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1. Introduction

Natural and man-made materials show viscoelastic behaviour, by which stress and strain 
are related by a relaxation function or a complex stiffness modulus in the time and frequency 
domains, respectively. Viscoelasticity led to significant research in material science and seismology 
(Christensen, 1982). Real-world systems should satisfy the Kramers-Kronig relations (KKRs), known  
from the beginning of the 20th century from the works of de Laer Kronig (1926) and Kramers 
(1927) on electromagnetism, showing the interrelation between the real and imaginary parts of the 
complex susceptibility. Electrical and mechanical representations include the Debye model, used 
to describe the behaviour of dielectric materials, and the Zener viscoelastic model, respectively, 
both being mathematically equivalent (Carcione, 2014).

In viscoelasticity, the KKRs connect the real and imaginary parts of the stiffness modulus. 
Carcione et al. (2019) provide a complete derivation of the relations using the Sokhotski-
Plemelj equation, showing explicitly what are the conditions for the relations to hold. There are 
many forms of the relations. In geophysics, the book of Mavko et al. (2009) provides the most 
popular expression, based on the relaxed modulus. In this note, we show that this expression 
is equivalent to a simpler one involving the unrelaxed modulus. Two different demonstrations 
are given, illustrating the eclectic mathematical apparatus available to obtain the relations. 
Moreover, we develop the KKRs relations for the creep function (creep compliance) and derive 
them for seismological applications, i.e. based on the seismic velocity and attenuation factor.

2. The Kramers-Kronig relations

2.1. Relaxation function

The stress (σ)-strain (ε) relation of a viscoelastic solid is  (e.g. Carcione, 2014):

(1)

where ψ is the relaxation function, ‘∗’ denotes time convolution and a dot above a variable time 
differentiation. Let us define
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(2)

such that

and  when   (3)

where MR is the relaxed modulus.
The Fourier transform of Eq. 1 gives

(4)

where ω is the angular frequency, F is the Fourier-transform operator and

(5)

is the complex modulus, with i = , such that

(6)

where MU is the unrelaxed modulus. 
Since physically-admitted relaxation functions are causal, we have , where 

 has no restriction and H is the Heaviside function. Then, , where  is 
Dirac’s delta, and

(7)

because . Since  for t > 0, Eq. 7 becomes

(8)

[Equivalence of Eqs. 7 and 8 follows by integrating Eq. 8 by parts1]
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We decompose the complex modulus into real and imaginary parts 

(9)

where

(10)

is the storage modulus, or

(11)

and

(12)

is the loss modulus. To obtain Eq. 11, we have used the property (Golden and Graham, 1988):

(13)

Then, using Eqs. 2 and 3, Eqs. 11 and 12 become

(14)

and

(15)

Eq. 15 is a cosine transform, whose reverse transformation is

(16)

Substituting Eq. 16 into Eq. 14 and re-ordering terms yields 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(17)

The integral in square brakets in the right-hand side of Eq. 17 is:

(18)

where the integrals have been handled as

(19)

in the second equality, to warrant convergence at the upper limit [a more rigorous proof, based 
on complex-variable theory, is given in Landau and Lifschit (1958)].

Then, substituting Eq. 18 into Eq. 17 gives 

(20)

Since in a real-world system, the stress and strain must be real-valued, the relaxation function 
should be real-valued, and hence M(ω) must be Hermitian (Bracewell, 2000), i.e.

(21)

(Carcione 2014) indicating that M1 and M2 are even and odd functions of ω, respectively.
Then, the integrand in Eq. 20 is an even function and we have:

(22)

Since

(23)
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we have

(24)

The second integral is zero, because M2 is an odd function. Then:

(25)

This is Mavko et al. (2009) first equation.
We can further simplify Eq. 25. Since

(26)

we have

(27)

From Eq. 16, the first integral is  since  is an even function. Using Eq. 2

(28)

Then,

(29)

is another expression of the Kramers-Kronig relation, involving the unrelaxed modulus.
Following the same procedure for the imaginary part of the stiffness, we obtain

(30)

This is Mavko et al. (2009) second equation. Similarly, the companion equation to Eq. 29 is 

(31)

since M2(∞) = 0. 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Eqs. 25 to 30 and 29 to 31 are two equivalent Hilbert transform pairs (Bracewell, 2000), 
defining two different expressions of the KKRs. The Cauchy principal value of the improper 
integrals is implied in these calculations.

