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A generalized Biot±Gassmann model for the
acoustic properties of shaley sandstones1

JoseÂ M. Carcione,2,3 Boris Gurevich4 and Fabio Cavallini2

Abstract

We obtain the wave velocities of clay-bearing sandstones as a function of clay content,
porosity and frequency. Unlike previous theories, based simply on slowness and/or

moduli averaging or two-phase models, we use a Biot-type three-phase theory that

considers the existence of two solids (sand grains and clay particles) and a fluid. The
theory, which is consistent with the critical porosity concept, uses three free

parameters that determine the dependence of the dry-rock moduli of the sand and

clay matrices as a function of porosity and clay content.
Testing of the model with laboratory data shows good agreement between

predictions and measurements. In addition to a rock physics model that can be

useful for petrophysical interpretation of wave velocities obtained from well logs and
surface seismic data, the model provides the differential equation for computing

synthetic seismograms in inhomogeneous media, from the seismic to the ultrasonic
frequency bands.

Introduction

Successful interpretation of sonic logs and seismic data depends on a knowledge of the

behaviour of wave propagation through rocks and geological units. In particular,
sandstone reservoirs account for nearly 60% of oil reserves. In general, sandstones

contain clay that considerably affects the seismic properties, such as compressional-

and shear-wave velocities (Han, Nur and Morgan 1986). Previous attempts to model
the effect of clay intrusions in sandstone assume empirical relationships (Tosaya and

Nur 1982; Han et al. 1986) or a combination of empirical relationships and

microstructural theories (Xu and White 1995; Goldberg and Gurevich 1998). While
these models give reasonably good estimates of velocities from porosity and clay

content, they are not always suitable for the calculation of synthetic seismograms,

because they do not take dynamics into account.
Modelling the acoustic properties of shaley sandstones, that is, quantifying the

variations of wave amplitudes and VP and VS versus porosity, clay content and
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frequency, is achieved in the framework of Biot's theory of poroelasticity. This

approach also provides the time-domain differential equations for calculation of

synthetic seismograms in heterogeneous media.
For clay/sand mixtures, such an approach requires the consideration of a medium

consisting of three phases: sand, clay and fluid. A three-phase Biot-type theory was
recently developed by Leclaire, Cohen-TeÂnoudji and Aguirre-Puente (1994) for

frozen porous media. This three-phase theory assumes that there is no direct contact

between sand grains and ice, implying the existence of a water layer around the grains,
isolating them from the ice. The model, which predicts three compressional waves and

two shear waves, has recently been applied, with some minor modifications, to

modelling the acoustic properties of permafrost (Carcione and Seriani 1998).
In this study, we replace ice by clay and include the terms responsible for the

interaction between the sand grains (pure quartz grains) and the clay particles in the

potential and kinetic energies. Lagrange's equations provide the differential equations
of motion, and a plane-wave analysis gives the wave velocities and attenuation factors

of the different modes. The bulk and shear moduli of the sand and clay matrices

versus porosity are obtained from a relationship proposed by Krief et al. (1990). This
relationship introduces two empirical parameters that can be obtained by calibrating

the model with real data. An additional parameter provides one more degree of

freedom for adjusting the velocity±porosity curves (at constant clay content) to the
data.

The present model is somewhat similar to that recently proposed by Goldberg and

Gurevich (1998). An important difference, however, is associated with our three-
phase approach. Indeed, Goldberg and Gurevich (1998) assumed that the medium is

composed of two phases: solid and fluid. The solid matrix, in turn, is a composite

material, made of sand grains and clay particles. The elastic moduli of the solid/fluid
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Figure 1. Interpenetrating sand (dark grey) and clay (light grey) matrices forming the
composite skeleton of the shaley sandstone.
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mixture were derived using the Gassmann equation. However, the latter is valid only

when the solid matrix is homogeneous (Brown and Korringa 1975). This implies that

the sand and clay particles are mixed homogeneously, forming, in effect, composite
grains, which in turn form the rock matrix. Our three-phase approach is free of such

assumptions, but it also implies a particular topological configuration, namely the one

where sand and clay form two continuous and interpenetrating solid matrices (see Fig.
1). As an example, we test the model on the published data set of Han et al. (1986)

and Klimentos and McCann (1990).

