Babinet’s principle for elastic waves: A numerical test
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Babinet's principle states that the diffracted fields from complementary screens are the negative of
each other. In electromagnetics, Babinet's principle for infinitely thin perfectly conducting
complementary screens implies that the sum, beyond the screen plane, of the electric and the
magnetic fieldgadjusting physical dimensionequals the incideriunscreenexelectric field. A test

of the principle for the elastodynamic case was made using numerical calculations, and the results
demonstrate that Babinet's principle holds quite well for complementary plane screens with
contrasting boundary conditions; that is, the complementary screen of a stress-free screen is a rigid
screen with openings where the original stress-free screen existed, and vice versa. The results are
exact in an anisotropic SH case; for the P—SV case, the diffracted waves, PdP, SdS, PdS, and SdP
satisfy the principle exactly, while the refracted waves, PdPrSc and SdPrSc, do not satisfy the
principle at all(these waves are generally much smaller than the PdS and SdP)waiffacted

surface waves also do not satisfy the principle. The numerical method is based on a
domain-decomposition technique that assigns a different mesh to each side of the screen plane. The
effects of the screens on wave propagation are modeled through the boundary conditions, requiring
a special boundary treatment based on characteristic variables. The algorithm solves the velocity/
stress wave equations and is based on a Fourier/Chebyshev differential operat@@99©
Acoustical Society of AmericBS0001-496€29)01403-4

PACS numbers: 43.20.Bi, 43.20.Gp, 43.20[PEC]

INTRODUCTION To the best of our knowledge, no attempt has been made
to test Babinet's principle by numerical-modeling tech-
Babinet’s principle was originally used to relate the niques. The present work considers rigid and stress-free
diffracted-light fields by complementary thin scre€n&  (weak boundary conditions on the screens in order to repro-
complementary screen is a plane screen with opaque areg§ce the laboratory experiments performed by Gangi and
where the original plane screen had transparent areéagyohanty? The numerical algorithm is based on a domain-
Roughly speaking, the principle states that behind the dif'decomposition techniqUi® where the implementation of
fracting plane, the sum of the fields associated with a screep, boundary conditions requires a special treatment based

anpl V\."th its complementary screen is Ju.St the f'e_ld that Wc_n“don characteristic variables. Then, the governing equations are
exist in the absence of any screen; that is, the diffracted fields

: olved by a grid method that uses the Chebyshev differential
from the two complementary screens are the negative of eac

other and cancel when summed. The princiole was later e Operator in the direction normal to the screen plane, and the
) P P )ﬁzourier differential operator parallel to the screen plane.

tended to electromagnetic fields and perfectly conducting The principle is investigated in the isotropic case, as in

plane screens or diffractofs. Gangi and Mohant,and for SH ion through th
Gangi and Mohantlinvestigated Babinet's principle for angt an ohanty,and for propagation through the

elastodynamic fields and nonplanar complementary screerly MMetry plane of a monoclinic medium and qP—qS propa-
by using the representation theorefsee, for example, _ganon in a_transversely isotropic solid whose symm_etry axis
GangP). They performed elastic-wave experiments using'S perpendlgular to the screen plane. The;e pumgrlca}l simu-
thin polystyrene sheets where wave propagation is practi'-at'ons provide an adequate test of the principle, in view of
cally two-dimensional. The experiments considered rigidthe different constitutive equations and wave-propagation
complementary screens, stress-free complementary screefsodes.
and mixed rigid/stress-free complementary screens. The re- Babinet's principle would be of value since it allows us
sults did not provide conclusive evidence about the condito obtain the solution of the complementary problem from
tions for which the principle is valid, mainly due to the ex- the solution of the original problem without any additional
perimental errors and the fact that the “rigid” screen was noteffort. Moreover, it provides a check of the solutions for
perfectly rigid. problems that are self-complementdeyg., the problem of a
plane wave normally incident on a half planéinally, it
3Electronic mail: carcione@gems755.0gs.trieste.it adds to our knowledge of the complex phenomena of elastic-
YElectronic mail: gangi@tamu.edu wave diffraction.
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. 2-D ELASTODYNAMIC EQUATION OF MOTION "0 0 pl o0 07
The elastodynamic solution makes use of the equations 0 0 0 0 pt
of momentum conservation and the stress/particle—velocity aA=|c;; 0 0 0 0], (9)
relations, that can be written as
c3 0 0 O O
N N oV L0 ¢cs O 0 O]
—=A—+B—+f, (1)
ot X 0z "0 0 0 0 p*l-
where the parametews, B, v, andf are explicitly given in 0 0 0pt o0
the following subsections for the 2-D anisotropic case. B=| 0 ¢33 0 O 0 (10)
A. SH equation of motion 0 ci3 0 0 0O
[ Css O O O 0 |

