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Abstract We develop a numerical algorithm for simulation of wave propagation in linear
nonisothermal poroelastic media, based on Biot theory and a generalized Fourier law of heat transport in
analogy with Maxwell model of viscoelasticity. A plane wave analysis indicates the presence of the classical
P and S waves and two slow waves, namely, the Biot and the thermal slow modes of propagation, which
present diffusive behavior under certain conditions, depending on viscosity, frequency, and the
thermoelastic constants. The wavefield is computed with a direct meshing method using the Fourier
differential operator to calculate the spatial derivatives. We propose two alternative time-stepping
algorithms, namely, a first-order explicit Crank-Nicolson method and a second-order splitting method. The
Fourier differential operator provides spectral accuracy in the calculation of the spatial derivatives.
Modeling the thermal diffusive mode is relevant for high-temperature high-pressure fields and since it
leads to mesoscopic attenuation by mode conversion of the fast waves to the thermal waves.

1. Introduction
The theory of thermoporoelasticity combines the equation of heat conduction with Biot's equations of poroe-
lasticity; specifically, it describes the coupling between the fields of deformation and temperature. The
theory is relevant for geophysical studies such as seismic attenuation (Armstrong, 1984; Treitel, 1959) and
geothermal and hydrocarbon exploration in general (e.g, Fu, 2012, 2017; Jacquey et al., 2015).

The heat equation is generalized in analogy with Maxwell model of viscoelasticity (Carcione, Poletto et al.
2018). Biot (1956) used differential equations based on the classical heat conduction, but this formula-
tion has unphysical solutions such as discontinuities and infinite velocities as a function of frequency.
The generalization to finite velocities is usually termed Lord-Shulman model (Lord & Shulman, 1967;
Reza Eslami et al., 2013), but the hyperbolic heat transfer equation, which contains a relaxation time,
has been used before by Maxwell (1867), Vernotte (1948), and Cattaneo (1958), leading to a Maxwell-type
mechanical model kernel and converting the thermal diffusion to wave-like propagation (finite speeds) at
high frequencies. Regarding nonporous thermoelasticity, Rudgers (1990) analyzed the physics and Carcione,
Poletto et al. (2018) provided further insight into the physics and solved the wave propagation problem
with a direct grid-meshing-numerical method based on the Fourier pseudospectral operator to compute the
spatial derivatives.

The theory of wave propagation in porous media has been developed by Maurice A. Biot (Biot, 1962;
Carcione, 2014). He considered a matrix (skeleton or frame) fully saturated with a fluid and predicted the
existence of two compressional (P) waves and a shear wave. The second P wave (Biot wave) is diffusive at low
frequencies and has a lower velocity than that of the fast P wave at high frequencies. The diffusive behavior
is not present if the fluid viscosity is 0 or the frame permeability is infinite. Biot (1962) assumes a contin-
uum mechanics approach applied to measurable macroscopic quantities, ignoring the detailed geometrical
features of the microscopic elements of the medium (mineral grains, pores, and grain contacts). The theory
is quite general, since it does not make any assumption on the shape and geometry of the pores and grains.

The constitutive equations of the theory of porothermoelasticity involve the coupling of the stress com-
ponents with the temperature field (Noda, 1990; Nield & Bejan, 2006). The dynamical equations predict
four propagation modes, namely, a fast P or E (elastic) wave, a slow (Biot) diffusion/wave, a slow T (ther-
mal) diffusion/wave, and a shear wave (e.g., Sharma, 2008). The thermal mode is diffusive for low values
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of the thermal conductivity and wave-like for high values of this property. Compared to the uncoupled case
(isothermal case), the velocity of the fast P wave is higher and the S wave is not affected by the thermal
effects.

Iesan and Quintanilla (2014) derive a theory of porothermoelasticity, based on a double porosity structure.
This theory is not based on Biot equations and Darcy law, so that it is not directly comparable with ours.
Kumar et al. (2017) performed a plane wave analysis and found four coupled P waves, namely, the P wave,
a thermal wave, a so-called longitudinal volume fractional wave corresponding to the pores (first porosity),
and a longitudinal volume fractional wave corresponding to the “fissures” (second porosity), in addition to
an S wave which is not affected by the thermal properties. The last two P waves are possibly slow waves of
the Biot type, but the authors do not provide such identification and/or analysis of the physics, Moreover,
Kumar et al. (2017) predict negative quality factors, which suggest that the propagation can be unstable.

We solve the thermoporoelasticity equations by using the Fourier method to compute the spatial deriva-
tives (e.g., Carcione, 2014) and two explicit time integration techniques. The differential equations are stiff,
meaning that there are large negative eigenvalues of the system of equations due to the Biot wave and to
the Maxwell relaxation time in the heat equation, while the eigenvalues of the fast waves have a small real
part. A splitting or partition method solves this problem by calculating the unstable part of the equations
analytically. The equations of motion are solved with a Crank-Nicolson time-stepping method. Alterna-
tively, a Runge-Kutta time integration technique to solve the nonstiff part of the differential equations is also
implemented (Carcione & Quiroga-Goode, 1995; Carcione, Poletto et al. 2018).