Model for clay-bearing sediments

The theory developed by Leclaire et al. (1994) explicitly takes into account the
presence of three phases: solid substrate, ice and water. Here, we replace the ice with

clay and include the contributions to the potential and kinetic energies due to the

contact between the sand grains and the clay. In analogy with their notation, n � 1; 2; 3
denote sand, water and clay, respectively.

Following Leclaire et al. (1994), the equation of motion can be written in matrix

form as

R grad div u 2 m curl curl u � r �u�A _u;

where u is the displacement field,

R �
R11 R12 R13

R12 R22 R23

R13 R23 R33

0BB@
1CCA and m �

m11 0 m13

0 0 0

m13 0 m33

0BB@
1CCA

are the bulk and shear stiffness matrices, respectively, while

r �
r11 r12 r13

r12 r22 r23

r13 r23 r33

0BB@
1CCA

is the mass density matrix, and

A �
b11 2b11 0

2b11 b11 � b33 2b33

0 2b33 b33

0BB@
1CCA

is the friction matrix, where the parameter b13, describing the interaction between the

sand and clay matrices, has been assumed equal to zero. The fact that there is a

frictionless connection between the two constituents can be interpreted as the sand
and clay frames being welded (or bonded). There is an interchange of kinetic energy

(described by r13) and potential energy (described by R13 and m13) at the contact

points, but no dissipation.
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A dot above a variable denotes time differentiation. All the parameters with the

subscript (13) describe the interaction between the two solid components. The

elements of these matrices are obtained with the use of Lagrange's equations (Leclaire
et al. 1994).

Appendix A summarizes the meaning of the different parameters, and Appendix B

describes the form of the potential and kinetic energies. The porosity dependence of
the sand and clay matrices is consistent with the concept of critical porosity, since the

moduli should vanish above a certain value of the porosity (usually from 0.4 to 0.5).

This dependence is determined by the empirical coefficients As and Ac (see equation
(1)). This relationship was suggested by Krief et al. (1990) and applied to sand/clay

mixtures by Goldberg and Gurevich (1998). Moreover, in some rocks there is an

abrupt change of rock matrix properties with the addition of a small amount of clay,
attributed to softening of cements, clay swelling and surface effects, i.e. the wave

velocities decrease significantly when the clay content increases from 0 to a few per

cent (Goldberg and Gurevich 1998). In order to model this effect, we multiply the
shear modulus of the sand matrix by a factor depending on the empirical coefficient a
(see equation (2): this factor tends to 1 when a! 1). Then, the bulk and shear

moduli of the sand and clay matrices are assumed to satisfy the equations

K sm � K sfs�1 2 f�As=�12f�; K cm � K cfc�1 2 f�Ac=�12f� �1�
and

msm � exp{ 2 ��1 2 C�C�a}K smms=K s; mcm � K cmmc=K c; �2�
respectively. Note that f� fs � fc � 1 and C � fc=�fc � fs�; whence fc and f s can

be expressed in terms of porosity f and clay content C, which prove to be the only

independent variables of the model. Krief et al. (1990) set the parameters As and Ac at
3 regardless of the lithology, and Goldberg and Gurevich (1998) obtained values

between 2 and 4. On the other hand, since C�1 2 C� , 1; the exponential in (2) takes

values between 0.166 (for a � 0) and 1 (for a � 1). We found that reasonable values
of parameter a are in the range [0,1].

