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Abstract: We design a numerical algorithm for wave simulation in anelastic media in the 
presence of free surface, which can be used to model seismic waves at the Earth's surface. 
The modeling simulates 3-D waves by using the Fourier and Chebyshev methods to 
compute the spatial derivatives along the horizontal and vertical directions, respectively. 
The stress-strain relation is based on the Kelvin-Voigt mechanical model, which has the 
advantage of not requiring additional field variables. The model is based on two anelastic 
parameters and twice the spatial derivatives of the lossless case. The methodology is 
illustrated by simulating the Messina 1908 earthquake. 
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1. INTRODUCTION  

Wave modeling is a valuable tool for seismic interpretation and an 
essential part of inversion algorithms. Problems regarding environmental 
geophysics, seismic exploration, foundation engineering, earthquake 
seismology and non-destructive testing (NDT) of materials require the use 
of full-wave three-dimensional modeling methods. In particular, it is 
important to model the surface waves (Rayleigh and Love waves) and 
record the components of the wave field. Moreover, the unconsolidated 
nature of the shallow layers in many cases requires an anelastic stress-strain 
relation to model the dissipation of the wave field. An efficient and highly 
accurate technique is full-wave modeling by using pseudospectral methods 
(Carcione, 2007; Carcione et al., 2002). The pseudospectral Chebyshev 
method is not periodic and allows for the incorporation of boundary 
conditions by using characteristic variables, in particular, free surface 
conditions at the surface and non-reflecting conditions at the bottom of the 
mesh. We use the Kelvin-Voigt mechanical model to describe attenuation. It 
does not require memory variables and only needs the calculation of 
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additional spatial derivatives and the use of two anelastic parameters 
compared to four parameters when using other mechanical models, e. g., the 
Zener model.  

We use the described numerical technique to simulate the 1908 
Messina earthquake. This is the largest seismic event that had occurred in 
the southern part of the Calabrian arc since 1983 A.D. (Capuano et al., 
1988). It was the most catastrophic earthquake in Italy during this century, 
with extensive damage and 60,000 people killed according to Baratta (1910) 
or 120000 casualties according to Mercalli (1909). The duration of the 
mainshock is reported as approximately 23 s and 110 seismic stations all 
over the world recorded the event but the original records are virtually 
unavailable nowadays (Mulargia and Boschi, 1983). It was felt by people in 
a radius of 300 km from the epicenter with a Mercalli intensity value of XII 
(Amoruso et al., 2002).  

 
Figure 1: Macroseismic intensity map for the 1908 Messina earthquake. Data from the 

Catalogo Parametrico dei Terremoti Italiani (CPTI). 
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This earthquake was followed by a tsunami with sea waves as high as 
12 m, entering locally up to 200 m inland (Amoruso et al. (2002), Platania 
(1909)). Smaller earthquakes were felt in the Messina region one month 
before the main event to 10 years after (Amoruso et al., 2002). A total of 
293 events are reported in the period December 28, 1908 – March 31, 1909; 
the distribution of aftershocks shows a clear exponential decay (Mulargia 
and Boschi, 1983). The magnitude of the event can be estimated between 
Ms 7.1 (Riuscetti and Schick, 1975) and Ms 7.5 (Gutenberg and Richter, 
1954) because of the low quality of the seismograms, at the dawn of 
instrumental seismology, and the complexity of the source (Boschi et al., 
1989). 

Catastrophical damages spread out over an area of 4300 km2.  Figure 
1 shows a macroseismic intensity map of the study area. Data come from 
the Catalogo Parametrico dei Terremoti Italiani (CPTI). 

2. THE NUMERICAL MODELLING TECHNIQUE 

 2.1 The 3D equation of motion 

The three-dimensional equations of momentum conservation can be 
expressed as: 

j

ij
i x

u






  ,    (1) 

where  is the density, ui are the displacement component and ij denote the 
stress components. A dot above a variable denotes time differentiation and 
the Einstein convention for repeated indices is used. 