As conventional sources of hydrocarbons decline, the exploration is being started to be developed in unex-
plored or underdeveloped areas. High-pressure high-temperature reservoirs are increasingly becoming the
focus of petroleum exploration in the search for additional reserves. The modeling method developed in this
work can be relevant for the exploration of high-pressure high-temperature deep reservoirs and tight oil and
gas resources in thermal hydrocarbon source rocks with temperatures above 400 ◦C (e.g., Fu, 2012, 2017),
as well as in geothermal fields (Bonafede, 1991; Carcione, Wang et al. 2018).

2. Equations of Motion
Let us define by vi and qi, i = 1, 2, the components of the particle velocity fields of the frame and fluid
relative to the frame, respectively, 𝜎ij the components of the total (bulk) stress tensor, p the fluid pressure,
and T the increment of temperature above a reference absolute temperature T0 for the state of zero stress
and strain. To obtain the equations of dynamic thermoporoelasticity in 2-D isotropic media, we generalize
the equations given in Carcione, Poletto et al. (2018) to the poroelastic case (e.g., Carcione, 1996, 2014). We
have the following constitutive equations:

.
𝜎xx = 2𝜇vx,x + 𝜆𝜖m + 𝛼M𝜖 − 𝛽

.
T + 𝑓xx,

.
𝜎zz = 2𝜇vz,z + 𝜆𝜖m + 𝛼M𝜖 − 𝛽

.
T + 𝑓zz.

.
𝜎xz = 𝜇(vx,z + vz,x) + 𝑓xz,
.
𝜎𝑓 = −𝜙 .p = 𝜙M𝜖 − 𝛽𝑓

.
T + 𝑓𝑓 ,

𝜖 = 𝛼𝜖m + 𝜖𝑓 , 𝜖m = vx,x + vz,z, 𝜖𝑓 = qx,x + qz,z,

(1)

where fxx, fzz, fxz, and ff are external sources, respectively. The subscript “, i” denotes the spatial derivative
𝜕∕𝜕xi, and a dot above a variable indicates a time derivative. The notation here is such that the rate of vari-
ation of fluid content is

.
𝜁 = −qi,i (Carcione, 2014). In the following, the subscripts “m” and “f ” refer to the

solid (dry) matrix and the fluid, respectively.

The elastic and thermal coefficients are as the following: 𝜆 is the Lamé constant of the drained matrix, 𝜇 is
the shear modulus of the drained (and saturated) matrix,

M =
Ks

1 − 𝜙 − Km∕Ks + 𝜙Ks∕K𝑓

,

𝛼 = 1 −
Km

Ks
,

Km = 𝜆 + 2
3
𝜇,

(2)
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with Ks and Kf the solid and fluid bulk moduli, respectively; 𝜙 is the porosity, and 𝛽 and 𝛽 f the coefficients
of thermoelasticity of the bulk material and fluid, respectively.

Dynamical equations

𝜎xx,x + 𝜎xz,z = 𝜌
.vx + 𝜌𝑓

.qx + 𝑓x,

𝜎xz,x + 𝜎zz,z = 𝜌
.vz + 𝜌𝑓

.qz + 𝑓z,

−p,x = 𝜌𝑓
.vx + m .qx +

𝜂

𝜅
qx,

−p,z = 𝜌𝑓
.vz + m .qz +

𝜂

𝜅
qz,

Δ𝛾T = c(
.
T + 𝜏T̈) + 𝛽T0

[
(𝜖m + 𝜏 .

𝜖m) + (𝜖𝑓 + 𝜏 .
𝜖𝑓 )

]
+ q,

(3)

where

Δ𝛾 = (𝛾T,x),x + (𝛾T,z),z (4)

(Dhaliwal & Sherief, 1980),

𝜌 = (1 − 𝜙)𝜌s + 𝜙𝜌𝑓 (5)

is the composite density, with 𝜌s and 𝜌f the solid and fluid densities, respectively; m =  𝜌𝑓∕𝜙, with  the
tortuosity; 𝜂 is the fluid viscosity;𝜅 is the permeability of the medium; 𝛾 is the bulk coefficient of heat conduc-
tion (or thermal conductivity); c is the bulk specific heat of the unit volume in the absence of deformation;
𝜏 is a Maxwell-Vernotte-Cattaneo relaxation time; fi are external forces; q is a heat source; and Δ𝛾 = 𝛾Δ
in the homogeneous case, with Δ the Laplacian. These equations assume thermal equilibrium between the
solid and the fluid; that is, the temperature in both phases is the same. Thermal equilibrium is valid when
the interstitial heat transfer coefficient between the solid and fluid is very large and the ratio of pore surface
area to pore volume is sufficiently high.