The expressions (B6) for the density components, given in Appendix B, include the

interaction between sand grains and clay particles, assuming that the grains flow
through the clay matrix (as described by the tortuosity a13) and that the clay particles

flow through the sand skeleton (as described by a31). As is well known, the tortuosity
is related to the difference between the microvelocity and macrovelocity fields. If they

are similar (i.e. for relatively rigid materials such as solids), the tortuosities equal 1,

and these contributions vanish. However, these terms do contribute to the kinetic
energy when the sand and clay matrices are unconsolidated or relatively

unconsolidated, for which the tortuosities are greater than 1. As in Biot theory, we

neglect the solid contributions related to the interaction with the saturating fluid.
If the properties of the clay equal those of the sand grains, then u3 � u1; u3 � u1;

d3 � d1; and we obtain Biot's potential and kinetic energies, with the corresponding

coefficients (see Appendix A), depending only on fs � fc: Moreover, when f! 1;
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the compressional-wave velocity tends to the wave velocity in the fluid, and the shear-

wave velocity vanishes.

The reference frequency fc, which determines the validity of the theory, f ! f c; is
given by

f c � fhf

2pTrfk
; �3�

where we assume that the permeability is k � fsks � fckc (see Appendix B) and that
the tortuosity is obtained from 1=T < �1 2 C�=a21 � C=a23:

The three compressional-wave velocities of the three-phase porous medium are

given by

V Pm � �Re�
�������
Lm

p
��21; m � 1; 2; 3; �4�

where Re denotes the real part, and Lm are obtained from the generalized
characteristic equation det�LR 2 ~r� � 0; which yields

L3 det�R�2 L2 tr� �R ~r� � L tr�R �~r�2 det ~r � 0;

where tr denotes the trace, the overbar denotes the cofactor matrix (e.g. Fedorov
1968), and the effective density matrix,

~r � r 2 iA=v;

is defined in the frequency domain.

Likewise, the two shear-wave velocities VSm are given by

V Sm � �Re�
�������
Vm

p
��21; m � 1; 2; �5�

where Vm are the complex solutions of the equation

V2a 0 2 Vb 0 � det� ~r� � 0;

with a 0 � tr� �m ~r� and b 0 � tr�m �~r�.
Following Dutta and Ode (1983), the magnitudes of the attenuation vectors (in dB)

are given by

aPm � 17:372p
Im� �������Lm

p
)

Re� �������Lm

p � ; m � 1; 2; 3; �6�

and

aSm � 17:372p
Im� �������Vm

p �
Re� �������Vm

p � ; m � 1; 2: �7�

Examples

We calibrate the model with the data sets published by Han et al. (1986) and

Klimentos and McCann (1990), obtained at a confining pressure of 40 MPa. Han
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Table 1. Material properties of the clay-bearing
sandstone.

Solid grain Bulk modulus, Ks 39 GPa
Shear modulus, m s 39 GPa
Density, r s 2650 kg/m3

Average radius, Rs 50 mm

Clay Bulk modulus, Kc 20 GPa
Shear modulus, mc 10 GPa
Density, rc 2650 kg/m3

Average radius, Rc 1 mm

Fluid Bulk modulus, Kf 2.4 GPa
Density, r f 1000 kg/m3

Viscosity, h f 1.798 cP

Figure 2. Velocities of compressional (a) and shear (b) fast waves versus porosity f for
different values of clay content C: black: C � 0%; red: C � 10%; green: C � 20%; blue: C �
30%; and light blue: C � 40%: The experimental points correspond to the data published by
Han et al. (1986). In this case, black, red, green, blue and light blue correspond to C values in
the ranges �C;C � 5%�; C � 0;¼; 40%: The frequency is 5 kHz.
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et al. (1986) provide ultrasonic measurements of VP and VS for 75 sandstone samples

with porosities ranging from 2 to 30% and a volume clay content from 0 to 50%. One
feature of this data set is that a small amount of clay significantly softens the rock

moduli, leading to reduced velocities. Table 1 shows the properties of the different

