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Babinet’s principle states that the diffracted fields from complementary screens are the negative of
each other. In electromagnetics, Babinet’s principle for infinitely thin perfectly conducting
complementary screens implies that the sum, beyond the screen plane, of the electric and the
magnetic fields~adjusting physical dimensions! equals the incident~unscreened! electric field. A test
of the principle for the elastodynamic case was made using numerical calculations, and the results
demonstrate that Babinet’s principle holds quite well for complementary plane screens with
contrasting boundary conditions; that is, the complementary screen of a stress-free screen is a rigid
screen with openings where the original stress-free screen existed, and vice versa. The results are
exact in an anisotropic SH case; for the P–SV case, the diffracted waves, PdP, SdS, PdS, and SdP
satisfy the principle exactly, while the refracted waves, PdPrSc and SdPrSc, do not satisfy the
principle at all~these waves are generally much smaller than the PdS and SdP waves!. Diffracted
surface waves also do not satisfy the principle. The numerical method is based on a
domain-decomposition technique that assigns a different mesh to each side of the screen plane. The
effects of the screens on wave propagation are modeled through the boundary conditions, requiring
a special boundary treatment based on characteristic variables. The algorithm solves the velocity/
stress wave equations and is based on a Fourier/Chebyshev differential operator. ©1999
Acoustical Society of America.@S0001-4966~99!01403-4#

PACS numbers: 43.20.Bi, 43.20.Gp, 43.20.Px@DEC#
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INTRODUCTION

Babinet’s principle was originally used to relate th
diffracted-light fields by complementary thin screens.1 A
complementary screen is a plane screen with opaque a
where the original plane screen had transparent ar
Roughly speaking, the principle states that behind the
fracting plane, the sum of the fields associated with a scr
and with its complementary screen is just the field that wo
exist in the absence of any screen; that is, the diffracted fi
from the two complementary screens are the negative of e
other and cancel when summed. The principle was later
tended to electromagnetic fields and perfectly conduc
plane screens or diffractors.2,3

Gangi and Mohanty4 investigated Babinet’s principle fo
elastodynamic fields and nonplanar complementary scre
by using the representation theorem~see, for example
Gangi5!. They performed elastic-wave experiments us
thin polystyrene sheets where wave propagation is pra
cally two-dimensional. The experiments considered ri
complementary screens, stress-free complementary scr
and mixed rigid/stress-free complementary screens. The
sults did not provide conclusive evidence about the con
tions for which the principle is valid, mainly due to the e
perimental errors and the fact that the ‘‘rigid’’ screen was n
perfectly rigid.

a!Electronic mail: carcione@gems755.ogs.trieste.it
b!Electronic mail: gangi@tamu.edu
1485 J. Acoust. Soc. Am. 105 (3), March 1999 0001-4966/99/105
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To the best of our knowledge, no attempt has been m
to test Babinet’s principle by numerical-modeling tec
niques. The present work considers rigid and stress-
~weak! boundary conditions on the screens in order to rep
duce the laboratory experiments performed by Gangi
Mohanty.4 The numerical algorithm is based on a doma
decomposition technique,6–8 where the implementation o
the boundary conditions requires a special treatment ba
on characteristic variables. Then, the governing equations
solved by a grid method that uses the Chebyshev differen
operator in the direction normal to the screen plane, and
Fourier differential operator parallel to the screen plane.

The principle is investigated in the isotropic case, as
Gangi and Mohanty,4 and for SH propagation through th
symmetry plane of a monoclinic medium and qP–qS pro
gation in a transversely isotropic solid whose symmetry a
is perpendicular to the screen plane. These numerical si
lations provide an adequate test of the principle, in view
the different constitutive equations and wave-propagat
modes.

Babinet’s principle would be of value since it allows u
to obtain the solution of the complementary problem fro
the solution of the original problem without any addition
effort. Moreover, it provides a check of the solutions f
problems that are self-complementary~e.g., the problem of a
plane wave normally incident on a half plane!. Finally, it
adds to our knowledge of the complex phenomena of elas
wave diffraction.
1485(3)/1485/8/$15.00 © 1999 Acoustical Society of America
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I. 2-D ELASTODYNAMIC EQUATION OF MOTION

The elastodynamic solution makes use of the equat
of momentum conservation and the stress/particle–velo
relations, that can be written as

]v

]t
5A

]v

]x
1B

]v

]z
1f, ~1!

where the parametersA, B, v, and f are explicitly given in
the following subsections for the 2-D anisotropic case.