Next, we compare our equations with other formulations presented in the literature. Biot (1956) and
Deresiewicz (1957) do not consider the relaxation term, leading to unphysical results (see Carcione, Poletto
et al. 2018). McTigue (1986) and Bonafede (1991) treat the static problem, so that there are no inertial terms
(accelerations) and no relaxation effects. The heuristic heat equation in equations (3) reduces to that of lin-
ear thermoelasticity for a solid (no fluid) and to the heat equation for a fluid, as expected. If one wishes to
allow for heat transfer between the solid and the fluid, a starting point to do this is given in Nield and Bejan
(2006, equations 2.11 and 2.12), where the inertial terms have to be included (those related to 𝜖m and 𝜖f
in equation (3)5). Sharma (2008) obtains similar equations, with 𝛽 = 𝛽m + 𝛼𝛽 f , where 𝛽m corresponds to
the skeleton or matrix. Noda (1990, equation 6) neglects the inertial terms in the temperature equation but
includes the nonlinear advection term. This author relates these coefficients to the coefficients of thermal
expansion, 𝛼m and 𝛼f , as 𝛽m = 3[(Km + (𝛼 − 𝜙)2M)𝛼m + 𝜙(𝛼 − 𝜙)M𝛼f ] and 𝛽 f = 3𝜙M[(𝛼 − 𝜙)𝛼m + 𝜙𝛼f ]. The
behavior of these quantities is such that for 𝜙 = 0, Km = Ks, 𝛼 = 0, 𝛽m = 3Ks𝛼m, and 𝛽 f = 0, and for 𝜙 = 1,
Km = 0, 𝛼 = 1, M = Kf , 𝛽m = 0, and 𝛽 f = 3Kf𝛼f . Here, we consider 𝛽, 𝛽 f , 𝛾 , and c as parameters, obtained
from experiments or from a specific theoretical model.

3. Particle Velocity-Stress-Temperature Formulation
We recast the equations as new expressions to be used for the numerical simulation of the fields.
Equations (3) yield

.vx = 𝛽11(𝜎xx,x + 𝜎xz,z − 𝑓x) − 𝛽12

(
p,x +

𝜂

𝜅
qx

) ≡ 𝛱x,

.vz = 𝛽11(𝜎xz,x + 𝜎zz,z − 𝑓z) − 𝛽12

(
p,z +

𝜂

𝜅
qz

) ≡ 𝛱z,

.qx = 𝛽21(𝜎xx,x + 𝜎xz,z − 𝑓x) − 𝛽22

(
p,x +

𝜂

𝜅
qx

) ≡ 𝛺x,

.qz = 𝛽21(𝜎xz,x + 𝜎zz,z − 𝑓z) − 𝛽22

(
p,z +

𝜂

𝜅
qz

) ≡ 𝛺z,

(6)

where [
𝛽11 𝛽12
𝛽21 𝛽22

]
= (𝜌𝑓 2 − 𝜌m)−1

[
−m 𝜌𝑓

𝜌𝑓 −𝜌

]
. (7)
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Table 1
Medium Properties

Properties Values
Grain bulk modulus, Ks 35 GPa

density, 𝜌s 2,650 kg/m3

Frame bulk modulus, Km 1.7 GPa
shear modulus, 𝜇m 1.885 GPa
porosity, 𝜙 0.3
permeability, 𝜅 1 darcy
tortuosity,  2

Water density, 𝜌f 1,000 kg/m3

viscosity, 𝜂f 0.001 Pa s

bulk modulus, Kf 2.4 GPa

thermoelasticity coefficient, 𝛽f 40,000 kg/(m s2 ◦K)

Bulk specific heat, c 820 kg/(m s2 ◦K)
thermoelasticity coefficient, 𝛽 120,000 kg/(m s2 ◦K)
absolute temperature, T0 300 ◦K
Case 1
thermal conductivity, 𝛾 10.5 m kg/(s3 ◦K)
relaxation time, 𝜏 1.5 × 10−8 s
Case 2
thermal conductivity, 𝛾 4.5 × 106 m kg/(s3 ◦ K)
relaxation time, 𝜏 1.5 × 10−2 s

Defining
.
T = 𝜓, (8)

equation (3)5 becomes
.
𝜓 = (c𝜏)−1 [Δ𝛾T − q − 𝛽T0(𝜖m + 𝜏(𝛱x,x +𝛱z,z) + 𝜖𝑓 + 𝜏(𝛺x,x +𝛺z,z))

]
− 1
𝜏
𝜓. (9)

The system of equations is completed with the constitutive equations (1). A plane wave analysis to obtain
the phase velocity and attenuation factor of the wave modes is given in Appendix A.

3.1. The Algorithms
The 2-D velocity-stress differential equations can be written in matrix form as

.v + s = Mv, (10)
where

v = [vx, vz, qx, qz, 𝜎xx, 𝜎zz, 𝜎xz, p,T, 𝜓]⊤ (11)

is the unknown array vector,

s = [−𝛽11𝑓x,−𝛽11𝑓z,−𝛽21𝑓x,−𝛽21𝑓z, 𝑓xx, 𝑓zz, 𝑓xz,−𝑓𝑓∕𝜙, 0, q′]⊤ (12)

is the source vector, and M is the propagation matrix containing the spatial derivatives and material
properties, where q′ = −(c𝜏)−1q.

