
Vol.:(0123456789)

Surveys in Geophysics
https://doi.org/10.1007/s10712-021-09646-4

1 3

On the Normal‑Incidence Reflection Coefficient in Porous 
Media

José M. Carcione1,2 · Davide Gei2 · Boris Gurevich3 · Jing Ba1

Received: 5 January 2021 / Accepted: 17 April 2021 
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract
We compare the exact normal-incidence PP reflection coefficient [Geertsma–Smit expres-
sion] to approximations reported by several authors, based on open-pore boundary condi-
tions at a plane interface between two porous media. The approximations correspond to 
low frequencies. Two of them are derived from the low-frequency Biot theory below the 
Biot characteristic frequency, but the results show significant differences much below the 
Biot frequency. Then, we extend the Geertsma–Smit equations by including the high-fre-
quency viscodynamic operator (i.e., the full-frequency range Biot theory), showing that 
there are additional substantial differences at the high-frequency range. Use of this latter 
expression is required to honor the physics in the whole frequency range. We further gen-
eralize the Geertsma–Smit equations to the case of general boundary conditions other than 
the open-pore interface. At the seismic band, it is shown that the lossless (elastic) expres-
sion based on the Gassmann P-wave impedance is the reflection coefficient to use for prac-
tical applications. It is inferred that interpretations based on the frequency dependency of 
these approximations can be misleading, since this dependency does not provide a suitable 
description of the physics.
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Article Highlights

•	 We compare the exact normal-incidence PP reflection coefficient in porous media to 
approximations reported by several authors, based on open-pore boundary conditions

•	 Two of the coefficients are intended to be approximations below the Biot characteristic 
frequency, but the results show significant differences with the exact one much below 
this frequency
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•	 We extend the exact coefficient by including the high-frequency viscodynamic operator 
and general boundary conditions other than the open-pore interface

1  Introduction

The acoustics of porous media finds applications in several fields, such as hydrocarbon 
exploration (Bourbie et al. 1987), polymer physics (Johnson 1982), the food industry (Car-
cione et al. 2007) and general acoustics (Allard 1993). The theory of poroelasticity gives a 
suitable description of the physics of wave propagation. In particular, Biot’s theory shows 
that, in a poroelastic medium, there may exist two compressional waves: the so-called fast 
and slow waves, as well as a shear wave (Biot 1956a, b, 1962; Bourbie et al. 1987). At fre-
quencies above Biot’s characteristic frequency, the slow wave is propagatory with a veloc-
ity controlled largely by the sound velocity in a free fluid (Johnson and Plona 1982). On the 
other hand, at frequencies below Biot’s characteristic frequency, the slow wave is diffusive 
(with diffusivity controlled by the matrix permeability and pore fluid viscosity) and hence 
attenuates right near the source (e.g., Carcione and Quiroga-Goode 1995). Thus, the only 
wave observed in seismic data at low frequencies is the fast compressional wave, which has 
very small dispersion and attenuation, and its velocity is not effected by viscous friction 
between solid and fluid (and hence is independent of permeability) (e.g., Biot 1956a; John-
son 1982; Gurevich 1994). Yet viscous coupling (controlled by the matrix permeability 
and pore fluid viscosity) may play a role near interfaces between different porous layers, 
due to mode conversion and energy re-partition between the fast and slow waves at inter-
faces (e.g., Deresiewicz and Rice 1964; Dutta and Odé 1983). Thus, it has been suggested 
that reflection coefficients between adjacent porous layers may be affected by viscosity and 
permeability, and thus can be used to estimate permeability and/or fluid viscosity from 
seismic reflection data (Silin et al. 2006; Silin and Goloshubin 2010; Xu et al. 2011; Li and 
Rao 2020). Therefore, it is important to explore the viscosity–permeability dependence of 
reflection coefficients.

