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ABSTRACT

The physics of fluid diffusion in anisotropic media was
studied, based on Biot’s theory of poroelasticity and using
wave propagation concepts. Diffusion and elastic strain can
be uncoupled fully, being a good approximation in many situ-
ations. We have used a correction to the stiffness of the rock
under conditions of transverse isotropy and uniaxial strain to
model borehole conditions. The concepts of phase, group,
and energy velocities were analyzed to describe the location
of the diffusion front, and the attenuation and quality factors
were obtained to quantify the amplitude decay. We have
found that the location of the front is described correctly by
the energy velocity. The Green’s function in anisotropic me-
dia can be obtained by applying a change of coordinates to the
isotropic solution. We have simulated the diffusion in inho-
mogeneous media using a time-domain spectral explicit
scheme and the staggered Fourier pseudospectral method to
compute the spatial derivatives. The method is based on a
spectral Chebychev expansion of the evolution operator of
the system. The scheme allows the solution of linear periodic
parabolic equations, having accuracy within the machine
precision, in time and in space. The results match the analytic
solution obtained from the Green’s function. The perfor-
mance of the algorithm is confirmed in the case of a pressure
field generated by a fluid-injection source in a hydrocarbon
reservoir where the properties vary fractally.

INTRODUCTION

Diffusion equations are obtained in poroelasticity and electro-
agnetism at low frequencies and under certain conditions, by
hich the inertial terms and displacement currents are neglected, re-

pectively �e.g., Carcione, 2007�. In hydrocarbon exploration and
roduction, diffusion equations are used mainly to map subseafloor
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esistivity �e.g., Badea et al., 2001; Eidesmo et al., 2002� and to mod-
l fluid flow in reservoir rocks �Bear, 1988�. Shapiro et al. �2002� de-
cribe the phenomenon of microseismicity caused by fluid injection
n boreholes by using the diffusion equation obtained in the low-fre-
uency limit of Biot’s theory. Indeed, Chandler and Johnson �1981�
how the equivalence between quasi-static fluid flow and Biot’s dif-
usive wave �see also Carcione, 2007�. Hence, fluid flow and pres-
ure diffusion are phenomena described by the same differential
quation.

Müller �2006� provides a detailed analysis of the pore pressure in-
uced by a fluid-mass point source. Depending on the frequency
ontent of the source function, different regimes can be identified,
.e., the diffusive regime in which only Biot’s diffusive wave exists,
nd the propagation-diffusion regime in which slow and fast wave
odes coexist. Müller �2006� shows that in the propagation-diffu-

ion regime the induced pore pressure is reduced for most fluid-satu-
ated rocks, and therefore the probability of triggering micro-
arthquakes is reduced also. His results support the hypothesis that
he diffusive slow P-wave is mainly responsible for the triggering of

icroearthquakes.
A convenient equation for anisotropic inhomogeneous media can

e obtained from Biot’s theory of poroelasticity. The diffusion can
e uncoupled fully from the elastic deformations by neglecting the
train. A less stringent condition can be assumed by which we con-
ider transverse isotropy and uniaxial strain conditions. Under these
onditions, the effect of the elastic deformations requires the modifi-
ation of the stiffness of the rock, involved in the diffusion equation.
plane-wave analysis provides the kinematic and dynamic quanti-

ies to interpret the physics of the diffusion, such as the phase, group,
nd energy velocities and the quality factor.

Existing schemes for numerical simulation of diffusion processes
re based mostly on low-order finite-difference or finite-element
ethods �e.g., Chen, 2007� and therefore have low accuracy because

f approximations of the time and space derivatives. In this work, we
evelop a fully spectral modeling method for the fluid-pressure dif-
usion problem in heterogeneous media. The algorithm uses an ex-
licit scheme based on a Chebychev expansion of the evolution op-
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N32 Carcione and Gei
rator in the domain of the eigenvalues of the propagation matrix
Tal-Ezer, 1989; Carcione, 2007�. The spatial derivatives are com-
uted with the staggered Fourier pseudospectral method �Fornberg,
996; Carcione, 2006�. The algorithm has been used to solve the 1D
elegraph equation for electric drill-string telemetry �Carcione and
oletto, 2003� and the electromagnetic diffusion equation �Car-
ione, 2006, 2007�. The Chebychev method, either for parabolic or
yperbolic problems, has spectral accuracy in time and space and
herefore avoids numerical dispersion, which is a characteristic fea-
ure of low-order schemes.