The solution to equation (10) subject to the initial condition v(0) = v0 is formally given by

v(t) = exp(tM)v0 + ∫
t

0
exp(𝜏M)s(t − 𝜏)d𝜏, (13)

where exp(tM) is called evolution operator.

We solve the equations with the time integration methods given in Appendices B and C. The spatial
derivatives are calculated with the Fourier method by using the fast Fourier transform (Carcione, 2014).
This spatial approximation is infinitely accurate for band-limited periodic functions with cutoff spatial
wavenumbers which are smaller than the cutoff wavenumbers of the mesh.

CARCIONE ET AL. 8150
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Figure 1. Phase velocity (a) and attenuation factor (L; b and c) as a function of frequency for the uncoupled case
(𝛽 = 𝛽f = 𝛽m = 0). The properties are given in Table 1 (Case 1).

4. Physics and Simulations
We consider the poroelasticity material properties given in Table 1, which are taken from Carcione, (2014;
see his Figure 7.9), and two different cases regarding the thermoelasticity properties. The parameters of Case
1 are typical of rocks, while those of Case 2 may refer to a hypothetical synthetic material. Basically, the
reason is to show how the physics behaves for different values of the thermal conductivity. Sharma (2008)
considers 𝛾 = 170 m kg/(s3 ◦K), c = 2.3 × 106 kg/(m s2 ◦K), 𝜏 = 10−10 s, 𝛽 f = 0.0003𝜇 ◦K−1, and 𝛽s = 2𝛽 f . He
made plots of wave velocity and attenuation as a function of a parameter 𝜂 = (𝜔𝜏)−1 in the range 0 < 𝜂 < 0.2,
which implies 𝜔 > 50 GHz, a frequency range outside of geophysical and rock physics applications (see

CARCIONE ET AL. 8151
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Figure 2. Phase velocity (a) and attenuation factor (b and c) as a function of frequency for the coupled case. The
properties are given in Table 1 (Case 1).

his Figure 2). With the above properties, the T wave is diffusive till 𝜔 = 0.2 GHz approximately. Here, we
consider geophysical meaningful properties.

On the basis of the properties of Table 1, Figure 7.9 of Carcione (2014) shows the phase velocities as a function
of frequency for the poroelastic case (uncoupled isothermal case, no thermal effects). Figure 1 displays the
phase velocity (A7) (a) and attenuation factor (A8) (b and c; Case 1) when heat conduction and deformation

CARCIONE ET AL. 8152



Journal of Geophysical Research: Solid Earth 10.1029/2019JB017851

Figure 3. Phase velocity (a) and attenuation factor (b and c) as a function of frequency for the coupled case. The
properties are given in Table 1 (Case 2).

CARCIONE ET AL. 8153
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Figure 4. Phase velocity (a), log10(A) (b), and snapshot of the temperature field at 0.18 s (c) in the uncoupled case. The
black line corresponds to Case 1, whereas the red line and the snapshot correspond to Case 2.

CARCIONE ET AL. 8154
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Figure 5. Snapshot of the temperature field T at 47.5 ms in the uncoupled
case (a), 𝜂 = 0 (b), and 𝜂 ≠ 0 (c). The last two panels correspond to the
coupled case. The sources are dilatational (fxx , fzz, ff , and q), and the
properties are those of Case 2.

are uncoupled. Figures 2 and 3 show the results in the coupled case for
Cases 1 and 2, respectively. The plots show that the fast P wave has two
Zener-like relaxation peaks, related to the Biot and thermal loss mecha-
nisms. Moreover, the slow and thermal waves are strongly diffusive at low
frequencies. For Case 2, the thermal attenuation peak moved to the seis-
mic band and the thermal wave is more wave-like at these frequencies.
Kumar et al. (2017), based on the theory of Iesan and Quintanilla (2014),
predict negative quality factors of the P wave, in this case, at the whole
frequency range, despite the fact that the latter authors have shown the
uniqueness of solutions as well as their stability when the internal energy
is positive definite. Our attenuation factor is positive over all frequencies.

The following are simulations computed with the Crank-Nicolson algo-
rithm. We obtain snapshots of the wavefield, where we consider a 231 ×
231 mesh. The source is located at the center of the mesh and has the time
history

h(t) = cos[2𝜋(t − t0)𝑓0] exp[−2(t − t0)2𝑓 2
0 ], (14)

where f0 is the central frequency and t0 = 3∕(2f0) is a delay time.

The Biot slow P wave and the T wave have a similar behavior at the high
and low frequencies, with a diffusive and wave-like behavior, respectively.
This behavior also depends on the medium properties. In the uncoupled
case (𝛽m = 𝛽 f = 0) and for the values of Case 1, we have c∞ = 924 m/s
(thermal wave). On the other hand, we have c∞ = 605 m/s for Case 2.
Figure 4 shows the phase velocity (a), log10(A) (b), and snapshot of the
temperature field (c). The black line corresponds to Case 1, whereas the
red line and the snapshot correspond to Case 2. We have considered a grid
spacing of dx = dz = 1 m, dt = 0.2 ms, f0 = 75 Hz (a heat source q), and a
propagation time of 0.18 s. For Case 1, the T wave does not propagate due
to the strong attenuation and the very low phase velocity at the source
frequency range.