constituents, and the prediction of the theory against the measurements obtained by
Han et al. (1986) is shown in Figs 2a and b, where As � Ac � 2 and a � 0:5 (see

equations (1) and (2)). The reference frequency (3) is f c � 84; 140, 18 and 25 kHz
for �f;C� � �0:1; 0�; (0.1,0.4), (0.3,0) and (0.3,0.4), respectively. Since the theory is

valid below these reference frequencies, we assume a frequency of 5 KHz to fit the

experimental data. Strictly speaking, this is not correct since the data have been
acquired at ultrasonic frequencies of the order of hundreds of kHz. However, it is well

known that Biot-type dissipation mechanisms alone do not account for the level of

attenuation observed in rocks (Dvorkin, Nolen-Hoeksema and Nur 1994). A correct
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Figure 3. Velocities of compressional (a) and shear (b) fast waves versus clay content C for
different values of porosity f : black: f � 0%; red: f � 10%; green: f � 20%; blue: f � 30%;
and light blue: f � 40%: The experimental points correspond to the data published by Han et
al. (1986). In this case, black, red, green, blue and light blue correspond to f values in the
ranges �f;f� 5%�; f � 0;¼; 40%: The frequency is 5 kHz.
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description of this phenomenon would require the generalization of the different
stiffness moduli to relaxation functions (Biot 1962). However, this fact reflects the

robustness of the model for this particular example. Figure 2 shows the

compressional- and shear-wave velocities versus porosity, where each curve
corresponds to a different value of the clay content C. The root-mean-square

deviation computed for all samples, apart from five outliers for P-waves and seven

outliers for S-waves, is 93 m/s for the P-wave velocity and 100 m/s for the S-wave
velocity. The match between theoretical and experimental data is quite good taking

into account the fact that we used just two fitting parameters and did not use a

rigorous parameter estimation algorithm. The values for As and Ac were chosen to
obtain a reasonable fit of the data. The fact that As � Ac is a satisfactory choice

indicates the flexibility of the model in this case. In order to obtain a better agreement

between theory and experiment, an inversion procedure, like that presented by
Goldberg and Gurevich (1998), should be used. On the other hand, Fig. 3 represents

the same velocities versus clay content C for porosities ranging from zero to 40%. The

rapid decrease in wave velocity at low clay content is evident.
Figure 4 shows the compressional-wave velocity compared with the experimental

points obtained by Klimentos and McCann (1990). In this case a � 1; since the

softening of the rock moduli by clay is less pronounced than in the previous case. This
data set was obtained at a confining pressure of 40 MPa, which, according to the

authors, is equivalent to a depth of burial of about 1.5 km. For an average sediment

density of 2300 kg/m3, this requires a pore pressure of 19 MPa, and therefore an
overpressure of approximately 4.5 MPa. In fact, the porosities are higher than those

expected at 1.5 km depth. Pore pressure, together with the confining pressure,
determines the differential pressure which, in turn, determines the dry-rock bulk
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Figure 4. Compressional-wave velocity versus porosity for different values of clay content C:
black: C � 0%; red: C � 10%; green: C � 20%; blue: C � 30%; and light blue: C � 40%: The
experimental points correspond to the data published by Klimentos and McCann (1990). In
this case, black, red, green, blue and light blue correspond to C values in the ranges �C;C �
5%�; C � 0;¼; 40%: The frequency is 5 kHz.
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moduli and porosity (Zimmerman, Somerton and King 1986). Hence, the pressure

dependence is mainly contained in (1) and (2) through the porosity f and the
parameters As, Ac and a. Second-order effects can be due to the dependence on

pressure and temperature of the fluid properties (Batzle and Wang 1992).