We model fractal inhomogeneities by using a von Kármán autoco-
ariance probability function of high fractal dimension �von
ármán, 1948� applied to the spatial variations of the porosity. The
ermeability components and the stiffness are obtained by determin-
stic relations between these quantities and the porosity.

THE FLUID-PRESSURE DIFFUSION EQUATION

Diffusion equations are obtained in poroelasticity under certain
onditions, by which the inertial terms are neglected. The quasi-stat-
c limit of Biot’s poroelastic equations, to describe the diffusion of
he second �slow� compressional mode, is obtained by neglecting the
cceleration terms in the equations of momentum conservation and
y considering the constitutive equations and Darcy’s law �Biot,
962�.

iot’s classical equation

Biot’s relevant stress-strain relation and Darcy’s law for inhomo-
eneous media are given by

p�M�� �� ij� ij�, � ��� iwi, �1�

nd

�� ij� jp��� �i�� ip��� twi, i�1, . . . ,3 �2�

e.g., equations �8.399� and �8.401� in Carcione, 2007�, where p is
he fluid pressure, � is the variation of fluid content, wi are the com-
onents of the fluid displacement vector relative to the solid, � ij are
he components of the strain tensor of the skeleton �matrix�, � i

� ij� ij are the components of the permeability tensor �in its princi-
al system�, � is the dynamic viscosity, � ij are components of the ef-
ective-stress coefficient matrix �equation �7.139� in Carcione,
007; see below�, � i is the spatial derivative with respect to the vari-
ble xi, and � t is the time derivative ��x1,x2,x3�� �x,y,z��. The stiff-
ess M is

M �
Ks

�1�K/Ks����1�Ks/Kf�
, �3�

here � is the porosity, Ks is the bulk modulus of the solid grains, Kf

s the fluid bulk modulus, and

K�
1

9
�c11�c22�c33�2�c12�c13�c23��, �4�

ith cIJ the elastic constants of the �drained� skeleton. In many cases,
can be approximated by Kf /�.
Combining equations 1 and 2 yields the diffusion equation
Downloaded 01 Oct 2009 to 85.18.36.49. Redistribution subject to S
1

M
� tp�� ij� t� ij�� i�ai� ip�, ai�

� i

�
, and i,j�1, . . . ,3.

�5�

n the isotropic case, equation 5 becomes

1

M
� tp��� t� ii�� i�a� ip�, a�

�

�
, �6�

here � �1�K /Ks, with K the bulk modulus of the skeleton.

ncoupling fluid flow and deformation

The fluid pressure is coupled with the strain of the matrix in equa-
ions 5 and 6. This fact makes the problem much more difficult to
olve, but there are situations in which these field variables can be
ncoupled. They occur when the displacement field is irrotational or
hen the fluid is very compressible �e.g., Detournay and Cheng,
993�. We might avoid such approximation by using a less stringent
ne. The total stress is

� ij�cijk�� k��� ijp �7�

e.g., equation �7.132� in Carcione, 2007�, where � ij are the compo-
ents of the total stress tensor and cijk� are the elastic constants in the
our indices notation �Helbig, 1994�.

Let us assume the case of a fluid-injection source in a borehole,
ransverse isotropy of the elastic and transport properties �a2�a1�,
niaxial strain conditions, and vertical deformations only. In this
ase, the only nonzero differential strain is d� 33.Assuming no chang-
s in the vertical stress, we obtain from equation 7,

d� 33�0�c3333d� 33��33dp�c33d� 33��33dp . �8�

sing this equation, equation 5 becomes

� tp�s�M	Ip, �9�

here we have introduced a source term s,

	I�� 1�a1� 1p��� 2�a1� 2p��� 3�a3� 3p�

and
1

M
→

1

M
�

�33
2

c33
, �10�

nd the subindex I in the Laplacian indicates that it corresponds to
nhomogeneous media; i.e., equation 9 is required when computing
iffusion fields using direct methods �finite differences, finite ele-
ents, pseudospectral methods, and so on�. The permeability tensor

s diagonal with two independent components �1 and �3, so that

ai�
� i

�
, i�1,3, �11�

�33�1� �2c13�c33�/�3Ks�, �12�

nd M is given by equation 3, with

K�
1

9
�2c11�c33�2�c12�2c13�� . �13�

Another similar situation, although uncommon in a borehole,
ccurs when the strain tensor is isotropic, i.e., d� 11�d� 22�d