Next, in all the following experiments, we consider a central frequency of
f0 = 150 Hz and run the simulations with dt = 0.05 ms. Figure 5 shows
snapshots of the temperature field at 47.5 ms in the uncoupled case (a),
𝜂 = 0 (b), and 𝜂 ≠ 0 (c) (Case 2). The last two panels correspond to the
coupled case. The sources are dilatational (fxx, fzz, ff , and q). The same
plots for vz and qz are shown in Figures 6 and 7, respectively. The slow P
and T wavefronts can be seen in the snapshots (see the phase velocities
in Figure 3a). (The high-frequency limit velocity of the slow wave can be
obtained as a root of the second-order equation (7.329) in Carcione, 2014).
As can be seen, the slow wave is diffusive in panel (c). We observe that the
fast P wave velocity is higher in the coupled case (compare Figures 6a and
6b), in agreement with Figures 1a and 2a. The same phenomenon was
observed in the thermoelastic (nonporous) case, where a detailed analysis
has been performed (Carcione, Poletto et al. 2018). Figure 8 shows snap-
shots using the properties of Case 1, where 𝜂 = 0. In this case, the T wave
is diffusive and can be seen at the source location. The field generated by
a heat source is shown in Figure 9 (Case 2). As can be appreciated, a heat
source generates significant elastic wave fields

Figure 10 shows the results for a shear source (fxz) and 𝜂 = 0 at a propagation time of 75 ms (Case 2). We
have used absorbing boundaries to damp the fast P wave, whose wavefront exceeds the size of the model and
undergoes wraparound. The S wave is not coupled to the heat equation, but since a shear source generates
P waves in the near field, these signals appear in all the field components, including the temperature field.
In particular, we can see the S wave and the two slow waves in panel (c). To complete the analysis of wave

CARCIONE ET AL. 8155
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Figure 6. Snapshot of the particle velocity of the frame vz at 47.5 ms (see caption of Figure 5).
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Figure 7. Snapshot of the particle velocity of the fluid relative to the solid qz at 47.5 ms (see caption of Figure 5).
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Figure 8. Snapshots of T (a), vz (b), and qz (c) at 47.5 ms in the coupled case, with 𝜂 = 0 and dilatational sources. The
properties are those of Case 1.
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Figure 9. Snapshots of T (a), vz (b), and qz (c) at 47.5 ms in the coupled case, with 𝜂 = 0 and a heat source. The
properties are those of Case 2.
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Journal of Geophysical Research: Solid Earth 10.1029/2019JB017851

Figure 10. Snapshots of T (a), vz (b), and qz (c) at 75 ms in the coupled case, with 𝜂 = 0 and a shear source (fxz). The
properties are those of Case 2.

CARCIONE ET AL. 8160
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Figure 11. Snapshot of vz at 47.5 ms in the coupled case, with 𝜂 = 0 and a vertical source (fz). The properties are those
of Case 2.

propagation in homogeneous media, we show a snapshot where all the wave modes are present (Figure 11).
The field has been generated by a vertical force fz.

Finally, we present an example of an inhomogeneous medium; a plane interface separates two half spaces.
The upper medium has the properties of Table 1, whereas the lower medium has 𝜇m = 9 GPa and Km =
10 GPa, that is, a higher velocity. The thermal properties are those of Case 2. We obtain snapshots of the
wavefield at 55 ms, where we consider a 385× 385 mesh, with dx = dz = 1 m. The source is dilatational (fxx =
fzz), and its central frequency is 150 Hz. Figure 12 shows the snapshots of the temperature field for 𝜂 = 0 (a)
and 𝜂 ≠ 0 (b), where the wavefields are identified. The T wave is hardly affected by a variation of the dry-rock
moduli. Head (lateral) waves with a planar wavefront can also be observed. Even if the heterogeneity is a
simple plane interface, the wavefield is complex and could be more complex in the presence of significant
S waves, generated, for instance, by a vertical elastic force.

