) +B1 sin(γ1 z)] dz

= A1

∫ 0

−L1

cos(γ1 z) dz + B1

∫ 0

−L1

sin(γ1 z) dz

=
A1

γ1
sin(γ1 L1)−

B1

γ1
[1− cos(γ1 L1)]

=
1

γ1
[A1 sind1

︸ ︷︷ ︸

a1

+B1 (−1) (1− cos d1)
︸ ︷︷ ︸

b1

]

=
1

γ1
(A1 a1 + B1 b1)

(41)
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where
a1 := sin d1 b1 := (−1) (1− cos d1) (42)

and the second integral is

I2 =

∫ L2

0
P0(z) dz

(32)
=

=

∫ L2

0
[A2 cos(γ2 z) +B2 sin(γ2 z)] dz

= A2

∫ L2

0
cos(γ2 z) dz + B2

∫ L2

0
sin(γ2 z) dz

=
A2

γ2
sin(γ2 L2) +

B2

γ2
[1− cos(γ2 L2)]

=
1

γ2
[A2 sind2

︸ ︷︷ ︸

a2

+B2 (1 − cos d2
︸ ︷︷ ︸

b2

)]

=
1

γ2
(A2 a2 +B2 b2)

(43)

where
a2 := sin d2 b2 := 1− cos d2 (44)

so that

L 〈ψ P0〉 = ψ1 I1 + ψ2 I2

=
2∑

j=1

ψj

γj
(Aj aj + Bj bj)

=
2∑

j=1

ψj

γj

[
Aj sindj + (−1)j Bj (1 − cos dj)

]

(45)

Thus (38) becomes

1

p33
=

1

c33
−

1

L

2∑

j=1

ψj

γj

[
Aj sin dj + (−1)j Bj (1− cos dj)

]
(46)

whence we see that (46) is equivalent to (A3-Norris).
Morever, the coefficient ψj/γj in (46) may be written as

ψj

γj

(39)
=

Rj

Dj Zj γ2j

(30)
=

1

iω

Rj

Zj

(47)

and, therefore, (46) becomes

1

p33
=

1

c33
−

1

iω L

2∑

j=1

Rj

Zj

[
Aj sindj + (−1)j Bj (1− cos dj)

]
(48)

A.3.3 Derivation of (A4-Norris)

To determine parameters A1, A2, B1, B2, we use the following boundary conditions.
Periodicity:

P (z = −L1) = P (z = L2) (49)

W (z = −L1) = W (z = L2) (50)

Continuity:
P (z ↑ 0−) = P (z ↓ 0+) (51)
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W (z ↑ 0−) =W (z ↓ 0+) (52)

With the stenographic notation

C1 := cos d1 S1 := sind1 C2 := cos d2 S2 := sind2 (53)

equations (32) and (34) with conditions (49)–(52) yield

C1 A1 − S1 B1 + R1 = C2 A2 + S2B2 +R2

−
S1

Z1
A1 −

C1

Z1
B1 =

S2

Z2
A2 −

C2

Z2
B2

A1 + R1 = A2 +R2

B1

Z1
=
B2

Z2

respectively. Solving these equations we get






A1

A2

B1

B2




 =

R1 − R2

Z1 cot(d1/2) + Z2 cot(d2/2)






−Z1 cot(d1/2)
Z2 cot (d2/2)

Z1

Z2






which, substituted into (48), yields (A4-Norris).
Moreover, using the stenographic notation (53), eqs. (42) and (44) become

a1 = S1 a2 = S2 b1 = C1 − 1 b2 = 1− C2 (54)

A.4 Generalization of Appendix A of Norris: three layers

A.4.1 Averaging

Defining coordinate z so that z = 0 corresponds to the interface between layer 1 and layer 2,
the average of a function g over the three-layer structure is given by

〈g〉 :=
1

L

∫ L2+L3

−L1

g(z) dz

=
1

L

(∫ 0

−L1

g(z) dz +

∫ L2

0
g(z) dz +

∫ L2+L3

L2

g(z) dz

) (55)

where L := L1 + L2 + L3, with Lj the thickness of layer j.