The particle—velocity/stress vector of the pure shear
wave propagating in a monoclinic medium of arbitrary ori- wherec,; are the elastic moduli in the principal axes system
entation (i.e., the normal to the isotropy plane makes anand
angle 6 with the verticalz axis) is

f=[f,,f,,0,0,0". (11
v=[v,a'xy,0'2y]T; 2
Il. BABINET'S PRINCIPLE FOR ELASTIC WAVES
-1 -1
0 »r 0 0 0 Consider a screefy, and its complementary screél)
A=|Ce 0 0|, B=|Csp O 0 |, (3)  and assume that the total field in the presenc8 isfvg and
Csh O O Cu O O that related tcC is v . Babinet'’s principle as given by Gangi

and Mohant{ states that the total fields on the opposite sides
wherep is the material density an@,; are elastic constants of the screens from the source satisfy

C44=C44C0¢ 6+ Cggsin’ 6, (4) Vst Vc=Vo, (12)
wherevy is the field in the absence of any screen. Equation
Ces=CaaSin® 0+ cggc0S' 6, (5) (12 states that the diffraction fields for the complementary
screens will be the negative of each other. Moreover, the
C6= (CaqCep) COS OSIM? 0, (6)  total fields on the source side must satisfy
and thec,; are the elastic moduli in the principal axes sys-  VstVc=2Vvg+Vg, 13

tem; i.e., when the[or (3)] axis is the normal to the isotropy

plane. Moreover wherevy, is the reflectedand diffractedl field by a screen

composed oS andC if they have different boundary condi-
tions, and it is just the reflected field if they have the same

_ T
f=[f,0,0] @ boundary condition.

is the body-force vector.
We recall that propagation in the plane of mirror sym-
metry of a monoclinic medium is the most general situation)||. SCREEN MODELING BY DOMAIN
for which antiplane strain motion exists in all directioflse = DECOMPOSITION
corresponding waves are also termed type-Il S in the geo-
physical literaturd. A detailed analysis of wave propagation ~ Consider a planar interface in an anisotropic medium,
of antiplane waves can be found in Carcidfeyho studied ~With the symmetry axis perpendicular to the interface plane.

the propagation of homogeneous plane waves in a viscoela§€ medium may not necessarily be homogeneous. Assume
tic medium. the two-dimensional case, and refer to the upper and lower

half-spaces with the labels | and I, respectively, witin-
creasing toward the upper medium.
) ) The screen model is implemented in numerical modeling
B. gP—gS equation of motion by using a domain-decomposition technique. Cardiare
In a transversely isotropic medium, there are three wavd essmeret al® applied the method to model elastic waves
solutions, two coupled modes denoted by gP and gS, repr@&cross a welded interface between two elastic half-spaces
senting the quasicompressional and quasishear modes, a@@d across an interface separating an acoustic layer from an
the pure sheaiSH) mode'* Since the medium has azimuthal elastic medium(where v, need not be continuousThe
symmetry, it is enough to consider gP—gS propagation inboundary treatment is based on characteristics representing
say the(x,2 plane. The particle—velocity/stress vector andone-way waves propagating with the phase velocity of the

corresponding matrices are medium. The wave equation is decomposed into outgoing-
and incoming-wave modes perpendicular to the interface
V=[0y,Us,0%x, 022,05 (8) separating the two half-spaces. The outgoing waves are de-
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(@ maximum vertical grid spacings are 7.1 and 7.35 mm, re-