In real geophysical cases, both the thermal wave and the Biot slow P wave are diffusive. The fact that these
waves are diffusive is the cause of attenuation of the fast P wave when the medium is heterogeneous, by
means of the mechanism called mesoscopic attenuation or wave-induced fluid-flow attenuation (Carcione,
2014; Müller et al., 2010; Picotti & Carcione, 2017). Energy transfer is between wave modes, with P wave to
slow P (Biot) wave conversion being the main physical mechanism. The mesoscopic-scale length is intended
to be larger than the grain sizes but much smaller than the wavelength of the pulse. For instance, if the
matrix porosity varies significantly from point to point, diffusion of pore fluid between different regions con-
stitutes a mechanism that can be important at seismic frequencies. In this case, there is additional loss due
to P wave to thermal wave conversion, a new loss mechanism that needs to be investigated, which can be
termed wave-induced thermoporoelastic attenuation in analogy with wave-induced fluid-flow attenuation.
Zener (1938) explained the physics of thermoelastic attenuation in homogeneous media: “Stress inhomo-
geneities in a vibrating body give rise to fluctuations in temperature, and hence to local heat currents. These
heat currents increase the entropy of the vibrating solid, and hence are a source of internal friction.” Basi-
cally, the temperature variation caused by the passage of the P wave provides the gradient from which the
thermal dissipation and attenuation occurs. Moreover, Armstrong (1984) found that the distribution and
correlation of heterogeneities play an important role in the determination of the frequency dependence of
thermal dissipation, and here the wave conversion is an additional loss mechanism.

This theory and simulation can be generalized to the case of anisotropic thermoporoelasticity and a frac-
tional heat equation. The basis for this generalization can be found in Dhaliwal and Sherief (1980), Singh
and Sharma (1985), and Sherief et al. (2010) for thermoelasticity and Carcione (1996) for anisotropic
poroelasticity.
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Figure 12. Snapshots of the temperature field for 𝜂 = 0 (a) and 𝜂 ≠ 0 (b). The difference between the upper and lower
media are the values of the dry-rock moduli. The whole space corresponds to Case 2.

5. Conclusions
We have proposed a numerical algorithm to solve the differential equations of dynamic porothermoelasticity,
that is, wave propagation, where poroelasticity is coupled with the heat equation. The modeling algorithm
is a direct-grid method that allows us to handle spatially inhomogeneous media. It is based on the Fourier
method to compute the spatial derivatives and a Crank-Nicolson scheme. Another time-stepping method is
based on the Runge-Kutta time-stepping technique combined with a splitting method to compute the time
evolution of the wavefield.

Four waves propagate: the fast P wave, the slow (Biot) P wave, a thermal P wave/diffusion mode, and the
S wave. The thermal mode is coupled with the P waves inducing additional energy dissipation. At low fre-
quencies, the Biot and thermal waves are diffusive modes. The physics of wave propagation is analyzed in
detail for two different sets of thermoelastic properties, and the velocities and attenuation factors of the dif-
ferent wave modes are determined under different conditions. The simulations show the complexity of the
wavefield, which can be interpreted after a detailed study of the physics. The location of the thermoelastic
and Biot relaxation peaks, describing the attenuation in the frequency axis, depend on the diffusion length
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of the heat and fluid flow, respectively. Future research involves the analysis of P wave dissipation in highly
heterogeneous media due to thermal effects.

Appendix A: Plane Wave Analysis
To analyze the phase velocity and attenuation of the different waves modes involved in the propagation, it
is enough to consider a 1-D medium, since the medium is isotropic and the S wave is not affected by the
temperature effects. It can be shown that the complex velocity of the S wave is that of Biot theory:

vc(S wave) = vc =
√

𝜇

𝜌 − 𝜌2
𝑓
[m − i𝜂∕(𝜔𝜅)]−1

(A1)

(e.g., Carcione, 2014, equation 7.350). In 1-D space, the field vector is v = [v, q, 𝜎, p,T]⊤, and let us consider a
plane wave of the form exp[i(𝜔t− kx)], where 𝜔 is the angular frequency and k is the complex wavenumber.
Equations (1) and (3) reduce to

−k𝜎 = 𝜔𝜌v + 𝜔𝜌𝑓q,
kp = 𝜔𝜌𝑓 v + 𝜔mq − (i𝜂∕𝜅)q,
𝜔𝜎 = −kEv − 𝛼kM(𝛼v + q) − 𝜔𝛽T,
𝜙𝜔p = 𝜙kM(𝛼v + q) + 𝜔𝛽𝑓T,

− 𝛾k2T
1 + i𝜔𝜏

= i𝜔cT − ikT0𝛽(v + q).

(A2)

where E = 𝜆 + 2𝜇. This is a homogeneous system of linear equations whose solution is not 0 if the
determinant of the system is 0. We obtain the dispersion relation for P waves:

a6v6
c + a4v4

c + a2v2
c + a0 = 0, (A3)

where

.

(A4)

If 𝛽 = 𝛽 f = 0, we obtain a quadratic equation in vc, corresponding to Biot velocities for the fast and slow P
waves:

(−ib𝜌 + 𝜔m𝜌 − 𝜔𝜌2
𝑓
)v4

c + (ibEG − 𝜔mEG − 𝜔M𝜌 + 2𝜔𝛼M𝜌𝑓 )v2
c + 𝜔ME = 0, (A5)

and an additional root

vc =
√

i𝜔a2

1 + i𝜔𝜏
, a =

√
𝛾

c
, (A6)

for the thermal wave, where a is the thermal diffusivity (Carcione, Poletto et al. 2018). This root is the
solution of a telegrapher equation (e.g., Carcione & Poletto, 2002) of the form T̈ = c∞ΔT +

.
T∕𝜏, where

c∞ =
√
𝛾∕(c𝜏) = a∕

√
𝜏 is the velocity at infinite frequency. For 𝜏 = 0, we obtain the diffusion equation and

c∞ = ∞. At low frequencies this velocity is 0.