A. SH equation of motion

The particle–velocity/stress vector of the pure sh
wave propagating in a monoclinic medium of arbitrary o
entation ~i.e., the normal to the isotropy plane makes
angleu with the verticalz axis! is

v5@v,sxy ,szy#
T; ~2!

A5F 0 r21 0

C66 0 0

C46 0 0
G , B5F 0 0 r21

C46 0 0

C44 0 0
G , ~3!

wherer is the material density andCIJ are elastic constant

C445c44cos4 u1c66sin4 u, ~4!

C665c44sin4 u1c66cos4 u, ~5!

C465~c441c66!cos2 u sin2 u, ~6!

and thecIJ are the elastic moduli in the principal axes sy
tem; i.e., when thez @or ~3!# axis is the normal to the isotrop
plane. Moreover,

f5@ f ,0,0#T ~7!

is the body-force vector.
We recall that propagation in the plane of mirror sym

metry of a monoclinic medium is the most general situat
for which antiplane strain motion exists in all directions~the
corresponding waves are also termed type-II S in the g
physical literature9!. A detailed analysis of wave propagatio
of antiplane waves can be found in Carcione,10 who studied
the propagation of homogeneous plane waves in a viscoe
tic medium.

B. qP–qS equation of motion

In a transversely isotropic medium, there are three w
solutions, two coupled modes denoted by qP and qS, re
senting the quasicompressional and quasishear modes
the pure shear~SH! mode.11 Since the medium has azimuth
symmetry, it is enough to consider qP–qS propagation
say the~x,z! plane. The particle–velocity/stress vector a
corresponding matrices are

v5@vx ,vz ,sxx ,szz,sxz#
T, ~8!
1486 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999 J. M. C
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A5F 0 0 r21 0 0

0 0 0 0 r21

c11 0 0 0 0

c13 0 0 0 0

0 c55 0 0 0

G , ~9!

B5F 0 0 0 0 r21

0 0 0 r21 0

0 c13 0 0 0

0 c33 0 0 0

c55 0 0 0 0

G , ~10!

wherecIJ are the elastic moduli in the principal axes syste
and

f5@ f x , f z,0,0,0#T. ~11!

II. BABINET’S PRINCIPLE FOR ELASTIC WAVES

Consider a screenS, and its complementary screenC,
and assume that the total field in the presence ofS is vS and
that related toC is vC . Babinet’s principle as given by Gang
and Mohanty4 states that the total fields on the opposite sid
of the screens from the source satisfy

vS1vC5v0 , ~12!

wherev0 is the field in the absence of any screen. Equat
~12! states that the diffraction fields for the complementa
screens will be the negative of each other. Moreover,
total fields on the source side must satisfy

vS1vC52v01vR , ~13!

wherevR is the reflected~and diffracted! field by a screen
composed ofS andC if they have different boundary condi
tions, and it is just the reflected field if they have the sa
boundary condition.

III. SCREEN MODELING BY DOMAIN
DECOMPOSITION

Consider a planar interface in an anisotropic mediu
with the symmetry axis perpendicular to the interface pla
The medium may not necessarily be homogeneous. Ass
the two-dimensional case, and refer to the upper and lo
half-spaces with the labels I and II, respectively, withz in-
creasing toward the upper medium.

The screen model is implemented in numerical model
by using a domain-decomposition technique. Carcione6 and
Tessmeret al.8 applied the method to model elastic wav
across a welded interface between two elastic half-spa
and across an interface separating an acoustic layer from
elastic medium~where vx need not be continuous!. The
boundary treatment is based on characteristics represe
one-way waves propagating with the phase velocity of
medium. The wave equation is decomposed into outgoi
and incoming-wave modes perpendicular to the interf
separating the two half-spaces. The outgoing waves are
1486arcione and A. F. Gangi: Babinet’s principle for elastic waves
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termined by the solution inside the corresponding half-spa
while the incoming waves are calculated from the bound
conditions.