�0. It is easy to show that if d� �0, we obtain a stiffness
33
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Fluid-pressure diffusion in anisotropic media N33
→1 / �1 /M ��33
2 / �2c13�c33��. Knowledge of M in both cases is

seful to quantify the correction to be applied to the diffusion equa-
ion resulting from the deformation of the skeleton. More general ap-
roaches involving the coupling of fluid flow and deformation to
ake into account the coupled Biot’s equations are given by Gutierrez
nd Lewis �2002�.

If the medium is homogeneous, we can express equation 5 as

� tp�s�	Hp, �14�

here

	H�b1� 1
2�b2� 2

2�b3� 3
2, bi�Mai�M

� i

�
,

i�1, . . . ,3; �15�

i are the principal components of the hydraulic diffusivity tensor,
hich can be defined only for homogeneous media. Otherwise, the
aplacian 10 has to be used for diffusion problems when the medium

s heterogeneous.

PLANE-WAVE ANALYSIS

Let us assume a kernel of the form exp�i�
t�k ·x��, where 
 is
he angular frequency, k is the complex wavenumber vector, and x is
he position vector. Assuming homogeneous fields, we have k

k��1,�2,�3��, where k�Re�k�� i�, � is the attenuation factor,
nd �i are the direction cosines defining the propagation direction,
here Re takes real part.

ispersion relation and complex velocity

Substituting the above kernel into equation 14, in the absence of
ource, gives the dispersion equation

i
 �� �b1�1
2�b2�2

2�b3�3
2�k2. �16�

e define the complex velocity as

vc�



k
��i
�b1�1

2�b2�2
2�b3�3

2� . �17�

he same kinematic concepts used in wave propagation �acoustics
nd electromagnetism� are useful in this analysis �see Carcione,
007, chapter 8�.

hase velocity, attenuation factor, and skin depth

The phase velocity and attenuation factor can be obtained from
he complex velocity as

vp� �Re�vc
�1���1 and � ��
 Im�vc

�1�, �18�

espectively, where Im takes imaginary part. The skin depth is the
istance d for which exp���d��1 /e, where e is Euler’s number. It
sually is taken as the effective distance of penetration of the signal.
hen d�1 /�; d��2b /
 for isotropic media, where b��M /� .
sing equation 17 yields

vp��2
�b1�1
2�b2�2

2�b3�3
2� �19�

nd
Downloaded 01 Oct 2009 to 85.18.36.49. Redistribution subject to S
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vp
. �20�

nvelope and group velocities

Without loss in generality, let us consider the �x,z�-plane, where
2�0, �1�sin � , �3�cos � , and �1

2��3
2�1, where � is the angle

etween the wavenumber vector and the z-axis. Carcione �1994,
007� shows that the location of the wavefront in anisotropic attenu-
ting media is given by the energy velocity because the concept of
roup velocity breaks down. Carcione also shows that the energy ve-
ocity can be approximated quite well by the envelope velocity,
hich is given by

venv��vp
2��dvp

d�
�2

�21�

equation �1.146� in Carcione, 2007�. Using equation 19, we obtain

venv�vp

�b1
2�1

2�b3
2�3

2

�b1�1
2�b3�3

2�2 �
2


vp

�b1
2�1

2�b3
2�3

2. �22�

In the isotropic case, b1�b3 and venv�vp. We show below that
he envelope velocity is exactly the energy velocity for equations of
he form 14.