The phase velocity and attenuation factor can be obtained from the complex velocity as

vp =
[
Re

(
v−1

c
)]−1 and A = −𝜔Im(v−1

c ), (A7)
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a6 = 𝜙cV (𝜔R − ib𝜌)

a0 = −i𝜔2𝜙𝛾ME,
a2 = 𝜔

(
cME𝜙 + b𝛾𝜙EG + 𝛽T0C

)
+ i𝜔2 (𝛾𝜙D + 𝜙cME𝜏 + 𝛽T0C𝜏

)
,

a4 = i𝜙bS − 𝜔
(

b𝜙𝛾𝜌 + 𝜙cD + 𝜙b𝜏S + T0𝛽F
)
− i𝜔2 (𝜙𝛾R + 𝜙c𝜏D + T0𝛽𝜏F

)
,

a6 = 𝜙c(𝜔RV − ib𝜌V∗),
EG = E + 𝛼2M, C = E𝛽𝑓 + M(𝛼 − 1)(𝛼𝛽𝑓 − 𝜙𝛽),

D = mEG + 𝜌M − 2𝛼M𝜌𝑓 , F = 𝛽𝑓 (𝜌 − 𝜌𝑓 ) + 𝜙𝛽(m − 𝜌𝑓 ),
S = cEG + T0𝛽

2, R = m𝜌 − 𝜌2
𝑓
,

V = 1 + i𝜔𝜏, b = 𝜂

𝜅
,
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respectively (e.g., Carcione, 2014). Deresiewicz (1957) introduces the attenuation factor as the ratio of the
energy dissipated per stress cycle to the total vibrational energy. It is

L = 4𝜋 ·
Avp

𝜔
. (A8)

Appendix B: Crank-Nicolson Explicit Scheme
The Crank-Nicolson explicit scheme has been used by Carcione and Quiroga-Goode (1995) to solve the
equations of poroelasticity and by Carcione, Poletto et al. (2018) to solve the thermoelasticity equations. The
scheme, adapted to the thermoporoelasticity equations, is

D1∕2vx = 𝛽11(𝜎xx,x + 𝜎xz,z − 𝑓x)n − 𝛽12pn
,x −

𝜂

𝜅
𝛽12A1∕2qx = 𝛱n

x ,

D1∕2vz = 𝛽11(𝜎xz,x + 𝜎zz,z − 𝑓z)n − 𝛽12pn
,z −

𝜂

𝜅
𝛽12A1∕2qz = 𝛱n

z ,

D1∕2qx = 𝛽21(𝜎xx,x + 𝜎xz,z − 𝑓x)n − 𝛽22pn
,x −

𝜂

𝜅
𝛽22A1∕2qx = 𝛺n

x ,

D1∕2qz = 𝛽21(𝜎xz,x + zz,z − 𝑓z)n − 𝛽22pn
,z −

𝜂

𝜅
𝛽22A1∕2qz = 𝛺n

z ,

𝜖m = (A1∕2vx),x + (A1∕2vz),z,
𝜖𝑓 = (A1∕2qx),x + (A1∕2qz),z,
𝜖 = 𝛼𝜖m + 𝜖𝑓 ,

.
𝜖m = (𝛱n

x ),x + (𝛱n
z ),z,

.
𝜖𝑓 = (𝛺n

x ),x + (𝛺n
z ),z,

Δ𝛾Tn = c(A1∕2𝜓 + 𝜏D1∕2𝜓) + 𝛽T0[(𝜖m + 𝜏 .
𝜖m) + (𝜖𝑓 + 𝜏 .

𝜖𝑓 )] + qn,

Tn+1 = Tn + dt 𝜓n+1∕2,

D1𝜎xx = 2𝜇(A1∕2vx), x + 𝜆𝜖m + 𝛼M𝜖 − 𝛽A1∕2𝜓 + 𝑓xx,

D1𝜎zz = 2𝜇(A1∕2vz), z + 𝜆𝜖m + 𝛼M𝜖 − 𝛽A1∕2𝜓 + 𝑓zz,

D1𝜎xz = 𝜇[(A1∕2vx), z + (A1∕2vz), x)] + 𝑓xz,

𝜙D1p = −𝜙M𝜖 + 𝛽𝑓A1∕2𝜓 − 𝑓𝑓 ,

(B1)

where

D𝑗𝜙 = 𝜙n+𝑗 − 𝜙n−𝑗

2𝑗dt
and A𝑗𝜙 = 𝜙n+𝑗 + 𝜙n−𝑗

2
(B2)

are the central differences and mean value operators, based on a Crank-Nicolson (staggered) scheme (Jain,
1984, p. 269) for the particle velocities. In this three-level scheme, (vx, vz, qx, qz, 𝜓) at time (n + 1∕2)dt and
stresses and temperature at time (n + 1)dt are computed explicitly from (vx, vz, qx, qz, 𝜓) at time (n − 1∕2)dt
and stresses and temperature at time (n − 1)dt and ndt, respectively.