The stress-strain relations for a Kelvin-Voigt solid are a simple 
generalization of those for one-dimensional media (Carcione, 2007): 

  ijijijij   '22'  ,   (2) 

where  and  are the Lamé constants,  and  are the corresponding 
anelastic parameters,  
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are the strain components, 
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          ui

x j
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and ij is Kronecker's delta.  
  

2.2 Frequency domain analysis 

In the frequency domain, equation (1) can be written as: 

 ij  ij  2ij ,    (5) 

where: 

    i' and     i'   (6) 

are the complex Lamé moduli and  is the angular frequency. Use of the 
correspondence principle allows the calculation of the phase velocity (vp) 
and quality factor  (Q)  versus frequency: 

1
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and 

Q 
Re(v 2)

Im(v 2)
     (8) 

(Carcione, 2007), where v is either the P-wave complex velocity or the S-
wave complex velocity, given by: 





2

)(Pv  and 



)(Sv ,                     (9) 

respectively. Re and Im take real and imaginary parts. The phase velocities 
of the P and S waves tend to E   and    for   0, and to  for       

  , where E    2. The P- and S-wave quality factor are simply: 

QP 
E

E '
   and   

'


SQ ,             (10) 

where E ' '2' . The attenuation factor is given by: 
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(Carcione, 2007), where vp and Q are the phase velocity and quality factor 
of the P wave or S wave. For low-loss media (Q>>1), equation (11)  
becomes:  

(P) 
 2E '

2Evp

  and  
pv

S



2

'
)(

2

 ,             (12) 

where equations (10) have been used. Then, the attenuation factor is 
approximately proportional to the square of the frequency if the variation of 
the phase velocity is small over the range of frequencies of the signal. 

The anelastic parameters can be obtained from the quality factors at a 
given frequency, say, the central frequency of the source, 0. We obtain: 
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where QP0 and QS0 are the quality factors at =0, and E and  are the 
moduli at =0. 

The moduli can be obtained from the P- and S-wave phase velocities 
at =0, vp0(P) and vp0(S), respectively. Using equations (6), (7), (9) and 
(10) gives 

E  v p 0
2 (P)g(QP 0)   and    vp 0

2 (S)g(QS 0) ,          (14) 

where: 
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Note that g(a)  1 when a  . Hence, the input properties to the 
modeling program are  , vp0(P), vp0(S), QP0 and QS0. 

 
 

2.3 Velocity-stress formulation 

Introducing the particle-velocity components, iuvi   the equations of 
momentum conservation (1) become: 

j
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Using equations (3) and (4), the time derivative of the stress-strain 
relations (2) become: 
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where mij  are moment-tensor components per unit volume defining the 

strength and radiation pattern of the source mechanism. Substituting (16) 
into (17) yields: 
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Let us express the velocity-stress formulation in explicit form. Define 
the quantities: 
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Then, equations (16) and (18) can be written in components as: 
 

 xxv ,     yyv ,     xxv ,  
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Equations (19) and (22) constitute the velocity-stress formulation for 
the Kelvin-Voigt model. The model requires three arrays for the particle-
velocity components, six arrays for the stress-tensor components, and four 
arrays for the material properties. On the other hand, the equation of motion 
based on a single Zener model requires six additional arrays for the memory 
variables and two additional arrays for the material properties. The extra 
cost to avoid these memory requirements is the calculation of the nine 
additional spatial derivatives corresponding to the acceleration components. 
 
2.4 The numerical algorithm 

The numerical solution is obtained by using a 4th-order Runge-Kutta 
method as time-stepping algorithm, the Chebyshev differential operator to 
compute the spatial derivatives along the vertical direction, and the Fourier 
differential operator along the horizontal directions.  