On the other hand, the components of the group velocity are equal
o the derivative of the frequency 
 with respect to the real wave-
umber components, i.e., �
 /� Re�ki�. The components are ki

k�i. The group-velocity vector can be obtained from the disper-
ion relation as

vg��	Re� �F/�


�F/�k1
�
�1

ê1�	Re� �F/�


�F/�k3
�
�1

ê3,

�23�

equation �4.39� in Carcione, 2007�, where, from equation 16,

F�k1,k3��b1k1
2�b3k3

2� i
 �0, �24�

nd ê1 and ê3 represent unit vectors in the x- and z-directions, respec-
ively. Because Im�vc��vp /2, we obtain

vg�
4


vp
�b1�1ê1�b3�3ê3� �25�

nd

vg�
4


vp

�b1
2�1

2�b3
2�3

2�2venv. �26�

n the isotropic case, we have vg�2vp.
The group velocity obtained by Shapiro et al. �2002� differs from

quation 26 in that the factor 4 is replaced by �8. Shapiro et al.’s ap-
roach is to compute the components �
 /�ki and then take the abso-
ute value of the result. �Note that �vc��vp /�2.� Shapiro et al.’s ve-
ocity exceeds our energy �or envelope� velocity by a factor �2 �see
ext section�. The problem of correctly defining the field velocities is
mportant in many contexts, for instance, in inhomogeneous media
ontaining random scatterers �Schriemer et al., 1997�. When the
cattering is strong, the propagation typically is very well described
EG license or copyright; see Terms of Use at http://segdl.org/
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N34 Carcione and Gei
sing the diffusion approximation, and the group velocity generally
iffers from the energy velocity.

nergy velocity and wavefront

The calculation of the energy velocity requires establishment of
he energy balance equation. Again, we use the fact that diffusion
elds can be treated with the same mathematical formulation used
or the propagation of waves. The energy balance could be devel-
ped explicitly, and the energy velocity can be obtained as the ener-
y flux divided by the total energy. For brevity, we use an analogy
etween equation 5 and that describing propagation of seismic SH-
aves �Carcione, 2007�. The complex velocity of SH-waves, given
y equation �4.106� in Carcione �2007�, is mathematically equiva-
ent to equation 17, provided that we make the following substitu-
ions:

p66→ i
b1, p44→ i
b3, �→1, �27�

here p66 and p44 are complex and frequency-dependent stiffnesses
nd � is the mass density. The energy velocity is given by equation
4.115� in Carcione �2007�. Then, using this equation and the equiv-
lence 27, we obtain

ve�
2


vp
�b1�1ê1�b3�3ê3� . �28�

s can be seen, by comparison to equation 22, venv�ve. In the iso-
ropic case, b1�b3 and ve�vp.

Equation 28 provides, in addition, the direction of the energy flux:

tan 
 �
b1�1

b3�3
�

�1

�3
tan � . �29�

The velocity goes from zero at 
 �0 to infinity at 
 ��. Hence,
he definition of wavefront or diffusion front is related to a given fre-
uency. We define the wavefront as the location of the tip of the ener-
y velocity vector at unit propagation time.

uality factor

The quality factor has two definitions in the literature, which give
pproximately the same value when Q�1 �low-loss condition�, as it
s the case for seismic waves. These definitions are �1� Q1� twice
he potential energy divided by the dissipated energy, and �2� Q2

the total energy divided by the dissipated energy. These are ener-
y densities, time averaged over a cycle.

Here the low-loss condition does not hold. The first definition
ives a quality factor

Q1�
Re�vc

2�
Im�vc

2�
�0 �30�

see Carcione, 2007, equation �4.92��, where we use equation 17.
he second definition gives

Q2�
Re2�vc�
Im�vc

2�
�

1

2
�31�

see Carcione, 2007, equation �8.305��. Because a pure diffusion
rocess does not store the energy, which is completely dissipated, Q1

eems to be more representative of the physics. This can be viewed
n terms of mechanical models. It is well known that a dashpot repre-
Downloaded 01 Oct 2009 to 85.18.36.49. Redistribution subject to S
ents a diffusion equation and that this element dissipates all the en-
rgy without any storage.

GREEN’S FUNCTION

Here, we obtain the response of the medium to a time impulse. The
ollowing change of coordinates,

x→x��b1, y→y��b2, z→z��b3, �32�

ransforms 	H in equation 14 into a pure Laplacian differential oper-
tor. Using equation 32, equation 14 for the Green’s function is

� tG�	�G�� �r��� �t�, �33�

here � is Dirac’s function, and

	��� 1�
2

�� 2�
2

�� 3�
2 . �34�

ts solution is

G�
1

�4� t�n/2 exp��r�2/�4t��H�t� �35�

e.g., Carslaw and Jaeger, 1984�, where n is the space dimension and

r���x2

b1
�

y2

b2
�

z2

b3
�36�

omit the y-term if n�2�. The diffusion-length vector ��1,�2,�3� is
efined as r���4t. It is obtained from

�1
2

b1
�

�2
2

b2
�

�3
2

b3
�4t . �37�

t is a measure of how far the field has propagated at time t.
Having the Green’s function, one can compute the solution for a

ource time history s�t� as

p�G�s . �38�

he spectrum of function s�t� should be significant in a frequency
ange when the assumption of quasi-static poroelasticity is valid
Müller, 2006�.