In this work, we investigate the normal-incidence reflection coefficient at an interface 
between two dissimilar porous media saturated with viscous fluids. Two approximations, 
based on Biot theory, are reported in the literature, namely by Bourbie et al. (1987) and by 
Gurevich et al. (2004), while the exact solution for an open-pore interface has been pub-
lished by Geertsma and Smit (1961) in the framework of the low-frequency theory (Biot 
1956a). A third approximation has been reported by Silin and Goloshubin (2010) and used 
to estimate permeability (Goloshubin et al. 2008) and fluid type (Xu et al. 2011; Li and 
Rao 2020) from seismic data. Zhou et al. (2020) derive an expression for a non-viscous 
fluid and claim to be the first to derive it, although the reflection coefficient in this case can 
easily be obtained by setting to zero the fluid viscosity in the Geertsma–Smit equations.

All the existing analyses are inconclusive, because they are based on approximations, 
whose exact range of validity is unknown. In this work, we investigate the normal-incidence 
reflection coefficient at an interface between two dissimilar porous media saturated with 
viscous fluids using exact expressions for reflections at interfaces. We compare expressions 
in the more significant case of a viscous fluid and generalize the Geertsma–Smit equa-
tions using the full frequency range viscodynamic operator and general boundary condi-
tions (Quiroga-Goode and Carcione 1997). The latter can be classified into open, mixed 
and closed (Deresiewicz and Skalak 1963; Rasolofosaon 1988; Gurevich and Schoenberg 
1999). In the first case, the pores of both media are completely connected, while in the 
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third the pores are disconnected (sealed interface). In the mixed case, the pores are par-
tially connected so that the boundary equations are parameterized by a surface impedance 
that quantifies the amount of flow across the interface.

2 � Reflection Coefficient

2.1 � Review of the Approximations

The reported approximations of the normal-incidence reflection coefficient at a plane 
interface separating two porous media are given in Appendix A, denoting the properties 
of the incidence medium 1 and transmission medium 2 with the subindices j = 1 and 2, 
respectively.

Bourbie et al. (1987) report the scattering coefficients for an open interface taken from 
two papers (Geertsma and Smit 1961; Deresiewicz and Rice 1964). If we define the Biot 
characteristic frequency

where �f  is the fluid density, � is the rock porosity, � is the permeability and � is the fluid 
viscosity. The equations correspond, apparently, to an expansion to the nearest second 
order in �∕�c , since it is not clear what the type of approximation is in the book on the 
basis of the equations of the two preceding papers.

Gurevich et al. (2004) obtained the scattering coefficients from a plane interface under 
the low-frequency approximation, below the Biot characteristic frequency, by which the 
relative displacement of the fluid with respect to the solid within the fast wave is negligi-
ble. The Fourier convention is exp(−i�t) . This allows them to simplify the wavenumbers of 
the fast and slow waves (their Eqs. 10 and 11).

Silin and Goloshubin (2010) express the reflection coefficient in terms of a frequency-
dependent dimensionless parameter, which is the product of the reservoir fluid mobility 
(i.e., inverse viscosity), fluid density and frequency of the signal. They state that the results 
are obtained through a low-frequency asymptotic analysis of Biot model of poroelasticity. 
However, their zero-frequency reflection coefficient is not Gassmann consistent.

2.2 � Exact expression

In this section, we consider the exact scattering coefficients obtained by Quiroga-Goode 
and Carcione (1997), who generalized the equations of Geertsma and Smit (1961) to mixed 
and closed boundary conditions. In this case, we denote the properties of media 1 and 2 
with unprimed and prime superscripts to ease the identification of the equations in the last 
paper. Denoting u, w, � and p the solid displacement, the fluid displacement relative to the 
solid, the solid stress and the fluid pressure, respectively, the general boundary conditions 
at the interface are

(1)�c =
��

��f
,

(2)
u = u�, w = w�, 𝜎 = 𝜎�, p = p� + kẇ, ( or u1 = u2, w1 = w2, 𝜎1 = 𝜎2, p1 = p2 + kẇ),
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where k is the coefficient of resistance, also called surface flow impedance and a dot above 
a variable indicates time differentiation (Carcione 2014; Eq. 7.404). The unit of k is Pa ⋅ 
s/m.