Most explicit time-integration schemes compute the o
erationMv[(v)old where

M5A
]

]x
1B

]

]z
. ~14!

The vector (v)old is then updated by the boundary treatme
to give a new vector (v)new that takes into account th
boundary conditions. The boundary equations are given
the Appendix.

The velocity–stress Eq.~1! is solved by a fourth-orde
Runge–Kutta time-integration algorithm. The spatial deriv
tives, that is, the operation withM on the field variables, are
computed by using the Fourier method in the horizontal
rection, and the Chebyshev method in the vertical directio
where nonperiodic boundary conditions are required. A
an operation withM , the field variables are updated by usin
the equations given in the Appendix. More details about
numerical technique can be found, for instance,
Carcione.7,12

IV. MODEL AND MODELING SETUP

The model simulates the laboratory tests performed
Gangi and Mohanty4 in a homogeneous and elastic isotrop
material~P–S propagation!, and in addition, SH propagatio
through the symmetry plane of a monoclinic medium a
qP–qS propagation in a transversely isotropic solid wh
symmetry axis is perpendicular to the screen plane.
source–receiver configurations illustrated in Fig. 1~a! and~b!
are used to test Babinet’s principle. They correspond to c
figurations B and A in Gangi and Mohanty,4 respectively.

The calculations use two meshes withNx5375 andNz

581 each, and a horizontal grid spacing of 4.7 mm. T

FIG. 1. Source–receiver configurations for the numerical experiments
responding to the laboratory tests B~a! and A ~b! performed by Gangi and
Mohanty.4 In ~a!, the fields detected by receiverR1 and R2 correspond to
complementary screens if the medium is isotropic or transversely isotr
with its symmetry axis normal to the screen plane.
1487 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999 J. M. C
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maximum vertical grid spacings are 7.1 and 7.35 mm,
spectively. The source and receiver positions and the sc
tip should be carefully determined, since a small differen
can produce a big difference when comparing amplitudes
diffracted arrivals at the receivers. In number of grid poin
the screen begins at the~horizontal! grid point 187. This
means that the tip is in between points 186 and 187. Th
taking this fact into account, sourceS in configuration B is
applied at points 186 and 187, and sourcesS1 andS2 , cor-
responding to configuration A, are located at grid points 2
and 165, respectively. Moreover, the positions of receiv
R1 andR2 are in grid points 208 and 165, respectively. T
vertical location of sources and receivers does not hav
major influence on the calculations. The source emits a p
of peak frequencyf 0533 KHz with a duration of approxi-
mately 68ms. If time t is given inms, the time history is

~122at2!exp~2at2!, a51/150.

A delay of 34.5ms is applied to the pulse, to make it caus
In order to better resolve the different events, a den

mesh is used for testing the principle with configuration B.
this case,Nx5625, Nz5161, with a horizontal grid spacing
of 2.82 mm, and maximum vertical grid spacings of 3.55 a
3.65 mm, respectively. The source emits a pulse of p
frequencyf 0552 kHz with a duration of approximately 4
ms. The time history is obtained from the previous expr
sion, witha52/75. Causality requires a delay of 23.1ms.

Open-radiation conditions and absorbing strips of wid
18 grid points are implemented at the outer horizon
boundaries. At the sides, absorbing strips of the same w
are used in order to eliminate wraparound effects caused
the Fourier operator. The solution is propagated to 900
with a time step of 0.3ms and resampled to 1.2ms.

V. TEST OF THE RECIPROCITY PRINCIPLE

A first numerical experiment tests the modeling alg
rithm by verifying the reciprocity principle.13,14Seismic reci-
procity implies that sources and receivers can be in
changed under certain conditions. This relationship holds
an elastic medium with arbitrary boundary conditions, inh
mogeneity, and anisotropy. In our experiments, the homo
neity is broken by the presence of the screen.

The test uses configuration A and compares the horiz
tal particle velocityvx at R1 caused by a vertical force atS1 ,
with the vertical particle velocityvz at S1 due to a horizontal
source atR1 . The comparison is shown in Fig. 2, where th
dotted line corresponds to the horizontal source. The ma
ing is excellent, and provides a partial verification of t
modeling algorithm.