In particular, for s�H �uniform injection rate�, we have for the
D diffusion case 35

p�
1

�4��3/2�
0

t

1

� 3/2 exp��r�2/4� �d� �
1

4�r�
erfc� r�

�4t
�,

�39�

here “erfc” is the complementary error function; erfc�q��1
erf�q�� �2 /���
q

� exp��p2�dp, where “erf” is the error func-
ion.

FRACTAL MEDIA

We vary the porosity fractally and compute the permeability com-
onents and elastic moduli from deterministic relations between
hese quantities and the porosity. This model contains characteristics
f realistic heterogeneous media.
EG license or copyright; see Terms of Use at http://segdl.org/
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Fluid-pressure diffusion in anisotropic media N35
Let 	�m be the maximum deviation of the porosity from the back-
round value �0. The porosity at �x,y,z� is subjected first to the varia-
ions �	��r, so that

�	�m� �	��r�	�m, �40�

here �	��r is obtained from a random generator, and the superin-
ex r denotes random. �Random numbers between 0 and 1 are gener-
ted and then scaled to the interval ��1,1�	�m.�

Small-scale porosity variations in the reservoir can be described
y the von Kármán autocovariance function. This function contains
haracteristics seen in models of heterogeneity in sedimentary
ocks. It describes self-similar and self-affine media rich in short-
avelength components, providing a fractal spatial description of a

abric over a wide-scale range. The exponential function is a particu-
ar case of this autocovariance function, which is used widely in seis-

ic applications �e.g., Dolan and Bean, 1997�. Alternative choices
re given, for instance, in Molz et al. �2004�.

The corresponding wavenumber-domain power spectrum of the
on Kármán function is

P�k1,k2,k3��C�1�k2�2�����n/2�, �41�

here k��k1
2�k2

2�k3
2 is the wavenumber, � is the correlation

ength, ��0 � � � 1� is a self-similarity coefficient, C is a normal-
zation constant, and n is the Euclidean dimension. The von Kármán
orrelation function describes self-affine, fractal processes of fractal
imension n�1�� at scales smaller than �.
The porosity then is calculated as

��x,y,z���0�	��x,y,z�, �42�

here

	�˜�k1,k2,k3�� �	�˜�r�k1,k2,k3�P�k1,k2,k3�, �43�

ith �	�˜�r�k1,k2,k3� being the Fourier transform of �	��r�x,y,z�.
The tilde denotes the space Fourier transform.�

Porosity and permeability are related by the Kozeny-Carman rela-
ion �Mavko et al., 1998�. Let us assume

�3�
B�3D2

�1���2 , �44�

here D is the grain diameter and B is a dimensionless constant �B
0.003 in our calculations�.
We use the model of Krief et al. �1990� to obtain the dry-rock mod-

lus K. The porosity dependence is consistent with the concept of
ritical porosity because the moduli should be small above a certain
alue of the porosity �usually from 0.4 to 0.6�. The modulus is given
y

K�Ks�1���A/�1���, �45�

here A is a constant that depends on the rock type. We have re-
laced equation 4 by the approximation 45. Note that the diffusion
rocess is controlled mainly by the permeability tensor components,
hich might be very different in different directions �in contrast to

he elastic moduli�.
The numerical algorithm for solving the diffusion equations is

iven in detail inAppendixA.
Downloaded 01 Oct 2009 to 85.18.36.49. Redistribution subject to S
PHYSICS AND SIMULATIONS

To illustrate the physics in homogeneous media, we use the
ollowing material properties: c11�35 GPa, c12�3 GPa, c13