The meaning of k is explained in Deresiewicz and Skalak (1963) as partially communi-
cating pores between the two media, but can also be related to a thin layer at the interface 
characterized by k. An example is a mud cake much thinner than the wavelength in a bore-
hole (Rosenbaum 1974).

Equations (2) models three types of boundary conditions: 

1.	 k = 0 (open interface, pores communicate).
2.	 k = ∞ (sealed interface, pores do not communicate).
3.	 0 < k < ∞ (partially open interface).

As above, we consider an incident fast P wave. Then, in Eqs.  (57)–(58) of Geertsma 
and Smit (1961) we have A1i = 1 , A1r = R1 = R , A2i = 0 , A2r = R2 , A�

1
= T1 = T  , 

A�
2
= T2 , where the subscripts “i” and “r” denote incident and reflected, respectively, 

R is the reflection coefficient of the fast P wave, and R2 , T and T2 correspond to the 
converted slow P wave reflection, fast P wave transmission and slow P wave transmis-
sion, respectively. Using their notation, the exact coefficients can be obtained from the 
following matrix equation:

where

and respective primed versions, where the subscripts 1 and 2 refer to the fast and slow P 
waves, respectively. In our notation, L = M , H = EG and K = �M [see Eqs. (19) and (20) 
and Appendix A for the definitions of the various quantities]. The wavenumbers li are solu-
tions of the dispersion equation (20) in Geertsma and Smit (1961). With our notation:

where

is the low-frequency viscodynamic operator (Biot 1956a; Carcione 2014, Eq. 7.272), where 
�f  is the fluid density, � is the porosity, T  the pore-space tortuosity, � is fluid viscosity and 
� is the permeability. Note that this property does not appear in the approximate theories. 
Furthermore,

(3)

⎡⎢⎢⎢⎣

1 1 − 1 − 1

m1 m2 − m�
1

− m�
2

D1 D2 D�
1

D�
2

F1 F2 (F�
1
− �km�

1
) (F�

2
− �km�

2
)

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

R

R2

T

T2

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

−1

−m1

D1

F1

⎤⎥⎥⎥⎦
,

(4)Di = li(H − miK), Fi = li(K − miL), i = 1, 2,

(5)

|||||||||

z − 1

(
�f

�
−

�Mz

EG

)

(
�f

�
−

�Mz

EG

) (
Mz

EG

−
Y

i��

)
|||||||||
= 0, zi =

EGl
2
i

��2
, i = 1, 2,

(6)Y =
i��fT

�
+

�

�
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and corresponding primed version, where � is the bulk density [see Eq. (21)].
Equation (3) is similar to Eq. (28) in Quiroga-Goode and Carcione (1997), which 

is a generalization of the Geertsma–Smit expression by including the interface imped-
ance. In this work, the Fourier convention is exp(+i�t) and the wavenumbers obtained 
from Eq. (5) have opposite signs to the approximate ones [Eq. (22)]. Therefore, a com-
parison between the Geertsma and Smit reflection coefficient and that of Gurevich 
et al. requires to change the sign of � in one of the expressions. Then, we change the 
sign of � in Eq. (24). The convention in Bourbie et al. (1987) and Silin and Goloshu-
bin (2010) is that of Geertsma and Smit (1961).

2.3 � The High‑Frequency Viscodynamic Operator

We further generalized Geertsma and Smit equations to include the high-frequency visco-
dynamic operator. Note that term “high-frequency” was introduced by Biot (1956b), but the 
operator holds for all frequencies. A boundary layer develops in the pore walls as frequency 
increases, where the microvelocities are out of phase. This layer, which becomes very thin at 
high frequencies, confines the viscous forces and the microvelocity. The friction force exhib-
its a complex and frequency-dependent quantity termed viscodynamic operator, which can be 
interpreted as complex viscosity, tortuosity or permeability [e.g., Carcione 2014, Eq. (7.276)]. 
To investigate the frequency range of validity of the viscodynamic operator (6), we consider 
a simple pore geometry, i.e., fluid flow in a plane slit of width h (flow between parallel walls). 
This problem has been solved by Biot (1956b), obtaining

where

(Carcione 2014). At low frequencies ( q → 0) , we obtain Y = 12�∕h2 . Comparing this equa-
tion with (6), we have � = h2∕12 . Let us assume that the pore space is made of many iden-
tical parallel plane slits. Then, the permeability depends not only on the slit width but also 
on the number of slits per unit length. The extension of the preceding equation to this case 
yields � = �h2∕12 . Then

