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ABSTRACT

A method for modeling seismic sections 1is presented, whereby
primary reflections can be obtained by ray tracing based on the
idea of the source horizon. Diffraction effects are obtained
with an existing theory based on Kirchhoff's retarded potential
method which is generalized in order to be applied to geological
layered models. Application of Fibonacci search method to find

the rays results in significant computer time reduction.



INTRODUCTION

Ssince advent of the one-dimensional seismic modeling in the
'50s up to date, major changes have occurred concernig both ma-
thematical and computing development and requirements of geophy-
sical interpreters who use seismic modeling as a tool for ob-
taining subsurface data.

The response of very realistic geological models can be ob-
tained by solving the wave equation with numerical methods but,
in general, too much computer time is involved in implementing
programs and it does not differ significanty from the ray-theory
program.

In this paper we describe a method for seismic section mo-
deling satisfying geophysical interpreters' requirements inclu-
ding an algorithm aimed at speeding up computation. The techni-
que in question, which was already used in Seismics by Khattri
et al (1980) on real data for velocity analysis, is Fibonacci
search method herein applied for fast raypath finding.

The technique permits us to obtain the seismic response of
a layered medium with interfaces of varied geometry, which are
approximated by segments with.a third degree polynomial. Re-
flection impulse response 1s obtained by using the ray theory
under the assumption that each subsurface reflector point beha-
ves as a source.

Included are diffraction effects by applying Kirchhoff's
scalar wave theory for approximating compressional waves in an
‘elastic medium, which was intrqduced by Trorey (1970).and

Hilterman (1970) into seismic modeling.

DEFINITION OF THE GEOLOGICAL MODEL

The geological model used is a two-dimensional layered me-
dium composed of N homogeneous and isotropic layers. Interfa-
ces are defined by a set of points (xj,yj) : §=0,...n which

are adjusted by n-1 polynomials of the form



_ 3 3 _ 2 _
Pj(x) = aj(x xj) + bj(x xj) + cj(x xj) + dj (1)

which applies to the [Xj’xj+l1 interval, where coefficients aj,

b., c¢. and d. are such that
J J J

P (xj) = yj j =0, n

Pj+l xj+l) = j(xj+l) j =0, n-2

P3+l(xj+l) = Pi(xj+l) j =20, n-2 (2)
P§+1(Xj+l) = P;(Xj+l) j =0, n-2

P"(xo) = P"(xn) =0

This method is known as cubic spline interpolation with free
boundary conditions (Burden and Faires, 1978).

Each layer is characterized by its velocity of propagation V
and its density D, which may vary linearly both horizontally,
e.g. by simulating facies changes, and vertically by considering

compaction effects. The corresponding expressions are

Il

AxXx+By+C (3)
Ex+Fy+G (4)

V(x,Y)
D(x,y)

THE IMPULSIVE RESPONSE

The method used for describing seismic wave propagation is
the ray theory which states that disturbance energy travels
along clearly defined raypaths which are always normal to wave-
fronts. Simplifying the acoustic wave equation is possible when
the disturbance wavelength is small as compared with the extent
of the change, either in acoustic impedance or in thé interface
geometry. Obviously, making use of this approximation no wave-
length-dependent phenomena, such as diffraction, can be descri-
bed; these should be approached through the wave equation.

The objetive is to obtain a nonmigrated seismic section, whe-
re inelastic attenuation effects, spherical divergence, trans-
mission losses, and other phenomena affecting the disturbance

amplitude have been compensated. Thus, it is possible to compa-




re this synthetic seismic section with a seismic section resul-
ting from applving conventional processing methods. Under these
conditions, the relative amplitude of the signal received is su-
pposed to depend uniquely on the reflection coefficient magnitu-

de at normal incidence

R =

k = (Zyqq = %)/ (Zy gy + T

i)

where
Z = DV

is the acoustic impedance.

The first step is to find the impulsive response to the geo-
logical model for a given configuration of surface shot-receiver
locations. Each reflection event is identified by the two-way
travel time to the reflector and the reflection coefficient mag-
nitude.

Each reflector point is supposed to behave as a source emit-
ting a surfaceward ray which is normal to the interface at such
a point. Therefore, two-way travel time 1is twice the time this

ray takes to reach the surface.