J spectively. The source and receiver positions and the screen
S x tip should be carefully determined, since a small difference
25¢0m can produce a big difference when comparing amplitudes of
41 diffracted arrivals at the receivers. In number of grid points,
I 30cmik the screen begins at th@orizonta) grid point 187. This
R, A R, means that the tip is in between points 186 and 187. Thus,

taking this fact into account, sour&in configuration B is
applied at points 186 and 187, and sour€esand S,, cor-

200m responding to configuration A, are located at grid points 208
®) 1 and 165, respectively. Moreover, the positions of receivers

R, andR, are in grid points 208 and 165, respectively. The

vertical location of sources and receivers does not have a
major influence on the calculations. The source emits a pulse
of peak frequencyfo=33 KHz with a duration of approxi-
— socmlF mately 68us. If timet is given inus, the time history is

(1-2at?)exp(— at?), a=1/150.

FIG. 1. Source-receiver configurations for the numerical experiments corp delay of 34 5uS is applied to the pulse to make it causal

responding to the laboratory tests(& and A (b) performed by Gangi and .
Mohanty?* In (a), the fields detected by receiv®; and R, correspond to In order to better resolve the different events, a denser

complementary screens if the medium is isotropic or transversely isotropién€sh is used for testing the principle with configuration B. In
with its symmetry axis normal to the screen plane. this caseN,=625,N,=161, with a horizontal grid spacing

of 2.82 mm, and maximum vertical grid spacings of 3.55 and

termined by the solution inside the corresponding half-space3-65 mm, respectively. The source emits a pulse of peak
while the incoming waves are calculated from the boundaryrequencyfo=>52kHz with a duration of approximately 45

!
s % xS,

conditions. us. The time history is obtained from the previous expres-
Most explicit time-integration schemes compute the op-sion, with a=2/75. Causality requires a delay of 23us.
erationMv = (v)°? where Open-radiation conditions and absorbing strips of width

18 grid points are implemented at the outer horizontal
(14) boundaries. At the sides, absorbing strips of the same width
are used in order to eliminate wraparound effects caused by
ithe Fourier operator. The solution is propagated to 900 ms
with a time step of 0.3us and resampled to 1,2s.

M=A J +B 4
“ox o Tz

The vector ¢)°¢is then updated by the boundary treatmen

to give a new vector \()"" that takes into account the

boundary conditions. The boundary equations are given in

the Appendix. V. TEST OF THE RECIPROCITY PRINCIPLE
The velocity—stress Ed1) is solved by a fourth-order

?ung?; quttat:]lme—lnte?ratmr_]m:Igonttrr]lmf.. -I|—2e SP""SI""' derivasjy o, by verifying the reciprocity principlé3!*Seismic reci-
ives, that is, the operation witkl on the field variables, are procity implies that sources and receivers can be inter-

computed by using the Fourier method in the horizontal di'changed under certain conditions. This relationship holds for

rection, and the Chebyshev method in the vertical dlrectlonsan elastic medium with arbitrary boundary conditions, inho-

where nonperiodic boundary conditions are required. Aftermogeneity, and anisotropy. In our experiments, the homoge-

an operation withv, the field variables are updated by using neity is broken by the presence of the screen
the equations given in the Appendix. More details about the '
numerical technique can be found, for instance, in

Carcione’*?

A first numerical experiment tests the modeling algo-

The test uses configuration A and compares the horizon-
tal particle velocityv, at R, caused by a vertical force &,

with the vertical particle velocity, atS; due to a horizontal
source aR;. The comparison is shown in Fig. 2, where the
IV. MODEL AND MODELING SETUP dotted line corresponds to the horizontal source. The match-

_ ing is excellent, and provides a partial verification of the
The model simulates the laboratory tests performed bynodeling algorithm.