Replacing this equation into (8) and dividing by � to match (6) at low frequencies, we 
obtain

(7)mi =
(zi − 1)EG

zi�M − (�f∕�)EG

(8)YB =
4�

h2

[
q2

1 − (1∕q)tanh(q)

]
.

(9)q =
h

2

√
i��f

�

(10)h = 2

√
3�

�
.

(11)Y =
i��f�

−1

1 − (1∕q)tanh(q)
, q =

√
3i��f�

��
.
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Use of the viscodynamic operator corresponding to circular tubes yields similar results, 
since it has the same limits as a function of frequency and crossover frequencies of the slit 
one (Biot 1956b; Eq. 3.15). Moreover, Carcione (2014, Fig. 7.8) showed that the differ-
ence between the slit operator and the more general heuristic operator proposed by Johnson 
et al. (1987) is small. In fact, it can be shown that the results are similar.

3 � Examples

Let us consider the properties shown in Table  1, where the fluids in the incidence and 
transmission media are brine and gas, respectively, and the case of open boundary condi-
tions. Porosity and permeability are related by the Kozeny–Carman relation (Mavko et al. 
2009, p. 403)

where R is the grain radius and B = 0.003, and we assume R = 80 μ m. We use the Krief 
model (Krief et al. 1990) and assume a Poisson medium to obtain the dry-rock moduli as

Tortuosity is given by

Equations (12)–(14) can be found in Mavko et al. (2009).
Figure  1 shows the exact phase velocities obtained from the wavenumbers, solu-

tions of Eq. (5) as c = 1∕Re(1∕v) , where v = �∕l is the complex velocity (e.g., Carcione 
2014). The comparison between the exact and approximated wavenumbers of Gurevich 
et al. (1994) [Eq. (22)] is displayed in Fig. 2 (incidence medium). Although the theory 
is valid up to the characteristic frequency (vertical line), some discrepancies at sonic 
frequencies are evident, but the approximation is valid at seismic frequencies.  

(12)� =
4B�3R2

(1 − �)2
,

(13)Km = Ks(1 − �)3∕(1−�) and � =
3

5
Km.

(14)T = 1 −
1

2

(
1 −

1

�

)
.

Table 1   Material properties Property Incidence medium Trans-
mission 
medium

Ks (GPa) 39 39
Kf  (GPa) 2.25 0.012
�s (kg/m3) 2650 2650
�f  (kg/m3) 1040 80
� 0.2 0.3
� (Pa ⋅ s) 0.001 0.0001
Km (GPa) 16.9 8.45
� (GPa) 10.13 5.07
� (darcy) 0.96 4.23
T 3 2.16
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Fig. 1   Exact phase velocities of the incidence (black-solid curves) and transmission media (red-dashed 
curves). Phase velocities are obtained as �∕Re(lj), j = 1, 2 , where 1 and 2 denote the fast and slow waves, 
respectively (e.g., Carcione 2014)

Fig. 2   Exact (black solid line) and approximated wavenumbers of Gurevich  et al. (1994) (blue dots and 
dashed lines), corresponding to the incidence medium. The vertical line indicates the location of the char-
acteristic frequency. The exact wavenumbers, li , are solutions of the dispersion Eq. (5) and those of Gurev-
ich et al. (1994) are given by Eq. (22)
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Since the approximations (22) do not affect the fast P wave significantly, Fig. 3 com-
pares the exact and approximate slow P wave velocities, where the vertical lines indicate 
the Biot characteristic frequencies of the incidence (i) and transmission (t) media. As 
can be seen, these approximations are valid below those reference frequencies.