5 GPa, c33�25 GPa, Ks�40 GPa, Kf �2.25 GPa, � �0.25,

1�200 mD, �3�50 mD, and � �1 cP. Figure 1 shows the
hase and energy velocities as a function of the propagation angle.
he frequency is 0.001 Hz.At � �0, we have propagation along the
-direction where the permeability is minimum. Thus, the velocities
lso have a minimum along this direction. Figure 2 shows a snapshot
f the pressure field at t�4 hr 30 min. The 2D image in Figure 2a
hows the anisotropic features of the diffusion. A blowup along a
orizontal line passing through the source is shown in Figure 2b.
ere and in the following plots, the field is normalized with respect

o its maximum value. The arrow indicates the wavefront, which has
een calculated with the energy velocity 28 along the direction of
aximum permeability, i.e., 240 m /hr �see Figure 1�.
We now compare the numerical and analytic solutions in homoge-

eous media. To compute the transient responses, we use as a source
Ricker time history of the form

h�t���a�
1

2
�exp��a�, a�	��t� ts�

tp

2

, �46�

here tp is the period of the wave �the distance between the side
eaks is �6tp /��, and we take ts�1.4tp. Its frequency spectrum is

H�
��� tp

��
�ā exp�� ā� i
ts�, ā�� 



p
�2

,


p�
2�

tp
. �47�

he peak frequency is f p�1 / tp.
For the comparison, we take fp�0.001 Hz, corresponding to a

eriod of approximately half an hour. We consider the same proper-
ies indicated above, n�2 �2D space�, and a mesh with grid points

x�Nz�273, and 	x�	z�10 m. The first time step is dt�2 hr
nd 15 min, greater than the duration of the source �nearly 2ts or ap-
roximately 1 hr and 33 min�. Then we use the obtained solution as

igure 1. Phase and energy velocities �solid and dashed lines� as a
unction of the propagation angle.
EG license or copyright; see Terms of Use at http://segdl.org/
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N36 Carcione and Gei
n initial condition and propagate the field with 10 time steps of du-
ation dt each. The solutions are computed at x�z�300 m. Figure
shows the comparison, in which the solid lines correspond to the

nalytic solutions, the empty circles to the anisotropic case, and the
lack circles to the isotropic case ��1��3�50 mD�. As can be
een, the agreement is excellent.

The simulation in heterogeneous media considers a low-frequen-
y source with a peak frequency fp�0.03 Hz. The rock is modeled
s a fractal medium described by �0�0.35, 	�m�0.15, ��20 m,
�0.18, and n�2. We assume D�0.25 mm, �1�4�3, � �1 cP,

s�40 GPa, �s�38 GPa, A�5.13, Kf �2.61 GPa, and � f

1032 kg /m3; K�1.33 GPa is obtained from equation 45. If we
ssume a dry-rock shear modulus ��0.67K�s /Ks, we obtain the
verage P- and S-wave velocities 2061 and 643 m /s, respectively,
nd an average density of 2050 kg /m3. The average vertical perme-
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igure 2. Snapshot of the pressure field at t�4 hr 30 min. �a� 2D
mage; �b� 1D image �blowup� along a horizontal line passing
hrough the source and the direction of maximum permeability. The
rrow in �b� indicates the location of the wavefront computed with
he energy velocity 28 at � �� /2 or � �1.
1
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bility is �3�1.9 D, with minimum and maximum permeabilities
f 0.25 D and 9.25 D. The average value of M is 3.6 GPa, and the
verage field velocities along the vertical and horizontal directions
re 4130 and 8270 m /hr, respectively.

Figure 4 shows a map of the vertical permeability. To perform the
imulation, we use the same grid of the previous simulation. The
rst time step is dt�135 s, greater than the duration of the source
93 s�. Then five time steps of 135 s are used to compute the snap-
hot and time history shown in Figures 5 and 6, respectively. The last
gure shows a comparison of the pressure corresponding to the aver-
ge and fractal media �solid line and symbols, respectively�, where
he average properties are M �3.6 GPa, �1�7.6 D, and �3

1.9 D. The difference of the peak values is nearly 15%, a differ-
nce that can be important in real applications. Note that in this work
e are simulating pore-pressure diffusion �i.e., diffusion of the slow

–

–

igure 3. Comparison between the analytic �solid lines� and numeri-
al solutions at 424 m from the source location. The open and solid
ircles correspond to the anisotropic and isotropic cases, respective-
y. Both fields are normalized to one, but the maximum in the former
ase is twice the maximum of the latter case.
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D
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igure 4. Fractal image of the vertical permeability �3 correspond-
ng to a typical high-porosity sandstone. The average size of the het-
rogeneities is 20 m.
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iot mode� rather than mass flow. Although the equations are equiv-
lent, the effect of gravity has to be included in the equations in the
atter case, when modeling flow through vertical extensions such as
he medium given in Figure 4.