RAYPATH COMPUTATION

Raypath computation can be made simpler by adopting a diffe-
rent reference system at each layer, such that the velocity law
given in (3) depends only upon one variable, x'. This can be
achieved by rotating the original system an angle o, its value

being
o = arctan (B/A) - o (6)
Velocity law as referred to the new system is
V(x') = Rx' +C with R = |a° + B (7)

The raypath equation for this velocity law is a circumferen-

ce expressed by




(v'-yD? + (x'-x))? = 1/ % R

where
| I 1
v Y + cosei / PR
X' =-C/ R
with
x! cos o sin a X.
i i
; -
vi sin o cos o yi

(Xi’yi) being the ray starting point coordinates at interface i,

as indicated in fig. 1, and

ei =6, - d (12)

where ei is the angle between the tangent to the ray and the x-

axis, finally, p 1is Snell's parameter as expresed by
p = sin ei / Vi (13)

Vi being the velocity of propagation at point (Xi'yi)'

In the original system, the raypath equation is

2 2 2
y = v, t dl/ P R - {x - %) (14)
e
and it is centered at
- 1 !
XC} cos o sin a] [xc ‘
- L1 (15)
: 1
ch sin a cos aJ [yc

the angle between the tangent to the ray and the x-axis at any

raypath point being

8 = o + arcsin {p[ C+ R (x cos o + y sin a)]} (16)

the travel time expression through the layer is



T =1n [(1 + cos 6]) (C + R x')

/ v, (1 + \/T—pz (C+Rx"))] /R

(17)

In the case in which velocity is constant throughout the
layer, i.e. A = B = 0, the right-hand side in eguation (8) re-
presenting the curvature radius tends to infinite thus verify-

ing that the raypath is a straight line.

DIFFRACTION AMPLITUDE

It is well-known the theory relating subsurface reflector
geometry with diffraction amplitude, which was almost simul-
taneously published by Trorey and Hilterman. This theory makes
use of Kirchhoff's retarded potential solution of the acoustic
wave equation to estimate a diffraction plate response.

One constraint of this theory would be its application to
seismic sections, since it has been developed for zero offset
but Berryhill (1977) showed it can be a sufficiently satisfac-
tory approximation provided source-receiver separation of the
data to be stacked is not too large.

Based on Hilterman's work, Berryhill developed an expre-
ssion for obtaining diffraction amplitude for a constant velo-
city layer, whose notation has been slightly changed in what

follows

DO = arctan ( Jl + 4 TO Fd / 2 TO Fd sin ¢o) (18)
X cos ¢O / m

wheré Fd is the seismic signal dominant frequency( Té is the
diffractor point-receiver point travel time, and ¢o is the
angle measured between the normal to the reflecting plane and
the least timepath to such a plane edge.

In order to apply expression (18) to the more general case
of a layered medium as previously defined, the image reflector
concept is used.

Image reflector A'D', as shown in fig. 2, is the reflector



segment which, when seen from receiver point G, has the same
effects as the real horizon segment AD, the layered medium be-
ing substituted by a layer of unique velocity, the one corres-
ponding to the G point. That is, the ray arrival slope from D'
and the travel time from D' to G are the same as those obtained
for the diffractor point D. The same applies to point A' an ima-
ge of the auxiliary point A.

Under these considerations, the angle ¢o in expression (18)

is evaluated by

¢o = (TO - Té cos B) / Té sin B (19)

where B is the angle between the rays emerging from D' and A'

and Té is the travel time from A to the receiver point.

APPLICATION OF FIBONACCI TECHNIQUE TO OBTAIN THE OPTIMUM RAY

Fibonacci search method is an algorithm for minimizing a
strictly quasiconvex funtion over a closed interval, based on

Fibonacci sequence, as defined by

F =F + F k=1, 2, ceesue (20)

with

The objective is to‘find the ray which, starting from hori-
zon i, arrives at receiver point G with an error less than a
predeterminated e. .

The initial interval of uncertainty for application of the
method is defined by two points X1 and X1 generating arrivals
X and X

al bl
point G (see fig. 3).

which are located on opposite sides as related to

The number of iterations, g-2, is such that

Fq > (xal - Xbl) / & (21)

where § represents the final interval of uncertainty.