VI. TEST OF BABINET’S PRINCIPLE

The following numerical experiments test the validity
Babinet’s principle for complementary screens of the sa
type, i.e., both stress-free~weak! or both rigid, and for
screens having different properties; that is, if the origin
screen is rigid~stress-free!, the complementary screen ma
be stress-free~rigid!. The qP–qS anisotropic case consider
crack embedded in a transversely isotropic medium.

r-

ic
1487arcione and A. F. Gangi: Babinet’s principle for elastic waves
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A. The anisotropic SH case

We consider configuration B and a monoclinic mediu
with C445rV44

2 , C665rV66
2 , andC4650.5rV44

2 , whereV66

51300 m/s, V445970 m/s, andr51 g/cm3 (u'45 deg).
Since the problem is not symmetric~the elliptical-wave sur-
face is tilted with respect to thez-axis!, the measurements a
R2 (R1) in Fig. 1~a! do not provide the values correspondin
to the complementary screen of the same type, when tes
the principle atR1 (R2). Instead, the simulation with a
complementary screen from grid point 1 to grid point 186
required. The experiment consists of five simulations, t
with rigid boundary conditions, with the screen at the l
side and the right side of the plane, respectively, two w
stress-free boundary conditions, and one unscreened.

Figure 3 compares scattered pulses~diffracted at the tip!
at R1 ~580-ms onset! andR2 ~730-ms onset! for complemen-
tary screens of different type, i.e., stress-free and rigid. F
ure 3~a! @~b!# corresponds to the weak screen at the ri
~left! side and the rigid screen at the left~right! side. The
scattered field at receiversR1 and R2 for the rigid–left
~weak–left! and weak–right~rigid–right! cases are obtaine
by subtracting the total field to the unscreened field~no
screen present!. As can be seen, there is an excellent ma
when the original screen is rigid~weak! and the complemen
tary screen is weak~rigid!, demonstrating that, in this cas
Babinet’s principle holds for screens of different type. Th
result is in agreement with the proof by Jones3 in the purely
acoustic case~pressure waves!.

B. The elastic case

1. Isotropic media

The set of numerical experiments performed by Ga
and Mohanty4 uses polystyrene~80 cm wide by 160 cm
long! whose compressional and shear velocities areVP

5ZP/r51750 m/s andVS5ZS/r5970 m/s, respectively
with a densityr51 g/cm3. Figure 4~a! represents the particl
velocity vz recorded at receiversR1 for a weak screen~bro-
ken line! andR2 for a rigid screen~continuous line!, corre-
sponding to configuration B. P and S are the direct arriv
and d, r, andc denote diffracted, refracted, and critical, r
spectively. For instance, PdPrSc is the compressional w

FIG. 2. Verification of the reciprocity principle using configuration A@Fig.
1~b!#. The test compares the horizontal-particle velocityvx at R1 caused by
a vertical force atS1 ~continuous line! with the vertical-particle velocityvz

at S1 due to a horizontal source atR1 ~dots!.
1488 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999 J. M. C
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refracted along the screen plane and then incident at the
ceiver at the critical angle~i.e., a conical or lateral wave!.
Note that receiverR1 records diffractions only. Figure 4~b!
compares the unscreened field atR2 ~continuous line! to the
field recorded atR2 ~rigid screen; direct arrivals plus diffrac
tions! minus the field recorded atR1 ~weak screen; diffrac-
tions plus lateral waves!. It is clear that Babinet’s principle is
not satisfied by the lateral wave PdPrSc, since this even
only recorded atR1 . This is evident in Fig. 5~a!, which com-
pares the scattered pulses atR1 ~continuous line! and R2

~dotted line!. As can be seen, there is no doubt that the P
wave and the SdS wave~not visible in Fig. 4! satisfy the
principle ~for complementary screens of different type!. Fig-
ure 5~b! represents the scattered pulse for weak complem
tary screens with the continuous line corresponding toR1

and the dotted line toR2 . In this case, the principle is no
satisfied.