The attenuations (6) and (7) for the fast waves in the seismic band are shown in
Fig. 5. In general, the higher the porosity the higher the dissipation. For completeness,

Fig. 6 shows the phase velocities, computed using (4) and (5), and attenuations,

computed using (6) and (7), of the slow compressional modes and the slow shear
mode for a frequency of 25 Hz. Note that the attenuations of the slow modes are

much higher than the attenuations of the fast modes, as expected. Modes have been

numbered in order of decreasing phase speed.
It is important to note that the main advantage of the present model is not the

accuracy of the prediction (empirical relationships may perform equally well), but

the fact that it is a model based on physical grounds and is potentially useful for the
inversion of rock properties and the computation of synthetic seismograms.

Conclusions

We have developed a new velocity-porosity-clay model that can be used for inversion

applications such as sonic-log interpretation, lithological inversion of seismic data, AVO
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Figure 5. Compressional (a) and shear (b) attenuations in dB versus porosity for different
values of clay content, which varies in steps of 0.1 from 0 to 1. The frequency is 25 Hz. Curves
with higher peaks correspond to lower clay content.
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inversion, etc. The model is based on a Biot-type formulation of the equation of motion,

and therefore the number of free parameters is limited to a minimum. In principle, three

parameters are used to obtain the bulk and shear moduli of the sand and clay matrices
versus porosity and clay content. In the present study, twoparameterswere enough to fit the

experimental data. Since the model is based on a Biot formulation, additional

compressional and shear waves are predicted by the theory. For completeness, the
characteristics (phase velocity and attenuation) of these modes are briefly outlined. Besides

the inversion applications mentioned above, the formulation provides the differential

equations for computing synthetic seismograms in inhomogeneous porous media.
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frames; the opposite happens in the other cases.
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Appendix A

List of symbols
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A friction matrix;

As dimensionless empirical parameter; see equation (1);

Ac dimensionless empirical parameter; see equation (1);
a dimensionless empirical parameter; see equation (2);

a21 tortuosity for the fluid flowing through the sand matrix (see Appendix B.2);

a13 tortuosity for the sand grains flowing through the clay matrix (see Appendix B.2);
a23 tortuosity for fluid flowing through the clay matrix (see Appendix B.2);

a31 tortuosity for the clay flowing through the sand matrix (see Appendix B.2);

b11 friction coefficient between the sand grains and the fluid (see Appendix B.3);
b33 friction coefficient between the clay and the fluid (see Appendix B.3);

C clay content: fc=�fc � fs�;
c1 consolidation coefficient of the sand matrix: K sm=�fsK s�;
c3 consolidation coefficient of the clay matrix: K cm=�fcK c�;
dn deviator �n � 1; 3�;
EK kinetic energy;
EP potential energy;

F viscous resistance force;

fc reference frequency;
g1 consolidation coefficient of the sand matrix: msm=�fsms�;
g3 consolidation coefficient of the clay matrix: mcm=�fcmc�;
Kc bulk modulus of clay; see Table 1;

Kf fluid bulk modulus; see Table 1;

Ks bulk modulus of the sand grain; see Table 1;
Kav average bulk modulus: ��1 2 c1�fs=K s � f=K f � �1 2 c3�fc=K c�21;

Kcm bulk modulus of the clay matrix; see equation (1);

Ksm bulk modulus of the sand matrix; see equation (1);
R bulk stiffness matrix;

q relative displacement vector;

r relative displacement vector;
R average radii of sand and clay particles;

R11: K1 � 4m11=3 � ��1 2 c1�fs�2K av �K sm � 4m11=3;

R12: C12 � �1 2 c1�fsfK av;

R13: C13 � �1 2 c1��1 2 c3�fsfcK av;

R22: f2Kav;
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R23: C23 � �1 2 c3�fcfK av;

R33: K3 � 4m33=3 � ��1 2 c3�fc�2K av �K cm � 4m33=3;
r mass density matrix;

rÄ effective density matrix;

r12 geometrical aspect of the boundary separating the sand grains from the fluid phase;
r13 geometrical aspect of the boundary separating the sand grains from the clay;

r23 geometrical aspect of the boundary separating the clay from the fluid phase;

r31 geometrical aspect of the boundary separating the clay from the sand grains;
T average tortuosity;