Figure 4 shows the absolute value and phase of the reflection coefficients. The two 
curves denoted by 1 and 2 correspond to Eq. (26) computed with �1 and �2 , respectively. 
We can see that the approximate reflection coefficients substantially depart from the 
exact one above 1 KHz, while the Silin-Goloshubin coefficient is not Gassmann consist-
ent at zero frequency. At 1 MHz and the entire band, we have the frequency-independ-
ent reflection coefficient

where here Z =
√
�EG is the Gassmann P-wave impedance and the presence of permeabil-

ity, pore-space tortuosity and viscosity of the fluids have no effect. If we replace gas with 
water in medium 2, we obtain R0 = 0.15 (against R0 = 0.25 with gas) and on the basis of 
this value one could determine the presence of gas, but as we can see in Fig. 4, the effects 
of viscosity and permeability with frequency are negligible at the seismic band.

Let us consider a very low viscosity for both fluids, �1 = �2 = 10−10 Pa ⋅ s, i.e., almost 
ideal or inviscid fluids. Since the frequency dependence in the low-frequency Biot theory 
is governed by the factor �∕� , this viscosity would correspond to an extremely high perme-
ability of the order of 107 darcy for water. The absolute value of the reflection coefficient is 
shown in Fig. 5. The exact one (Geertsma–Smit) is in practice equal to R0 and the approxi-
mations breakdown at seismological and seismic frequencies, because according to Eq. (1), 
the Biot characteristic frequency is very low. On the other hand, if we replace gas by oil 

(15)R0 =
Z1 − Z2

Z1 + Z2
,

0 1 2 3 4 5 6
0

500

1000

1500

2000

2500

3000

3500

4000

Exact

P
ha

se
 v

el
oc

ity
 (

m
/s

)

log[Frequency (Hz)]

t i

Exact

approximation

Fig. 3   Exact and approximated (Gurevich  et al. 1994) phase velocities of the slow P wave in the inci-
dence (black-solid curves) and transmission media (red-dashed curves).The vertical lines indicate the Biot 
characteristic frequencies of the incidence (i) and transmission (t) media. Phase velocities are obtained as 
�∕Re(lj), j = 1, 2 , where 1 and 2 denote the fast and slow waves, respectively (e.g.,Carcione 2014)
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in Table 1, with a viscosity of 1 Pa ⋅ s = 1000 cP , it can be shown that the reflection coef-
ficient in the frequency range shown in Fig. 5 and up to 1 kHz, is practically equal to its 
value at zero frequency, i.e., the Gassmann expression (15).

This is the same conclusion reached by Gurevich (1994): “...for an interface between 
two fluid-saturated porous media, the difference between poroelastic and elastic coef-
ficients at seismic frequencies is only several percent, and the coefficients can be 
approximated by the elastic ones,” and by Gurevich et al. (1994), where the exact reflec-
tion coefficient of a thin layer compared to the effective Gassmann one has negligible 
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Fig. 4   Absolute value (a) and phase (b) of the PP reflection coefficient, where the Geertsma–Smit curve is 
the exact one (low-frequency Biot theory and open-pore conditions, but no approximations). The vertical 
arrows indicate the Biot characteristic frequencies of the incidence (i) and transmission (t) media
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differences from a practical point of view. As shown by Carcione (1998, Fig  7), the 
effect of the slow wave can be seen when the medium has many heterogeneities. A sin-
gle interface has no pronounced effect (Carcione 1998, Fig 8). The effect may become 
significant for a multi-layered porous medium, where the reflections may accumulate 
(White et al. 1975; Gurevich and Lopatnikov 1995; Carcione and Picotti 2006)

Let us now consider the properties in Table  1 and viscodynamic operator valid at 
all frequencies. Figure 6 shows the real (a) and imaginary parts (b) scaled by �∕� . Fig-
ure  6b compares the imaginary parts of the low-frequency and high-frequency oper-
ators, Eqs.  (6) and (11), respectively. The differences can be noticed beyond 10  kHz, 
roughly the value of the Biot characteristic frequencies, which are 32 and 14 kHz for the 
incidence and transmission media, respectively.