A.4.2 Generalization of (A3-Norris)

Using (55), the averaged term in (38) is computed as follows:

L 〈ψ P0〉 =

∫ 0

−L1

ψ(z)P0(z) dz +

∫ L2

0
ψ(z)P0(z) dz +

∫ L2+L3

L2

ψ(z)P0(z) dz

=

∫ 0

−L1

ψ1 P0(z) dz +

∫ L2

0
ψ2 P0(z) dz +

∫ L2+L3

L2

ψ3 P0(z) dz

= ψ1

∫ 0

−L1

P0(z) dz

︸ ︷︷ ︸

:=I1

+ψ2

∫ L2

0
P0(z) dz

︸ ︷︷ ︸

:=I2

+ψ3

∫ L2+L3

L2

P0(z) dz

︸ ︷︷ ︸

:=I3

=

3∑

j=1

ψj Ij

(56)
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In the last equation, the first integral is given by equation (41), and the second integral is

given by equation (43). Likewise, the third integral yields

I3 :=

∫ L2+L3

L2

P0(z) dz

(32)
=

∫ L2+L3

L2

[A3 cos(γ3 z) +B3 sin(γ3 z)] dz

= A3

∫ L2+L3

L2

cos(γ3 z) dz +B3

∫ L2+L3

L2

sin(γ3 z) dz

=
A3

γ3

[
sin(γ3 z)

]z=L2+L3

z=L2

+
B3

γ3

[
− cos(γ3 z)

]z=L2+L3

z=L2

=
A3

γ3

{
sin[γ3 (L2 + L3)]− sin(γ3 L2)

}
−

B3

γ3

{
cos[γ3 (L2 + L3)]− cos(γ3 L2)

}

=
1

γ3
{A3

[
sin(γ3 L2 + γ3 L3)− sin(γ3 L2)

]
−B3

[
cos(γ3 L2 + γ3 L3)− cos(γ3 L2)

]
}

=
1

γ3
{A3

[
sin

(

d3
L2

L3
+ d3

)

− sin

(

d3
L2

L3

)

︸ ︷︷ ︸

a3

]
+B3 (−1)

[
cos

(

d3
L2

L3
+ d3

)

− cos

(

d3
L2

L3

)
]

︸ ︷︷ ︸

b3

}

=
1

γ3
(A3 a3 +B3 b3)

(57)

where

a3 := C23 S3 − S23 (1− C3)

b3 := S23 S3 + C23 (1− C3)
(58)

with

C3 := cos(d3) S3 := sin(d3) C23 := cos

(
L2

L3
d3

)

S23 := sin

(
L2

L3
d3

)

(59)

Therefore

L 〈ψ P0〉
(56)
=

3∑

j=1

ψj Ij

(41), (43), (57)
=

3∑

j=1

ψj

γj
(Aj aj + Bj bj)

Thus (38) becomes

1

p33
=

1

c33
− 〈ψ P0〉

=
1

c33
−

1

L

3∑

j=1

ψj

γj
(Aj aj + Bj bj)

(60)

which is a three-layer generalization of (A3-Norris).
Using (47), equation (60) may be written as

1

p33
=

1

c33
−

1

iω L

3∑

j=1

Rj

Zj

(Aj aj + Bj bj) (61)

which generalizes (A3-Norris).
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A.5 Generalization of (A4-Norris)

To determine the six parameters Aj , Bj (with j = 1, 2, 3) we use the following six boundary
conditions:

periodicity

{

P (z = −L1) = P (z = L2 + L3)

W (z = −L1) =W (z = L2 + L3)
(62)

continuity







P (z ↑ 0−) = P (z ↓ 0+)

W (z ↑ 0−) =W (z ↓ 0+)

P (z ↑ L−

2 ) = P (z ↓ L+
2 )