VPm P-wave phase velocity �m � 1; 2; 3�;
VSm S-wave phase velocity �m � 1; 2�;
s microscopic particle-velocity vector;

t microscopic particle-velocity vector;

un displacement vector �n � 1; 2; 3�;
vn microscopic particle-velocity vector �n � 1; 3�;
v average velocity of grains moving in the fluid;

wn relative displacement vector �n � 1; 3�;
a1 fluid/sand matrix coefficient;

a3 fluid/clay matrix coefficient;

b1 clay/sand matrix coefficient;
b3 sand/clay matrix coefficient;

aPm P-wave attenuation factor �m � 1; 2; 3�;
aSm S-wave attenuation factor �m � 1; 2�;
h f fluid viscosity; see Table 1;

k s permeability of the sand matrix (see Appendix B.3);

kc permeability of the clay matrix (see Appendix B.3);
k average permeability;

LPm P-wave root of the dispersion equation �m � 1; 2; 3�;
mc shear modulus of the clay; see Table 1;
m s shear modulus of the sand grains; see Table 1;

mcm shear modulus of the clay matrix; see equation (2);

m sm shear modulus of the sand matrix; see equation (2);
m shear stiffness matrix;

m11 same as m sm;

m13 shear coupling between the sand and clay matrices;
m33 same as mcm;

n index denoting sand (1), water (2) and clay (3);
VSm S-wave root of the dispersion equation �m � 1; 2�;
v angular frequency: 2p f;
fc proportion of clay;
f proportion of fluid or porosity;

f s proportion of sand grains;
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Appendix B

Energies and friction coefficients

In their model of a frozen porous medium, Leclaire et al. (1994) assumed that there is

no direct mechanical contact between the solid and ice, because they are separated by

water. The model is generalized here in order to include the interaction between the
sand grains and the clay, which corresponds to ice, and the coefficients of

the dissipation potential. Following their notation, un , for n � 1; 2; 3; denote

the displacement vectors of sand, water and clay, respectively.

B1. Potential energy density

The total potential energy of the system can be expressed as

EP � m11d2
1 �

1

2
K1u

2
1 � C12u1u2 � 1

2
K2u

2
2 �C23u2u3 � 1

2
K3u

2
3 � m33d2

3

� C13u1u3;

where un and dn are the invariants of the strain tensor, called dilatations and deviators,
while Kn and mnn 0 are, respectively, the bulk and shear moduli of the effective phases.

All the parameters, except C13, are as given by Leclaire et al. (1994), although sand/

clay interactions are now taken into account. In order to calculate C13, we generalize
the elastic moduli obtained for the two-phase Biot's theory. For a medium with a

proportion of sand f s and a porosity f, the elastic moduli are

K1 � �1 2 c1�2f2
s K a;

C12 � �1 2 c1�fsfK a; �B1�

K2 � f2K a;

where

K a � �1 2 c1� fs

K s
� f

K f

� �21

; c1 � K sm

fsK s
:

Here Ks and Kf are the solid and fluid bulk moduli, Ka is the average bulk modulus,

Ksm is the solid matrix bulk modulus, and c1 is the bulk consolidation coefficient, such

that c1 � 0 for a suspension of solid grains in a fluid, and c1 � 1 for a situation where
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rc clay density; see Table 1;

r f fluid density; see Table 1;
r s sand density; see Table 1;

rnn 0 generalized mass coefficients (see Appendix B.2);

un dilatation �n � 1; 2; 3�:
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the grains form a monolithic block. Note that equations (B1) correspond to an

effective solid porosity f 0s � �1 2 c1�fs: If we replace the fluid by clay, the equations

should read

K1 � f 02s K a;

C13 � f 0sf
0
cK a;