Figure  7 shows the phase velocity (a) and dissipation factor (b) of the fast P wave, 
corresponding to the Geertsma–Smit theory, considering both the low- and high-fre-
quency viscodynamic operators. The dissipation factor is computed with the quality fac-
tor Q = Re(v2)∕Im(v2) (e.g., Carcione 2014). We can see the relaxation peaks due to Biot 
global fluid flow mechanism, which are approximately centered at the characteristic fre-
quency (1). The high-frequency Biot theory (dashed lines) has a better agreement with the 
reference frequency.

The absolute value (a) and phase (b) of the exact PP reflection coefficient, corresponding 
to the Geertsma–Smit equations are shown in Fig. 8. The solid-black and dashed-red lines 
refer to the low- and high-frequency viscodynamic operators, Eqs.  (6) and (11), respec-
tively. We observe that the inclusion of high-frequency effects highly affects the coefficient 
beyond the Biot characteristic frequencies.

Next, we analyze the effect of mixed and closed boundary conditions. We consider three 
values of the hydraulic permeability of the interface: k = ∞ (closed pores), 0 (open pores) 
and 107 s ⋅ Pa/m (mixed or partially open pores). The latter reciprocal value multiplied by 
viscosity, say water, corresponds to an effective of permeability of 100 darcy. The transi-
tion occurs at approximately k = 108 s ⋅ Pa/m . Above this value, the interface is practically 
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closed. The results (see Fig. 9) indicate that from a practical point view, the reflection coef-
ficients do not differ. Differences between open- and sealed-pore conditions may be sig-
nificant in the presence of air at room conditions, e.g., an interface separating water and 
air-filled porous media (Denneman et al. 2002), but this situation is not the case at depth in 
the Earth, since gas has the properties shown in Table 1 or behaves as a liquid at supercriti-
cal pressure–temperature conditions.
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Fig. 6   Real (a) and imaginary parts (b) of the viscodynamic operator scaled by �∕� . In (a), the solid and 
dashed lines correspond to the high-frequency operator of the incidence and transmission media (the low-
frequency one is constant and equal to the value at � = 0)



	 Surveys in Geophysics

1 3

To further analyze the effect of viscosity and permeability on the reflection coef-
ficient at the seismic frequency band, we consider valid the low-frequency Biot theory, 
where viscosity and permeability are involved in a single quantity, i.e., b = �∕� . In the 
following example, we assume the matrix properties of Table 1 and brine in the upper 
and lower media, with b2 = b1 = 109 kg/(m3s) (a permeability of 1 darcy = 10−12 m2 ), 
i.e., we do not use equation (12) to obtain the permeability. Now, we assume two other 
cases, where b2 = 104b1 and b2 = 10−4b1 , corresponding to a lower medium whose 
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Fig. 7   Phase velocity (a) and dissipation factor (b) corresponding to the Geertsma–Smit theory. The verti-
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velocities are obtained as �∕Re(lj), j = 1, 2 , where 1 and 2 denote the fast and slow waves, respectively, and 
Qi = −Re(l2