Gangi and Mohantin a homogeneous and elastic isotropic

material(P—S propagationand in addition, SH propggaﬂon VI. TEST OF BABINET'S PRINCIPLE

through the symmetry plane of a monoclinic medium and

gP—gS propagation in a transversely isotropic solid whose The following numerical experiments test the validity of

symmetry axis is perpendicular to the screen plane. Th&abinet's principle for complementary screens of the same

source—receiver configurations illustrated in Fige)and(b)  type, i.e., both stress-fre@veak or both rigid, and for

are used to test Babinet’s principle. They correspond to conscreens having different properties; that is, if the original

figurations B and A in Gangi and Moharftyespectively. screen is rigid(stress-freg the complementary screen may
The calculations use two meshes with=375 andN,  be stress-fre&igid). The qP—gS anisotropic case considers a

=81 each, and a horizontal grid spacing of 4.7 mm. Thecrack embedded in a transversely isotropic medium.
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FIG. 2. Verification of the reciprocity principle using configuratiorf ig.
1(b)]. The test compares the horizontal-particle veloeifyat R, caused by
a vertical force a, (continuous ling with the vertical-particle velocity, 107 'i\ (b)
at S; due to a horizontal source B (dots. 08 R, weakdet 'l‘
OAS: . R, rigid-right l" “
A. The anisotropic SH case 04 H
. . . . . 1 1l
We consider configuration B and a monoclinic medium §  o2- I
with Cuy=pV3, Cge=pVae andC,e=0.5V3, whereVgg ‘ . B S S :
K R M 650 700 \\75J [ / 800 850
=1300m/s, V4,=970m/s, andp=1glcn® (6~45deg). £ o YT
Since the problem is not symmetiithe elliptical-wave sur- 0] \ ‘,, Time (us)
face is tilted with respect to theaxis), the measurements at . !
R, (Ry) in Fig. 1(a) do not provide the values corresponding 1 -—=- :&5:“?:(
. 08 . , rigid-rigl
to the complementary screen of the same type, when testing 1 s
1.0

the principle atR; (R,). Instead, the simulation with a

complementary screen from grid point 1 to grid point 186 iSFIG. 3. Test of Babinet's principle for SH waves propagating in a mono-
required. The experiment consists of five Simu|ation5, twd:”nic medium, corresponding to configuration B. The figure shows the scat-

with rigid boundary conditions, with the screen at the left

tered pulses aR; (580-us onsetandR, (730-us onsek for complementary
screens of different type, i.e., stress-free and rigid. Fig(ae [8b)] corre-

side and the right side of the plane, respectively, two Withsponds to the weak screen at the rigbft) side and the rigid screen at the

stress-free boundary conditions, and one unscreened.
Figure 3 compares scattered pulggisfracted at the tip
at R; (580-us onsetandR, (730-us onsex for complemen-

tary screens of different type, i.e., stress-free and rigid. Fig-

left (right) side. The scattered field at receiv&sandR, for the rigid—left
(weak—lef} and weak-rightrigid—right) cases are obtained by subtracting
the total field from the field obtained in the unscreened dasescreen
presenk.

ure 3a) [(b)] corresponds to the weak screen at the right

(left) side and the rigid screen at the léftight) side. The
scattered field at receive®; and R, for the rigid—left
(weak—lefy and weak—rightrigid—right) cases are obtained
by subtracting the total field to the unscreened fiéid

refracted along the screen plane and then incident at the re-
ceiver at the critical angléi.e., a conical or lateral waye
Note that receiveR; records diffractions only. Figure(d)
compares the unscreened field=gt (continuous ling to the

screen presentAs can be seen, there is an excellent matcHield recorded aR, (rigid screen; direct arrivals plus diffrac-

when the original screen is rigigveak and the complemen-
tary screen is wealkrigid), demonstrating that, in this case,

tions) minus the field recorded &; (weak screen; diffrac-
tions plus lateral wavesilt is clear that Babinet's principle is

Babinet's principle holds for screens of different type. Thisnot satisfied by the lateral wave PdPrSc, since this event is

result is in agreement with the proof by Johasthe purely
acoustic casépressure waves

B. The elastic case
1. Isotropic media

The set of numerical experiments performed by Gang
and Mohant§ uses polystyrend80 cm wide by 160 cm
long) whose compressional and shear velocities ke
=Zplp=1750m/s andVg=Zg/p=970m/s, respectively,
with a densityp=1 g/cn¥. Figure 4a) represents the particle
velocity v, recorded at receiveiR; for a weak screeifbro-
ken ling andR, for a rigid screen(continuous ling corre-

only recorded aR; . This is evident in Fig. &), which com-
pares the scattered pulses R (continuous ling and R,
(dotted ling. As can be seen, there is no doubt that the PdP
wave and the SdS wav@ot visible in Fig. 4 satisfy the
principle (for complementary screens of different typEig-

ure 5b) represents the scattered pulse for weak complemen-
tary screens with the continuous line correspondindRr{o
and the dotted line t&,. In this case, the principle is not
satisfied.