Numerical experiments for configuration A are repr
sented in Fig. 6, where~a! compares scattered events atR1

~continuous line! and R2 ~dotted line! for complementary
screens of the different type~weak screen and sourceS1 , and
rigid screen and sourceS2 , respectively!, and ~b! compares
scattered events for screens of equal type~weak screens for
sourcesS1 andS2!. The pulses correspond to thevx compo-

FIG. 3. Test of Babinet’s principle for SH waves propagating in a mon
clinic medium, corresponding to configuration B. The figure shows the s
tered pulses atR1 ~580-ms onset! andR2 ~730-ms onset! for complementary
screens of different type, i.e., stress-free and rigid. Figure 3~a! @~b!# corre-
sponds to the weak screen at the right~left! side and the rigid screen at th
left ~right! side. The scattered field at receiversR1 andR2 for the rigid–left
~weak–left! and weak–right~rigid–right! cases are obtained by subtractin
the total field from the field obtained in the unscreened case~no screen
present!.
1488arcione and A. F. Gangi: Babinet’s principle for elastic waves
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nent of the wave field. As before, the PdP wave satisfies
principle for the mixed case, as well as the SdP diffracti
not observed in configuration B. The mismatch is due to
presence of lateral waves. In particular, the SdPrSc eve
much stronger than the SdS at receiverR1 . This can be
appreciated in the snapshot displayed in Fig. 7, which sh
the vx component at 510ms for a weak screen and sourc
S2 . The PdPrSc and SdPrSc are the planar wavefronts be
the screen, which are tangent to the PdS and SdS cylind
wavefronts, respectively. The two larger cylindrical wav
fronts correspond to the direct P and S waves, respectiv

2. Anisotropic media

A transversely isotropic medium is defined by the elas
constantsc1151.4rVP

2, c335rVP
2, c1350.08c33, and c55

5rVS
2, with VP andVS as in the isotropic case. For illustra

tion, Fig. 8 shows a polar representation of the ene
~group! velocity corresponding to the qP~quasicompres-
sional! and qS~quasishear! waves, where the vertical axis i
the symmetry axis perpendicular to the plane of isotropy~by
symmetry considerations, only one-quarter of the plane
displayed!. Babinet’s principle is tested in the presence o
crack, located between points 150 and 223. A snapshot o
vz component at 510ms can be seen in Fig. 9, with the crac

FIG. 4. Test of Babinet’s principle for P–S waves propagating in an iso
pic medium, where~a! shows the particle velocityvz recorded at receivers
R1 for a weak screen~broken line! and R2 for a rigid screen~continuous
line!, corresponding to configuration B. P and S are the direct arrivals and,
r, andc denote diffracted, refracted, and critical, respectively.~b! Compares
the unscreened field atR2 ~continuous line! to the field recorded atR2 ~rigid
screen; direct arrivals plus diffractions! minus the field recorded atR1 ~weak
screen; diffractions plus lateral waves!.
1489 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999 J. M. C
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plane satisfying stress-free boundary conditions. Rayle
waves traveling along this plane can be appreciated in
snapshot. Note the strong cuspidal triangle of the shear w
that triplicates in the direction of the receiver~see also Fig.
8!. Figure 10~a! represents the particle velocityvz for the
crack ~broken line! and the hole~continuous line!, i.e., the
‘‘complementary crack,’’ and Fig. 10~b! compares the un-
screened field~continuous line! to the field obtained by sub
stracting the two pulses represented in Fig. 10~a! ~dotted
line!. Due to the particular source–receiver configuration,
diffractions are very close to the respective direct arriv
which generate them. The PdS diffraction can be clearly s
in Fig. 9 between the P and S waves. The stronger peak is
cusp of the shear wave, which due to triplication is follow
by a weaker event arriving at approximately 550ms. Figure
11 represents the scattered pulses, where the continuous
corresponds to the crack and the dotted line to the hole.
good matching between traces implies that Babinet’s p
ciple is satisfied also in the case of shear-wave triplicati
The small differences may be due to the presence of w
lateral waves generated at the left tip of the crack.