Consider two points on the reflector horizon i given by

e = ¥ax ¥ Fpx = Xak) Faop-1/ Fgok+1 {282}

(23)

bie + (x - X

M = Xpyp bk = ¥ak) Fg-k /7 Fq-k+1

for k =1,...q9-1

The new interval of uncertainty [x is given

; a(le+1) X (k+1) |
by [lk,xbkj if L, > M and by [x_, ,m| if L, £ M (Bazaraa and
Shetty, 1979). Only at the first iteration should raypaths for
my and ll be calculated; at each of the subsequent iterations
it is only necessary to make one evaluation. Thus, g-1 raypath
computations are required for the g-2 iterations.

The procedure continues until any of the functions to be mi-

nimized satisfies

b, o= 1% < € (24)

by = -X | <e (25)

RIS

or until making iteration g-2, where the mid-point fo the inter-
val of uncertainty is taken as the value searched for.

It is applied in a similar way to computation of diffraction
times, taking the ray starting angle with respect to the x-axis

as the variable.

CONCLUSIONS

A FORTRAN IV program has been implemented on a Hewlett Pac
kard 3000 computer using Fibonacci technique. Getting the impul-
- se response for 100 traces of the'geological model shown in fig.4,
which consists of 7 ihterfaces and 4 diffractor poiﬁts, took less
than 10 minutes of computation using this program. The error in-
volved in rays reaching receivers is on the order of 1% the re-
ceiver distance.

Application of the program to different geological models has
shown that the method used resulted in significant computer time

reduction, as compared with conventional seismic section modeling

programs.



As pointed out above, the algoritm is converagent if the func-
tion to be minimized is strictly quasiconvex. As can be easily
seen, this does not strictly hold for most of the subsurface mo-
dels, except for simple cases; the convexity of the function to
be minimized is shown in the Appendix for a geological model con-
sisting of plane and infinite interfaces. Fortunately, the geome-
try of the interfaces used for the realistic models is such that
it allows application of the technique in most cases. When this
is not possible, source points spacing on the reflector is redu-
ced in order to obtain a surface degree of precision similar to
the Fibonacci method.

An important decision is choosinca the initial interval of un-
al’xblj , which should be small enough for the func-
tion to satisfy convexity conditions and large enough for the

certaintyé X

technique to be considerably time-savinag.

APPENDIX

Consider a medium as shown in fig.5, with constant velocity

layer and plane, infinite interfaces given by

The coordinate of the receiver point X in terms of that of

source point x at any interface i, 1is

X = Hi X + Qi +q (A-1)
where i i k-1

Hi = h. Qi = :E: 9 h,

j=1 k=2 j=1 J

with

h. = + =

3 (pJ aj) / (pJ aj_l)
= (b, + b. .
a; = (by + by ) / (py - ay_y)

Slope p. of the ray transmitted at the j interface is obtained

by applying Snell's laws



pj = tan~{ar051n [51n(yj - arctan pj+l) Vj
V. = .
/ J-l] YJ}
with
Yj = arctan(l / aj) j= 1,...m-1

The starting slope is

Py

= =1/ aj;
Using (A-1), the function given in (24) and (25) is expressed
as

b)) = | AX. + B (A-2)

with

According to definition, the function given in (A-2) is con-

vex if
WA x, (1 -)) x ] L Ab(x) + (1= 2) d(x) (A-3)
for each pair of source points Xa’xb and each » (0,1).
We have

v [A x_ o+ (1= A) xb] =| Bix A+ AL (L= A) x + Bi‘

< A‘A. X + B.
i a 1

+ - %, + B,

(1 A)‘ A x, Bl‘
which is equivalent to (A-3), showing that ¥ is a convex function.
This means that the function is strictly quasiconvex,.which'is a

' necessary condition for application of Fibonacci method.
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LIST OF FIGURE CAPTIONS

1-

Changing the refererence system allows making raypath compu-

tation simpler.

Diffraction computation. A multivelocity medium can be repre-

sented by a single layer througch the reflector image.

Subsurface model with ray tracing for application of Fibonacci

technique.

Constant density geological model used to check the velocity

of the method proposed.

Simple geological model for which the function to be minimized

is convex.
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