Numerical experiments for configuration A are repre-
sented in Fig. 6, wheré) compares scattered eventsRyt
(continuous ling and R, (dotted ling for complementary
screens of the different tygaveak screen and sour&g, and

sponding to configuration B. P and S are the direct arrivalsigid screen and sourc®,, respectively, and(b) compares

andd, r, andc denote diffracted, refracted, and critical, re-

scattered events for screens of equal tipeak screens for

spectively. For instance, PdPrSc is the compressional waveurcesS; andS,). The pulses correspond to the compo-
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2 04+ 2 0.4+
g - PdPrSe g 4
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) E f $dS o , .
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0.6 0.6
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i 4 Pds
0.6 0.6
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] 0.2- PdPrSc S oz A A g sds
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FIG. 4. Test of Babinet's principle for P—S waves propagating in an isotro-FIG. 5. Test of Babinet's principle for P—S waves propagating in an isotro-
pic medium, wherda) shows the particle velocity, recorded at receivers Pic medium.(a) Compares the scattered pulsefRai(weak screen, continu-

R, for a weak screertbroken ling and R, for a rigid screen(continuous ous ling andR, (rigid screen, dotted linewhile (b) represents the scattered
line), corresponding to configuration B. P and S are the direct arrivalsiand pulse for weak complementary screens, with the continuous line correspond-
r, andc denote diffracted, refracted, and critical, respectivéty Compares ~ ing to R; and the dotted line t&,.

the unscreened field &, (continuous lingto the field recorded &R, (rigid

screen; direct arrivals plus diffractionsiinus the field recorded &; (weak plane satisfying stress-free boundary conditions. Rayleigh
; diffracti lus lateral . . > 4
screen; diffractions plus lateral waves waves traveling along this plane can be appreciated in the
_ o shapshot. Note the strong cuspidal triangle of the shear wave
nent of the wave field. As before, the PdP wave satisfies thg, 5 triplicates in the direction of the receivisee also Fig.
principle for the mixed case, as well as the SdP diffractiong)_ Figure 1@a) represents the particle velocity, for the
not observed in configuration B. The mismatch is due to thg, 5.k (broken ling and the holg(continuous ling i.e., the
presence of lateral waves. In particular, the SdPrSc event i%omplementary crack,” and Fig. 1B) compares the un-
much stronger than the SdS at receiWy. This can be  gcreened fieldcontinuous ling to the field obtained by sub-
appreciated in the snapshot displayed in Fig. 7, which Sh°W§tracting the two pulses represented in Fig(alGdotted
the v, component at 51(ks for a weak screen and SOUCe jing) Dye to the particular source—receiver configuration, the
S, The PdPrSc and SdPrSc are the planar wavefronts beloytractions are very close to the respective direct arrivals
the screen, which are tangent to the PdS and SdS cylindricgfhich generate them. The PdS diffraction can be clearly seen
wavefronts, respectively. The two larger cylindrical wave-in Fig 9 between the P and S waves. The stronger peak is the
fronts correspond to the direct P and S waves, respectivelyesp of the shear wave, which due to triplication is followed
by a weaker event arriving at approximately 5&8. Figure
2. Anisotropic media 11 represents the scattered pulses, where the continuous line

A transverselv isotropic medium is defined by the elasticcorresponds to the crack and the dotted line to the hole. The
y 2 P 2 y good matching between traces implies that Babinet's prin-
constantscq,=1.4pV5, C33=pVp, C13=0.0&33, and csg

— V2 with V qv | the 1SOTODI For illust ciple is satisfied also in the case of shear-wave triplication.
—pVs WIth Vp andVs as In the 1Sotropic case. For 1ustra: o g gifferences may be due to the presence of weak
tion, Fig. 8 shows a polar representation of the energ