2.2. Alternative demonstration

Let us define (Carcione et al., 2019):

(32)

such that MU = M(ω = ∞) and set N = F [ν]. We have:

(33)

where N(ω = ∞) = 0. Since ν(t) is real, N(ω) is Hermitian; that is

(34)

or 

(35)

Furthermore, ν can split into even and odd functions of time, νe and νo, respectively, as

(36)

Since ν is causal, , and

(37)

whose Fourier transform is

(38)

because  and  (Bracewell, 2000). Eqs. 33 and 38 and the 
fact that is ω-symmetric and odd imply

(39)
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i.e. Eq. 31 (alternatively, one could also use the property that the Hilbert transform of a constant 
is zero).

Similarly, since νe(t) = sgn(t)νo(t), it is ν(t) = [sgn(t) + 1]νo(t), and because F [νo] = iM2, we obtain:

(40)

i.e. Eq. 29.
 In mathematical terms, M1 − MU and M2 are Hilbert transform pairs. Causality also implies that 

M has no poles (or is analytic) in the lower half complex ω-plane (Golden and Graham, 1988).

2.3. Creep function 

The strain-stress relation is

(41)

where χ is the creep function (e.g. Carcione, 2014). Let us define

(42)

such that

(43)

where JU is the unrelaxed compliance.
From Eq. 41, we may write

(44)

because χ is causal and we defined  (the time derivatives are calculated with respect 
to the arguments). Evidencing explicitly the instantaneous response

(45)

where we used Eq. 42. 
Now, substitute a Fourier component for the stress, σ(t) = σ0 exp(iωt), to obtain

(46)
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The Fourier transform of Eq. 41 gives 

(47)

where

(48)

is the complex compliance. Since

(49)

we have

(50)

and

(51)

which are Eqs. 14 and 15 for the creep function.
Recalling the Hermitian property holds 

(52)

and repeating previous mathematical calculations, an equation equivalent to Eq. 22 is obtained

(53)

which leads to equations equivalent to Eqs. 25 and 30: 

(54)

and

(55)

respectively.
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Then, the KKRs corresponding to Eqs. 29 and 31 are

(56)

and

(57)

respectively, where we have used that . These two equations can also be deduced 
from Eqs. 2.4-3 and 2.4-4 of Nowick and Berry (1972) after some calculations, using the property 

 and the fact that is an odd function.

2.4. Wave velocity and attenuation factor

The KKRs can be applied to wave velocity and attenuation, which is useful in seismology. Let 
us define the complex wave velocity as

(58)

such that the complex slowness is

(59)

where  is the mass density,  is the phase velocity and  is the attenuation factor (e.g. 
Carcione, 2014). Let us identify  with  with  and  with  

, where  is the unrelaxed velocity. Performing the same mathematical 
developments to obtain Eqs. 40 and 39, we get

(60)

and

(61)

which are Eqs. 13 in Box 5.8 in Aki and Richards (2009), where we used that the Hilbert transform 
of a constant is zero. Similar relations between velocity and quality factor  can easily be 
obtained by considering that  (Carcione et al., 2019).
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In the case of dispersive lossless media,   can depend on ω through functions of 
ω whose Hilbert transform involves delta functions, which do not represent damping due to their 
zero bandwidth. For instance, in electromagnetism, a Lorenz model (Carcione et al., 2010) can be 
defined that satisfies the relations, exhibiting zero damping in its electronic resonances, where 
the real part of the permittivity can take positive and negative values for certain frequencies even 
though the imaginary part is zero (Poon and Francis, 2009; Orfanidis, 2016). Moreover, lossless 
dispersion occurs when the working frequency is far away from the resonance frequency, where 
the energy and group velocities coincide (Carcione et al., 2010; Orfanidis, 2016).

On the other hand, an example of dispersion less lossy medium is given by a complex velocity
, where  is a constant velocity and  a damping factor (Carcione et al., 

2016). It is  and  However, it can be seen from Eq. 61 that this medium does 
not satisfy the KKRs.
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