VII. CONCLUSIONS

We have investigated Babinet’s principle for elas
waves by using a numerical simulation technique. T
method for solving wave propagation uses a doma
decomposition technique that assigns a different mesh

-FIG. 5. Test of Babinet’s principle for P–S waves propagating in an iso
pic medium.~a! Compares the scattered pulses atR1 ~weak screen, continu-
ous line! andR2 ~rigid screen, dotted line!, while ~b! represents the scattere
pulse for weak complementary screens, with the continuous line corresp
ing to R1 and the dotted line toR2 .
1489arcione and A. F. Gangi: Babinet’s principle for elastic waves
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each side of the screen plane. The use of the Cheby
differential operator, to compute the spatial derivatives n
mal to the interface, allows the imposition of general boun
ary conditions. A first numerical experimental provides
partial verification of the modeling algorithm by testing th
reciprocity principles in the presence of a stress-free scr

In electromagnetics, Babinet’s principle for infinite
thin perfectly conducting complementary screens imp

FIG. 6. Numerical experiments displaying thevz component for configura-
tion A, where~a! compares scattered events atR1 ~continuous line! andR2

~dotted line! for complementary screens of different type~weak screen and
sourceS1 , and rigid screen and sourceS2 , respectively!, and~b! compares
scattered events for screens of equal type~weak screens for sourcesS1 and
S2!.

FIG. 7. Snapshot of thevx component at 510ms for a weak screen and
sourceS2 . The PdPrSc and SdPrSc are conical waves, which are tange
the PdS and SdS cylindrical wavefronts, respectively. The two larger cy
drical wavefronts correspond to the direct P and S waves, respectively
1490 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999 J. M. C
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that the sum, beyond the screen plane, of the electric and
magnetic fields~adjusting physical dimensions! equals the
incident ~unscreened! electric field. In elastodynamics, th
principle holds for the same field~particle velocity or stress!,
but for complementary screens satisfying different types
boundary conditions, i.e., if the original screen is we
~rigid!, the complementary screen must be rigid~weak!.

We have shown that Babinet’s principle holds f
screens embedded in anisotropic media, both for SH
qP–qS waves. Five simulations are required to test the p
ciple for SH waves propagating in the plane of mirror sy
metry of a monoclinic medium~the elliptical-wave surface is
tilted with respect to the screen plane!. The simulations in-
dicate that Babinet’s principle is satisfied also in the case

to
-

FIG. 8. Polar representation of the energy~group! velocity corresponding to
the qP~quasicompressional! and qS~quasishear! waves, where the vertica
axis is the symmetry axis perpendicular to the plane of isotropy~from sym-
metry considerations, only one-quarter of the plane is displayed!.

FIG. 9. Snapshot of thevz component at 510ms in a transversely isotropic
medium, with the crack plane satisfying stress-free boundary conditi
Rayleigh waves traveling along this plane can be appreciated. The st
cuspidal triangle of the shear wave triplicates along the direction of
receiver.
1490arcione and A. F. Gangi: Babinet’s principle for elastic waves
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shear-wave triplications~qS waves!. Moreover, the experi-
ments show that Babinet’s principle holds for the near a
far fields, and for an arbitrary pulse waveform and frequen
spectrum. However, as expected, lateral and interface~e.g.,
Rayleigh! waves do not satisfy the principle.

Further research will involve the analysis of Babine
principle for an inhomogeneous and/or viscoelastic ba
ground medium, screens separating a fluid and solid,

FIG. 10. Test of Babinet’s principle for qP–qS waves propagating thro
a crack imbedded in a transversely isotropic medium. In~a!, the particle
velocity vz corresponding to the crack~broken line! and the hole~continu-
ous line! are represented.~b! Compares the unscreened field~continuous
line! to the field obtained by subtracting the two pulses represented in~a!
~dotted line!.

FIG. 11. Scattered pulses for the transversely isotropic case. The contin
line corresponds to the crack and the dotted line to the hole. The g
matching between traces implies that Babinet’s principle is also satisfie
the case of shear-wave triplication.
1491 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999 J. M. C
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nonplanar screens. Moreover, a mathematical demonstra
is required to prove that interface and lateral waves do
satisfy the principle.