CONCLUSIONS

We have formulated a theory for fluid-pressure diffusion in inho-
ogeneous anisotropic media. The coupling between the pressure

nd deformation of the frame is taken into account for the case of
niaxial strain conditions. The approximation involves a modifica-
ion of the stiffness. The physical quantities have been obtained by
sing a plane-wave kernel and concepts from wave propagation in
nelastic media. In particular, we show that the envelope velocity �a
inematic quantity� is equal to the energy velocity �a dynamic quan-
ity�. This is not the case for waves. Our group velocity is twice the
nergy velocity and is greater than a previous definition of group ve-
ocity by a factor �2. The relation between the energy angle and the
hase angle depends on the ratio between the horizontal and vertical
ermeabilities, and therefore strong differences are expected be-
ween the flux and wave-vector directions, compared to the seismic
propagation� case. Using the seismic definition of quality factor, we
btain a zero value, which is more physical than the accepted value
f one half. This new implications are useful to track the diffusion
ront in reservoir rocks, where the signal travels at the energy veloci-
y, as shown by the time response. We have obtained also the time-
omain Green’s function in homogeneous media.

Simulation of pressure diffusion in inhomogeneous media has
een achieved by using a time-domain spectral method, which has
igh temporal accuracy and allows us the use of a coarse numerical
esh. The algorithm has been tested with the Green’s function and

pplied to pressure diffusion in fractal permeability media, simulat-
ng realistic reservoir conditions.
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APPENDIX A

THE NUMERICAL ALGORITHM

Equation 9 has the form

� tp�s�Gp, �A-1�

here

G�M�� 1a1� 1�� 2a2� 2�� 3a3� 3� �A-2�

s the propagation operator containing the spatial derivatives and
aterial properties. Considering a discretization with N number of

rid points, equation A-1 becomes a system of N ordinary differen-
ial equations at the grid points. The solution to equation A-1, subject
o the initial condition p�0��p , is given by
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igure 5. A 2D snapshot of the pressure field in the fractal medium
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–

igure 6. Comparison between the pressure in the average homoge-
eous medium �solid line� and the pressure in the fractal medium
circles�, at 424 m from the source location.
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pN�t��exp�tGN�pN
0 ��

0

t

exp�� GN�sN�t�� �d� ,

�A-3�

here pN
0 is the initial-condition field vector, exp�tGN� is called evo-

ution operator, and the subindex N indicates that those quantities are
iscrete representations of the respective continuous quantities. We
onsider a separable source term s�aNh�t�, where aN is the spatial
istribution of the source and the function h�t� is the source time his-
ory.Afully discrete solution of equation A-3 is achieved by approx-
mating the evolution operator. For instance, if there is no source, the
olution can be expressed by

pN�t��Hm�tGN�pN
0 , �A-4�

here Hm is a polynomial of degree m that converges to exp�tGN� in
he domain that includes all the eigenvalues of the operator tGN.

To solve equation A-3, we use a time-integration technique based
n the Chebychev expansion of the function exp�u� �Tal-Ezer, 1989;
arcione, 2006�. Let

v�
1

et
�u�et�, �1�v�1, �A-5�

here e is the absolute value of the maximum eigenvalue of matrix
N. As we see below, the eigenvalues are close to the real axis, and

heir real part is negative. Using equation A-5, we have

exp�u��exp��et�exp�etv�� �
k�0

�

ekTk�v�, �A-6�

here Tk�v� is the Chebychev polynomial of order k, and

ek�ck exp��et�Ik�et� �A-7�

or initial conditions without source, and

ek�ck�
0

t

exp��e� �Ik�e� �h�t�� �d� �A-8�

n the presence of source without initial conditions

ck��1, k�0,

2, k�1,
� �A-9�

nd Ik is the modified Bessel function of order k. Thus, the m degree
olynomial approximation of exp�u� is