K3 � f 02cK a;

where

K a � f 0s
K s
� f 0c

K c

� �21

; f 0c � �1 2 c3�fc; c3 � K cm

fcK c
:

Here c3 is the bulk consolidation coefficient of the clay matrix, with bulk modulus

Kcm. For the three-phase system, the generalization of Ka to

K av � f 0s
K s
� f 0c

K c
� f

K f

� �21

gives

K1 � �1 2 c1�2f2
s K av;

C13 � �1 2 c1�fs�1 2 c3�fcK av;

K3 � �1 2 c3�2f2
cK av;

K av � �1 2 c1� fs

K s
� �1 2 c3� fc

K c
� f

K f

� �21

:

B.2 Kinetic energy density

The kinetic energy is a function of the local velocities uÇ 1, uÇ 2 and uÇ 3, where the dot
denotes time differentiation. Generalizing Leclaire et al.'s (1994) kinetic energy, we get

EK � 1

2
r11 k _u1 k2 � 1

2
r22 k _u2 k2 � 1

2
r33 k _u3 k2

� r12 _u1´ _u2 � r23 _u2´ _u3 � r13 _u1´ _u3;

where, for simplicity, we omit the tilde above the density components.
We now want to determine the induced mass tensor r ij. To this purpose we first

deduce an expression for the kinetic energy through a microstructural argument and

then compare the result with (B2). Let us define the macroscopic velocities

_w1 � f� _u2 2 _u1� and _w3 � f� _u2 2 _u3�;
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which describe the flow of water with respect to sand and clay, respectively.

Likewise,

_q � fc� _u3 2 _u1� and _r � fs� _u1 2 _u3�
denote the macroscopic velocities characterizing the movement of clay relative to the
sand grains and vice versa, respectively. Since the relative flows are assumed to be of

laminar type, the microscopic velocities can be expressed as

v1 � a1 _w1 and v3 � a3 _w3

and

s � b1 _q and t � b3 _r;

where a1 and a3 are the fluid/sand and fluid/clay matrix coefficients, and b1 and b3

are the clay/sand and sand/clay matrix coefficients, respectively.

The total kinetic energy is given by the expression,

EK � 1

2
rf

� � �
Vf

k _u1 � v1 k2
dV� 1

2
rf

� � �
Vf

k _u3 � v3 k2
dV�

1

2
rc

� � �
Vc

k _u1 � s k2
dV� 1

2
rs

� � �
Vs

k _u3 � t k2
dV 2

1

2
rff k _u2 k2

;

where Vf, Vc and Vs are the volumes of fluid, clay and sand grains, respectively. The

term �1=2�rff k _u2 k2
is subtracted since the contribution of the fluid must be

considered only once in the kinetic energy.

Following Leclaire et al. (1994), we define

m�l�ij ; rf

� � �
V(l)
P

k
a�l�

ki
a�l�

kj
dV; l�1;3;

where V�1� � Vc; V
�3� � Vs; and

n�1�ij ; rc

� � �
Vc

X
k

b�1�ki b
�1�
kj dV; n�3�ij ; rs

� � �
Vs

X
k

b�3�ki b
�3�
kj dV:

Assuming statistical isotropy, we obtain m�l�ij � mldij and n�l�ij � nldij ; therefore (B3)
simplifies to

EK � 1

2
r2 k _u1 k2 �rf _u1´ _w11� 1

2
m1 k _w1 k2 � 1

2
r2 k _u3 k2 �rf _u3´ _w3

� 1

2
m3 k _w3 k2 � 1

2
r3 k _u1 k2 �rc _u1´ _q� 1

2
n1 k _q k2 � 1

2
r1 k _u3 k2

� rs _u3´_r� 1

2
n3 k _r k2

2
1

2
r2 k _u2 k2

; �B4�
where

r1 � rsfs; r2 � rff; r3 � rcfc:
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Finally, expressing the kinetic energy as a function of uÇ 1, uÇ 2 and uÇ 3, we get