APPENDIX: BOUNDARY EQUATIONS FOR
ANISOTROPIC MEDIA

The following equations model the different bounda
conditions between two half-spaces. In general, they w
published for an isotropic medium. This Appendix exten
the theory to a monoclinic medium for pure shear waves
to a transversely isotropic medium with the symmetry a
perpendicular to the screen plane for qP and qS waves.

1. The SH case

The domain-decomposition equations for SH waves
semble those of the acoustic case given in Carcione.6 A simi-
lar analysis yields for aweldedinterface:

~v ! I
new5 1

2$~v ! II
old1~v ! I

old1Z44
21@~szy! II

old1~szy! I
old#%,

~A1!

~szy! I
new5 1

2$Z44@~v ! II
old1~v ! I

old#1~szy! I
old1~szy! II

old%,
~A2!

~sxy! I~II !
new5~sxy! I~II !

old 2
C46

C44
@~szy! I~II !

old 2~szy! I~II !
new#, ~A3!

~v ! II
new5~v ! I

new, ~szy! II
new5~szy! I

new, ~A4!

where

Z445AC44r. ~A5!

The relations for thestress-freecase are

~v !new5~v !old7Z44
21~szy!

old, ~A6!

~szy!
new50, ~A7!

~sxy!
new5~sxy!

old2
C46

C44
~szy!

old, ~A8!

where the2 sign corresponds to half-space I and the1 sign
to half-space II.

The updated variables for therigid case are

~v !new50, ~A9!

~szy!
new5~szy!

old7Z44~v !old, ~A10!

including Eq.~A8! and the same sign convention as befo

2. The qP–qS case

The characteristic waves for anisotropic media were
tained by Tessmer15 and Carcione.6,7 Carcione6 obtained the
boundary equations in the case of twoweldedisotropic me-
dia. Extension to the transversely isotropic case with
symmetry axis perpendicular to the interface yields

~vx! I
new5

1

2ZS
$ZS~vx! I

old1ZS~vx! II
old2~sxz! I

old1~sxz! II
old%,

~A11!

h

us
d

in
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~vz! I
new5

1

2ZP
$ZP~vz! I

old1ZP~vz! II
old2~szz! I

old1~szz! II
old%,

~A12!

~sxx! I
new5~sxx! I

old1
c13

c33
@~szz! I

new2~szz! I
old#, ~A13!

~szz! I
new5 1

2$ZP@~vz! II
old2~vz! I

old#1~szz! I
old1~szz! II

old%,
~A14!

~sxz! I
new5 1

2$ZS@~vx! II
old2~vx! I

old#1~sxz! I
old1~sxz! II

old%,
~A15!

~vx! II
new5~vx! I

new, ~vz! II
new5~vz! I

new, ~A16!

~sxx! II
new5~sxx! II

old1
c13

c33
@~szz! II

new2~szz! II
old#, ~A17!

~szz! II
new5~szz! I

new, ~sxz! II
new5~sxz! I

new, ~A18!

where

ZP5Ac33r and ZS5Ac55r, ~A19!

are the compressional and shear impedances along thez-axis,
respectively. In the isotropic case,c115c33 and c135ZP

2

22ZS
2.

The relations for thestress-freecase are15,7

~vx!
new5~vx!

old7ZS
21~sxz!

old, ~A20!

~vz!
new5~vz!

old7ZP
21~szz!

old, ~A21!

~sxx!
new5~sxx!

old1
c13

c33
@~szz!

new2~szz!
old#, ~A22!

~sxz!
new50, ~A23!

~szz!
new50, ~A24!

where the2 sign corresponds to half-space I and the1 sign
to half-space II.

The updated variables for therigid case are7
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~vx!
new50, ~A25!

~vz!
new50, ~A26!

~sxx!
new5~sxx!

old1
c13

c33
@~szz!

new2~szz!
old#, ~A27!

~sxz!
new5~sxz!

old7ZS~vx!
old, ~A28!

~szz!
new5~szz!

old7ZP~vz!
old, ~A29!

with the same sign convention as before.
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Oberfläche mithilfe spektralen Tschebyscheff-Methode,’’ Ph.D. thes
Hamburg University, 1990.
1492arcione and A. F. Gangi: Babinet’s principle for elastic waves