The tenth equation (B1) above yields

(dt + 2𝜏)𝜓n+1∕2 = 2dt
c

[Δ𝛾Tn − 𝛽T0[(𝜖m + 𝜏 .
𝜖m) + (𝜖𝑓 + 𝜏 .

𝜖𝑓 )]

− qn] − (dt − 2𝜏)𝜓n−1∕2.

(B3)

The stability analysis has been performed in Carcione and Quiroga-Goode (1995), that is, a Von Neumann
stability analysis based on the eigenvalues of the amplification matrix (Jain, 1984, p. 418). The algorithm
has first-order accuracy but possesses the stability properties of implicit algorithms, and the solution can be
obtained explicitly.

Appendix C: Splitting algorithm
The eigenvalues of M in equation (10) may have negative real parts and differ greatly in magnitude. This
problem is due to the presence of the viscosity/permeability term in Biot's equation and the relaxation
time in the heat equation. The presence of large eigenvalues, together with small eigenvalues, indicates
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that the problem is stiff. Moreover, the presence of real positive eigenvalues can induce instability in the
time-stepping method. To solve these problems, the differential equations are solved with the splitting algo-
rithm used by Carcione and Quiroga-Goode (1995), Carcione (1996), and Carcione and Seriani (2001). The
propagation matrix can be partitioned as

M = Mr + Ms, (C1)

where subscript r indicates the regular matrix, and subscript s denotes the stiff matrix, involving the quantity
𝛾 and the coupling terms. The evolution operator can be expressed as exp(Mr + Ms)t. It is easy to show that
the product formula

exp(Mdt) = exp
(1

2
Msdt

)
exp(Mrdt) exp

(1
2

Msdt
)

(C2)

is second-order accurate in dt. Equation (C2) allows us to solve the unstable equations separately. From
equations (6) and (9), these are

.vx = − 𝜂
𝜅
𝛽12qx,

.vz = − 𝜂
𝜅
𝛽12qz,

.qx = − 𝜂
𝜅
𝛽22qx,

.qz = − 𝜂
𝜅
𝛽22qz,

.
𝜎xx = −𝛽𝜓, .

𝜎zz = −𝛽𝜓, 𝜙
.p = 𝛽𝑓𝜓,

.
𝜓 = −1

𝜏
𝜓.

(C3)

These equations can be solved analytically, giving

vx
∗ = vx

n +
𝛽12

𝛽22
[exp(𝜆sdt) − 1]qx

n, vz
∗ = vz

n +
𝛽12

𝛽22
[exp(𝜆sdt) − 1]qz

n,

qx
∗ = exp(𝜆sdt)qx

n, qz
∗ = exp(𝜆sdt)qz

n,

𝜎∗xx = 𝜎n
xx + 𝜏𝛽

[
exp(−dt∕𝜏) − 1

]
𝜓n, 𝜎∗zz = 𝜎n

zz + 𝜏𝛽
[
exp(−dt∕𝜏) − 1

]
𝜓n,

p∗ = pn −
𝜏𝛽𝑓

𝜙

[
exp(−dt∕𝜏) − 1

]
𝜓n,

𝜓∗ = exp(−dt∕𝜏)𝜓n,

(C4)

where 𝜆s = −(𝜂∕𝜅)𝛽22. Note that when 𝜂 = 0, is v* = vn and q* = qn, giving the purely elastic problem.

The intermediate vector

W∗ = [vx
∗, vz

∗, qx
∗, qz

∗, 𝜎n
xx, 𝜎

n
zz, 𝜎

n
xz, p

n,T, 𝜓∗]⊤ (C5)

is the input for an explicit high-order scheme that solves the system of equations with 𝜂 = 0 to give Wn+1.

The regular operator exp(Mrdt) is approximated with a fourth-order Runge Kutta solver. The output vector
is

vn+1 = v∗ + dt
6
(Δ1 + 2Δ2 + 2Δ3 + Δ4), (C6)

where

Δ1 = Mrv∗ + sn,

Δ2 = Mr

(
v∗ + dt

2
Δ1

)
+ sn+1∕2,

Δ3 = Mr

(
v∗ + dt

2
Δ2

)
+ sn+1∕2,

Δ4 = Mr(v∗ + dtΔ3) + sn+1,

and v* is the intermediate output vector obtained after the operation with the stiff evolution operator. Then,
𝜓 * is input to a Runge-Kutta fourth-order time-stepping algorithm (involving matrix Mr), and the spatial
derivatives are calculated with the Fourier method by using the fast Fourier transform (Carcione, 2014).
This spatial approximation is infinitely accurate for band-limited periodic functions with cutoff spatial
wavenumbers which are smaller than the cutoff wavenumbers of the mesh. Due to the splitting algorithm,
the modeling is second-order accurate in the time discretization.
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