The Fourier and Chebyshev methods (Carcione, 1992; Carcione, 
2007), consist of a spatial discretization and calculation of spatial 
derivatives using the fast Fourier transform. The Fourier method is a 
collocation technique in which a continuous function is approximated by a 
truncated series of trigonometric functions, wherein the spectral (expansion) 
coefficients are chosen such that the approximate solution coincides with the 
exact solution at the discrete set of sampling or collocation points. The 
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collocation points are defined by equidistant sampling points. Since the 
expansion functions are periodic, the Fourier method is appropriate for 
problems with periodic boundary conditions. In the Chebyshev method, the 
collocation points are the roots of the Chebyshev polynomials. It is 
appropriate for simulating Neumann and Dirichlet boundary conditions. The 
Fourier and Chebyshev methods are infinitely accurate up to the maximum 
wavenumber of the mesh, that corresponds to a spatial wavelength of two 
grid points (at maximum grid spacing for the Chebyshev operator). 

The conventional Chebyshev method has two major disadvantages. In 
the first place, the grid points are restricted to the Gauss-Lobatto collocation 
points. This poses a limitation regarding the location of the interfaces. 
Secondly, the clustering of grid points at the ends of the mesh restricts the 
time step of the time integration scheme, which has to be of the order O(N-2) 
where N is the number of grid points. Here, we use a mapping 
transformation for the vertical coordinate, which circumvents the severe 
stability condition of the integration method and distribute grid points in 
arbitrary locations. 

By stretching the mesh, we increase the minimum grid spacing and are 
able to increase the time step of the Runge-Kutta algorithm, thus reducing 
the computer time. For this purpose we have implemented the stretching 
function and algorithm described by Kosloff and Tal-Ezer (1993) who claim 
to obtain time steps of the order O(N-1). 

Furthermore, this transformation can be used for spatial grid 
adaptation (Augenbaum (1989), Bayliss et al. (1995), Guillard et al. (1992)) 
in the sense that the collocation points can be redistributed and properly 
concentrated in regions with steep velocity gradients, fine layering and 
complex interface geometries. Similar mapping transformations can be 
applied in the horizontal directions, where the Fourier differential operator 
is used (Fornberg, 1988). 

In particular the time step depends on the size of the first grid cell at 
the end of the mesh. In general, stability can be achieved with the condition 
satisfied by the Fourier method. For the Runge-Kutta method the condition 
is v dt/dz < 2.79 (Jain, 1984), where v is the maximum wave velocity, dt is 
the time step and dz is the minimum grid spacing. 

Boundary conditions are implemented by using a boundary treatment 
based on characteristics variables (Kosloff et al., 1990). This method has 
been proposed by Bayliss et al. (1986) to model free surface and non-
reflecting boundary conditions. The wave equation is decomposed into 
outgoing and incoming wave modes perpendicular to the free surface. The 
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outgoing waves are determined by the solution inside the domain, while the 
incoming waves are calculated from the boundary conditions. 

In addition to the non-reflecting conditions, absorbing strips are used 
to further attenuate the wave field at the bottom of the mesh (Kosloff and 
Kosloff, 1986). This combined use of damping methods practically 
eliminates any wraparound caused by the Fourier operator at the boundaries 
of the mesh. 

 
2.5 The moment tensor 

Following Aki and Richards (1980) the radiation pattern of the source 
can be described with the moment tensor. The different components of the 
moment tensor are computed as a function of the fault mechanism (angles of 
strike, dip and rake): 
 

)sinsin2sin2sincos(sin 2
0   MM xx , 

)2sinsin2sin
2

1
2sincos(sin0   MM xy , 

)sinsin2coscoscos(cos0   MM xz ,              (23) 

)cossin2sin2sincos(sin 2
0   MM yy , 

)cossin2cossincos(cos0   MM yz , 

 sin2sin0MM zz  , 
 

where M0 is the seismic moment and ,  and  are the angles of strike, dip 
and rake, respectively. 

 
2.6 Source implementation 

The seismological source is defined following the work of  Pitarka 
(1999). The moment-tensor formulation considers source stress components 
mij appropriately added to the stresses at the grid point corresponding to the 
source location. They are given by:  

VtmMm ijij /)( ,                (25) 

where Mij are the moment tensor components and )(tm  is a normalized 
source time history satisfying the relation: 

1)(
0

 dttmft

t
 .                          (26) 
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V is the effective volume of the grid cell in which the source is located: 

 

V  dx  dy  dz               (27) 

if the grid is uniform, 
 

     
222

111  






 iiiiii dzdzdydydxdx

V                       (28) 

 
if the grid spacing is not uniform. 