EK � 1

2
�n3f

2
s 2 r2 �m1f

2 2 r3 � n1f
2
c � k _u1 k2

� 1

2
�m1f

2 �m3f
2 2 r2� k _u2 k2

� 1

2
�n1f

2
c 2 r2 �m3f

2 2 r1 � n3f
2
s � k _u3 k2

� �r2 2 m1f
2� _u1´ _u2 � �r2 2 m3f

2� _u2´ _u3

� �r1 2 n3f
2
s � r3 2 n1f

2
c� _u1´ _u3: (B5)

The generalized mass densities r ij are obtained from the identification of the

coefficients of expression (B5) with those of (B2). This gives

r11 � rsfsa13 � �a21 2 1�rff� �a31 2 1�rcfc;

r22 � �a21 � a23 2 1�rff;

r33 � rcfca31 � �a23 2 1�rff� �a13 2 1�rsfs; �B6�

r12 � 2�a21 2 1�rff;

r23 � 2�a23 2 1�rff;

r13 � 2�a13 2 1�rsfs 2 �a31 2 1�rcfc;

where

a21 � m1f

rf

; a23 � m3f

rf

and

a13 � n3fs

rs

; a31 � n1fc

rc

are the tortuosity parameters.
When there is no relative motion between the three phases, the following

relationship holds

r ; r11 � r22 � r33 � 2�r12 � r23 � r13� � r1 � r2 � r3;

whence r may be viewed as the effective mass density.
Following Berryman (1980), we express the tortuosity parameters as

a21 � fs

f
r12 � 1; a23 � fc

f
r23 � 1; a13 � fc

fs

r13 � 1; a31 � fs

fc

r31 � 1;
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where rnn 0 characterize the geometrical features of the pores (rnn � 1=2 for spheres).

Observe that, for instance, a21 ! 1 for f ! 1 and that a21 ! 1 for f! 0; as

expected (Berryman 1980).

B.3 Friction coefficients

In order to obtain the viscous flow resistance coefficients b11 and b33, we first consider

the idealized situation when the solid part can be modelled as a dilute concentration of

sand and clay spherical particles in the fluid. This situation is realized in the high-
porosity limit �f! 1�: Since the concentration is dilute, each particle can be

considered independently from the others. The viscous resistance force for a single

sphere of radius R moving in a flow of average velocity v and a fluid viscosity h f obeys
Stokes's law,

F � 6phfvR:

Suppose that in a unit volume we have nn particles of radius Rn , where n � 1 (sand

grains) or 3 (clay particles). Then, the viscous resistance to the flow by particles of

type n can be written as

Fn � 6phfvnnRn: �B7�
The density numbers nn can be thought of as the total volume of the particles of type

n divided by the volume of a single particle,

nn � fn

4

3
pR3

n

: �B8�

Substitution of (B8) into (B7) yields

Fn � 9

2
hfvfnR

22
n ;

or, for the viscous resistance coefficient,

bnn � Fn
f2

v
� 9

2
hff

2fnR
22
n : �B9�

Note that the quantity

kn � 2

9

R2
n

fn

can be thought of as a partial permeability of the matrix formed by particles of type n .

Hence

bnn � hff
2k21

n :
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Equation (B9) provides an explicit expression for the resistance coefficients b11 and

b33 in the high-porosity limit. At lower porosities it is customary to divide the

expression for permeability by an empirical factor 10�1 2 f�=f3; which yields
permeability values consistent with the Kozeny±Carman empirical relationship

(Berryman 1995). Then, k s and kc are equal to k1 and k3 divided by that factor.

We thus write

bnn � 45hfR
22
n f21�1 2 f�fn

or

b11 � 45hfR
22
s f21�1 2 f�2�1 2 C�;

b33 � 45hfR
22
c f21�1 2 f�2C;

where Rs and Rc denote the average radii of sand and clay particles, respectively.
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