; : ) Yateral waves generated at the left tip of the crack.
(group velocity corresponding to the gRguasicompres-
siona) and gqS(quasishearwaves, where the vertical axis is
the symmetry axis perpendicular to the plane of isotrgpy
symmetry considerations, only one-quarter of the plane is We have investigated Babinet's principle for elastic
displayed. Babinet's principle is tested in the presence of awaves by using a numerical simulation technique. The
crack, located between points 150 and 223. A snapshot of theethod for solving wave propagation uses a domain-
v, component at 51@s can be seen in Fig. 9, with the crack decomposition technique that assigns a different mesh to

VIl. CONCLUSIONS
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N q .
2 04 Time {us) FIG. 8. Polar representation of the enefgyoup velocity corresponding to
064 the gP(quasicompressionaand gS(quasishegrwaves, where the vertical
1 axis is the symmetry axis perpendicular to the plane of isot{pyn sym-
087 metry considerations, only one-quarter of the plane is displayed
1.0

FIG. 6. Numerical experiments displaying the component for configura-  that the sum, beyond the screen plane, of the electric and the
tion A, where(a) compares scattered eventsRat(continuous lingandR,  magnetic fields(adjusting physical dimensiongquals the
(dotted ling for complementary screens of different tyfreeak screen and  incident (unscreenedelectric field. In elastodynamics, the
sourceS;, and rigid screen and sour&g, respectively, and(b) compares principle holds for the same fie(qbarticle Velocity or stres)s
sc;’ittered events for screens of equal tjyweak screens for sourc& and but for complementary screens Satisfying different types of
S boundary conditions, i.e., if the original screen is weak
(rigid), the complementary screen must be rigigeak.
each side of the screen plane. The use of the Chebyshev \ye have shown that Babinet's principle holds for
differential operator, to compute the spatial derivatives norscreens embedded in anisotropic media, both for SH and
mal to the interface, allows the imposition of general boundp_qs waves. Five simulations are required to test the prin-
ary conditions. A first numerical experimental provides acip|e for SH waves propagating in the plane of mirror sym-
partial verification of the modeling algorithm by testing the metry of a monoclinic mediurtthe elliptical-wave surface is
reciprocity principles in the presence of a stress-free screejied with respect to the screen plan@he simulations in-

_ In electromagnetics, Babinet's principle for infinitely gicate that Babinet's principle is satisfied also in the case of
thin perfectly conducting complementary screens implies

Vy—component

Stress—free crack
# -

Stress—free screen A\

Vx—component

p—— 30 cm
30 cm
FIG. 9. Snapshot of the, component at 51@s in a transversely isotropic
FIG. 7. Snapshot of the, component at 51Qus for a weak screen and medium, with the crack plane satisfying stress-free boundary conditions.
sourceS,. The PdPrSc and SdPrSc are conical waves, which are tangent tBayleigh waves traveling along this plane can be appreciated. The strong
the PdS and SdS cylindrical wavefronts, respectively. The two larger cylincuspidal triangle of the shear wave triplicates along the direction of the
drical wavefronts correspond to the direct P and S waves, respectively. receiver.
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] sds @ nonplanar screens. Moreover, a mathematical demonstration

08 s is required to prove that interface and lateral waves do not
06+ satisfy the principle.
'§ ] ng Pds !
g 02- ,' sgs
E;f 00 N , . . APPENDIX: BOUNDARY EQUATIONS FOR
T 0] o Vv v o s w0 w0 ANISOTROPIC MEDIA
T Time (ue) The following equations model the different boundary
08 conditions between two half-spaces. In general, they were
-08- published for an isotropic medium. This Appendix extends
a0 the theory to a monoclinic medium for pure shear waves and
to a transversely isotropic medium with the symmetry axis
perpendicular to the screen plane for gP and gS waves.
1.0
08 s ® 1. The SH case
08 The domain-decomposition equations for SH waves re-
z 04 P semble those of the acoustic case given in Carciokhsimi-
% 02 . lar analysis yields for aveldedinterface:
8 o T~
LA A Y I~ AR ()= H ()% (0)P+ Zg [ (0) 30+ (0! ld]} (A1)
2 -0.4-| Ti
067 me () (o2y)o= 2{244[(U)ﬁld+(v)lold]+(O_Zy)old+ O_Zy)llld}
] (A2)
08
-1.oj new. old C ne
(ny)|(||):(0'xy)|(||) [(Uzy)|(||) (O'zy)|(||v)v], (A3)
FIG. 10. Test of Babinet's principle for gP—qS waves propagating through
a crack imbedded in a transversely isotropic medium(an the particle (U)neW (v )”EW, (Uzy)new_( o2yl nEW, (A4)