Hm�u�� �
k�0

m

ekTk�v�u�� . �A-10�

Because of equation A-5, we substitute the operator FN defined as

FN�
1

e
�GN�e�, �A-11�

or v. For instance, in the absence of sources, the fully discrete solu-
ion is
Downloaded 01 Oct 2009 to 85.18.36.49. Redistribution subject to S
pN
m� �

k�0

m

ekTk�FN�pN
0 . �A-12�

he expression Tk�FN�pN
0 is computed by using the recurrence rela-

ion

Tk�u��2uTk�1�u��Tk�2�u�, k�2, �A-13�

T0�u��1, T1�u��u . �A-14�

ence,

Tk�FN�pN
0 �2FNTk�1�FN�pN

0 �Tk�2�FN�pN
0 , k�2,

�A-15�

T0�FN�pN
0 �pN

0 , T1�FN�pN
0 �FNpN

0 . �A-16�

The algorithm is a three-level scheme because it uses the recur-
ence relation. The first time step should be larger than the duration
f the source. Results at small time steps to compute time histories at
pecified points of the grid do not require significant additional com-
utational effort.Aslight modification of equation A-12 can be used:

pN
m�t��� �

k�0

m

ek�t��Tk�FN�pN
0 , �A-17�

or t � t�. This calculation does not require significantly more
omputations because the terms involving the spatial derivatives
k�FN�pN

0 do not depend on the time variable and are calculated in
ny case. Only the coefficients ek are time dependent, so that addi-
ional sets of Bessel functions need to be computed.

Accuracy and stability were investigated by Tal-Ezer �1989�,
ho shows that the algorithm is much more efficient than a modified
uler scheme �see below�.

aximum eigenvalue

Let us consider the homogeneous case and equation 15. In the
ourier method, the second derivative is replaced by �ki

2, where ki is
he wavenumber. The maximum wavenumber is the Nyquist wave-
umber, which for grid spacing 	x is � /	x. Hence, the maximum
igenvalue e is

e���2� b1

	x2 �
b2

	y2 �
b3

	z2� . �A-18�

ote that e takes real negative values.As Tal-Ezer �1989� shows, the
olynomial degree m should be of the order of �et.

patial differentiation

The algorithm uses the staggered Fourier method, which consists
f a spatial discretization and calculation of spatial derivatives using
he fast Fourier transform �Fornberg, 1996; Carcione, 2007�. Stag-
ered operators evaluate derivatives between grid points. For
nstance, if k1 is the wavenumber component, a phase shift
xp��ik1	x /2� is applied when computing the x-derivative, where
���1. Then � 1a1� 1 is calculated as D1

�a1D1
�, where D1

� is the dis-
rete operator and� refers to the sign of the phase shift. The spatial
ifferentiation requires the interpolation of the material properties at
alf grid points.
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ccuracy and efficiency

The present algorithm has infinite accuracy in time and in space,
nd is highly efficient because the stability condition requires a time
tep 	t�O�1 /N� compared to 	t�O�1 /N2� for finite-order ex-
licit schemes. Moreover, the error in time decays exponentially.
al-Ezer carries out an error and stability analysis for the equation
tU�G� 1

2U�0, where G�1 and N�64. If m indicates the mini-
um number of applications of the operator tFNUN, Tal-Ezer shows

hat the Chebychev method requires m�96 to be stable against m
768 for a modified Euler scheme. Regarding accuracy, he obtains
�70 �present method� versus m�20,000 �Euler method� for N
32, t�1, and an �2-error equal to 10�6. The last test involves a

ariable coefficient problem with G�a�x�� 1
2�b�x�� 1�c�x�. An

2-error less than 10�8 requires m�100 �present method� versus m
480 �Euler method� for N�64 and t�1. Despite the 1D charac-

er of the equations, these verifications are general regarding the di-
ensionality of the space because the spatial derivatives are per-

ormed by the pseudospectral Fourier method, which has been used
idely and tested for hyperbolic equations �Tal-Ezer, 1986�.

bsorbing boundaries

The boundaries of the mesh might produce wraparounds caused
y the periodic properties of the Fourier method. By analogy with
he wave equation, the algorithm uses the classical damping ap-
roach for hyperbolic problems to avoid these nonphysical artifacts
Kosloff and Kosloff, 1986; Carcione, 2007�. The method is simply
o modify the propagation operator G→G�� in the absorbing
trips around the mesh, where � is the absorbing parameter.
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