W (z ↑ L−

2 ) =W (z ↓ L+
2 )

(63)

Equations (32) and (34) with conditions (62)–(63) yield

A1 C1 −B1 S1 + R1 = A3 (C3 C23 − S3 S23) + B3 (C23 S3 + C3 S23) + R3

−
1

Z1
(A1 S1 +B1 C1) =

1

Z3
[A3 (C23 S3 + C3 S23) + B3 (S3 S23 − C3 C23)]

A1 + R1 = A2 +R2

B1

Z1
=
B2

Z2

A2 C2 +B2 S2 + R2 = A3 C23 +B3 S23 + R3

1

Z2
(A2 S2 −B2 C2) =

1

Z3
(A3 S23 −B3 C23)

(64)

Finally, equations (64) are solved, through straightforward computations, to obtain Aj , Bj for
j = 1, 2, 3. As these symbolic expressions are somewhat cumbersome, they are omitted here
for brevity. Substituting the values of Aj , Bj so obtained, together with (54) and (58), into
eq. (61), one obtains a generalization of (A4-Norris).
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Table 1. Material properties

Grain bulk modulus, Ks 33.4 GPa
shear modulus, µs 30 GPa
density, ρs 2650 kg/m3

Frame bulk modulus, Km 1.3 GPa
shear modulus, µm 1.4 GPa
porosity, φ 0.3
permeability, κ 1 darcy

Brine density, ρB 975 kg/m3

viscosity, ηB 0.001 Pa s
bulk modulus, KB 2.2 GPa

Oil density, ρo 870 kg/m3

viscosity, ηo 0.3 Pa s
bulk modulus, Ko 2 GPa

Gas density, ρg 70 kg/m3

viscosity, ηg 0.00015 Pa s
bulk modulus, Kg 0.0096 GPa

1 darcy = 9.869233 × 10−13 m2

Table 2. Saturations. Homogeneous frame (L = 60 cm).

Case Sb So Sg

(%) (%) (%)
1 100/3 100/3 100/3
2 60 20 20
3 20 60 20
4 20 20 60
5 49.5 49.5 1

b: brine; o: oil; g: gas

Table 3. Heterogeneous frame (L = 60 cm).
(oil saturated)

Case L1 L2 L3

(cm) (cm) (cm)
1 20 20 20
2 36 12 12
3 12 36 12
4 12 12 36
5 0.6 29.7 29.7

φ (%) 30 20 10
Km (GPa) 7.2 14.5 23.5
µm (GPa) 6.5 13 21.1
κ (darcy) 1 0.24 0.02

1 darcy = 9.869233 × 10−13 m2
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Fig. 1 P-wave phase velocity (a) and dissipation factor (b) corresponding to the cases shown

in Table 2.
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Fig. 2 P-wave phase velocity (a) and dissipation factor (b) corresponding to the cases shown

in Table 3. These properties correspond to the direction perpendicular to the layering plane.
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Fig. 3 P-wave phase velocity (a) and dissipation factor (b) corresponding to the cases shown

in Table 3. These properties correspond to the direction parallel to the layering plane.
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Fig. 4 Polar representation of the energy velocity (a) and dissipation factor (b) corresponding

to Case 1 shown in Table 3 at a frequency of 0.06 Hz.
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Fig. 5 Phase velocity (a) and dissipation factor (b) corresponding to the cases shown in

Table 3, where oil has been replaced by brine. These properties correspond to the direction

perpendicular to the layering plane.
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Fig. 6 Phase velocity (a) and dissipation factor (b) corresponding to the cases shown in

Table 3, where layers 1 and 2 are saturated with oil and the third layer is saturated with gas.

These properties correspond to the direction perpendicular to the layering plane.
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Fig. 7 Phase velocity (a) and dissipation factor (b) corresponding to the cases shown in

Table 3, where layers 1 and 2 are saturated with oil and the third layer is saturated with gas.

These properties correspond to the direction parallel to the layering plane.
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