The time history is a bell-shaped time function given by: 

  00 /)/ 2cos(1)( TTttm  ,              (29) 

where T0 is the duration time. 

3. MESSINA 1908 EARTHQUAKE NUMERICAL SIMULATION 

A well known geological model consists of sub-horizontal layers, with 
the seismic properties of the different layers given in Table 1. The focal 
mechanism is described in Table 2 and Figure 2 shows the location map of 
the study area.  

Table 1: Seismic properties of the layers for the geological model of the 1908 Messina 
earthquake simulation. 

Laye
r 

Dept
h 

Densit
y 

vp0(P
) 

QP 
vp0(S

) 
QS 

(m) (kg/m3) (m/s) (m/s)
1 0 1940 2200 10 400 20
2 25 1940 1900 10 400 20
3 56 1940 2050 10 400 20
4 99 2000 3300 20 1000 20
5 153 2000 3300 20 1350 20
6 219 2000 2700 10 650 20
7 382 2000 2900 20 1000 20
8 477 2450 3000 20 1700 10
9 1996 2600 4600 60 2690 30
10 5981 2650 5900 60 3450 30
11 14910 2700 6550 60 3850 30
12 19924 2900 7600 60 4450 30
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13 26258 3200 8000 60 4680 30

Table 2: Parameters of the fault constituting the source for 1908 Messina earthquake 
simulation. 

Strike 20 
Dip 29 
Rake 270 
Depth 3-12.7 km 
M0 71019 Nm 

 

 
Figure 2: Location map of the study area. The inner rectangle represents the plan view of 

the seismogenic fault. R1 and R2 are the locations of two receivers whose 
seismograms are given in Figure 4. 

The seismic moment is uniformly distributed over a fault plane having 
the longer edges parallel to the earth surface (Figure 2). Receivers are 
located at the surface and at coordinates x = 49 km, y = 11.5 km for R1 and 
x = 46.5 km, y = 13.5 km for R2.  

The numerical mesh has 80 x 125 x 136 grid points with a grid 
spacing of 500 m in the x- and y-directions. The grid spacing in the z-
direction varies between 5.6 and 215 m. The Chebyshev method used to 
solve spatial derivatives in the vertical direction has the grid points in the 
positions defined by the Gauss-Lobatto collocation points. The dimensions 
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of the geological model are 40 x 62.5 x 29.19 km.  
The wavefield is computed by using a time step of 5 ms. The source 

time history is given in equation (29) with a duration time T0 of 1 s.  
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Figure 3: Snapshots of the vertical component of the velocity field at 0.8 s (a), 3.2 s (b), 
and 8.0 s (c) along a vertical plane parallel to the shorter dimension of the fault. 

Snapshots of the vertical component of the velocity field are given in 
Figure 3 at 0.8, 3.2 and 8.0 s. The velocity field is recorded in a vertical 
plane parallel to the shorter dimension of the fault. Figure 4 shows the three 
component of the normalized seismograms recorded at the two stations R1 
and R2. 

 

 

  

Figure 4: Seismograms of the particle velocity (normalized) recorded at the Sicilian and 
Calabrian coasts (upper and lower plots, respectively); (a), (b) and (c) correspond 
to Vx, Vy and Vz, respectively. 

4. CONCLUSIONS 

We have developed a numerical approach for wave simulation in 
anelastic media in the presence of free surface. The modelling simulates 3-D 
waves by using the Fourier and Chebyshev methods to compute the spatial 
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derivatives along the horizontal and vertical directions, respectively. The 
stress-strain relation is based on the Kelvin-Voigt mechanical model. We 
have used the developed algorithm to simulate the 1908 Messina 
Earthquake. 
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