velocity v, corresponding to the cradkroken ling and the holgcontinu-
ous line are representedb) Compares the unscreened figltbntinuous where
line) to the field obtained by subtracting the two pulses representéa) in

(dotted ling. Z44= \/C44p. (AS)
The relations for thestress-freecase are

shear-wave triplication$qS waves Moreover, the experi- new_ ¢, yold— >—1 old

. T = z , A6
ments show that Babinet's principle holds for the near and ) (V)7 243 (02y) (A6)
far fields, and for an arbitrary pulse waveform and frequency  (o,,)""=0, (A7)
spectrum. However, as expected, lateral and interfaag,
Rayleigh waves do not satisfy the principle. (0 0) "= () 9= C_46(U old (A8)

Further research will involve the analysis of Babinet's i Y C A

principle for an inhomogeneous and/or viscoelastic backynhere the— sign corresponds to half-space | and thesign
ground medium, screens separating a fluid and solid, ang, p4t- -space I,

The updated variables for thi@gid case are
1 (v)"™*=0, (A9)
SdS

06 Pds ( Uzy) neW= ( O'zy) old Z44( v )Old: (A10)

including Eg.(A8) and the same sign convention as before.

B
4 700

2. The gP—gS case

Vertical particle velocity
°
<

Ti ) .. . . .
me e The characteristic waves for anisotropic media were ob-

tained by Tessmét and Carcion&:” Carcioné& obtained the
boundary equations in the case of tweldedisotropic me-
dia. Extension to the transversely isotropic case with the
symmetry axis perpendicular to the interface yields

FIG. 11. Scattered pulses for the transversely isotropic case. The continuous

line corresponds to the crack and the dotted line to the hole. The goody )= {ZS(U 9t Zo(0,0 99— (040 99+ (074, O,
matching between traces implies that Babinet's principle is also satisfied in
the case of shear-wave triplication. (A11)
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(Uz Pew {ZP(UZ)IOM'I'ZP(U )OId_(Uzz)?|d+ O-ZZ)
(A12)
(™= (0000 (0 (004, (A19
33
(0 D"=HZe (1) = (V) PN+ (0, P+ (0,3,
(A14)
(D= HZd (0,079 (0,02 + (T ) P+ (D I,
(A15)
(Ux ﬂew_( IneW, (Uz InIeW:(UZ lnew, (A]-G)
(T 12"= (030 'd+ [ 021" (o), (A17)
(o'zz)lr}ewz(o'z Inew, (sz Ir}ewz(o_xz)lnew, (A18)
where
Zp: VC33p and ZS: VCssp0, (Alg)

are the compressional and shear impedances alorggetkis,
respectively. In the isotropic case;;=c33; and c13=Z§,
—272

The relations for thestress-freecase are’

(0)""=(0,)F Zg H(0y) 9, (A20)
(V)™= (v) % Zp (0,1, (A21)
(0400 ™= () @0+ —[( 2" (0,)%,  (A22)
(ox)""=0, (A23)
(0,)""=0, (A24)

where the— sign corresponds to half-space | and thesign
to half-space II.
The updated variables for thigid case aré
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(vy)""=0, (A25)
(v)""=0, (A26)
(oxx) neW= ( xx)0|d+ [( Z)new_ (O'ZZ)OId]a (A27)
(0x2) W= (0x2) old Zg(vy) old, (A28)
(02)""=(02)""F Zp(v,)*", (A29)

with the same sign convention as before.
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