i
)∕Im(l2

i
) (e.g., Carcione 2014)
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permeability is reduced by a factor 104 or its viscosity is reduced by the same fac-
tor, respectively. These choices may correspond to shale or gas in the lower medium, 
respectively. Although, this assumption is unrealistic, since varying the permeability or 
the viscosity implies different porosity and dry-rock moduli in the first case, and differ-
ent fluid bulk modulus and density in the second case, the purpose is solely to study the 
sensitivity to permeability and viscosity. Even in the most realistic case, it remains the 
uncertainty on the relations between permeability and porosity and dry-rock moduli, 
i.e., the parameters in the Kozeny–Carman and Krief equations. Figure  10 shows the 
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Fig. 8   Absolute value (a) and phase (b) of the exact PP reflection coefficient [see Eq. (3)], corresponding 
to the Geertsma–Smit equations, where the solid-black and dashed-red lines refer to the low- and high-
frequency viscodynamic operators, Eqs. (6) and (11), respectively
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Fig. 9   Absolute value (a) and phase (b) of the exact PP reflection coefficient [see Eq. (3)], corresponding 
to the Geertsma–Smit equations for different boundary conditions at the interface. We have considered the 
high-frequency viscodynamic operator (11)
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Fig. 10   Exact (Geertsma–Smit) absolute value (a) and phase (b) of the PP reflection coefficient as a func-
tion of frequency for low permeability (red dashed line) and low viscosity (blue dotted line) in the lower 
(transmission) medium. (i) and (t) indicate incidence (upper) and transmission (lower) media, respectively
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exact (Geertsma–Smit) absolute value (a) and phase angle (b) of the PP reflection coeffi-
cient as a function of frequency for low permeability (red dashed line) and low viscosity 
(blue dotted line) in the lower (transmission) medium. It is clear that at the seismic band 
the changes in the reflection coefficients preclude any prediction based on these proper-
ties. Variations in amplitude of 0.02 and phase angle of 0.4◦ can hardly be detected in 
real data.

Our examples show very small variation of the reflection coefficient and phase angle 
within the seismic band. One may argue that the media can be described as patchy satu-
rated, causing mesoscopic attenuation (Pride et al. 2003; Carcione 2014, Sections 7.13 and 
7.14) and that in this case the corresponding reflection coefficient shows a higher sensitiv-
ity to viscosity and permeability. However, this is something that requires further research. 
Moreover, it remains the uncertainty of inverting for seismic Q from reflection data and on 
the size of the patches, and how to process the data to remove the effect of the overburden 
and reach the target at its real amplitude.

4 � Conclusions

This work reviews and compares different reported expressions of the normal-incidence 
reflection coefficient in porous media, in order to establish their reliability, validity in 
different frequency bands and practical uses in seismic prospecting. It is clear from the 
example (and one suffices) that the effects of viscosity and permeability are too small to 
be detected in seismic data, even using the exact expression of the reflection coefficient. 
Including the viscodynamic operator greatly affects the reflection coefficient at high fre-
quencies, beyond the Biot characteristic frequency of the order of tens of kHz. We have 
also considered the effects of the boundary condition and found that the difference between 
open- and closed-pore reflection coefficients is small. This review of the different approxi-
mations has as a main result that a misuse of them can lead to erroneous conclusions. Many 
cases can be set up to show this fact, but it is enough one example to reveal the limitations.

Appendix A: Approximations of the Normal‑Incidence Reflection 
Coefficient

A.1 Bourbie et al. Equations

The normal-incidence PP reflection coefficient at an interface separating the incidence 
medium 1 and the transmission medium 2 reported by Bourbie et al. (1987) is

where

(16)R =
1 − Z

1 + Z
⋅ (1 + �) exp(i tan−1 �),

(17)� =

√
2Z2

1 − Z2
⋅

(m1 − m2)
2�1�2

√
�∕�c

1

g1 + g2Z
√
�c
2
∕�c

1
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where � is the angular frequency, Km and � are the dry-rock bulk and shear moduli, respec-
tively, �s and � are the solid and bulk densities, respectively, � is permeability, and i =

√
−1

.

A.2 Gurevich et al. Equations

Gurevich et  al. (2004) approximations of the wavenumbers of the fast and slow waves are 
(their Eqs. 10 and 11),

to be compared with the exact ones, obtained from the dispersion Eq. (5).
Gurevich et al. (2004, Eq. 22) PP reflection coefficient is

where

A.3 Silin and Goloshubin expression

The normal-incidence PP reflection coefficients at an interface separating the incidence 
medium 1 and the transmission medium 2 reported by Silin and Goloshubin (2010, their 
Eq. 88; see Eqs. 9, 15, 24, 35, 64, 75, 78, 84-87) is

(18)mj =
�jMj

EGj

, gj =

√
(1 − �jmj)mj�j

�j
, �c

j
=

�j�j

�j�fj
, �j =

�j�fj

�j
,

(19)Z =

√
�2EG2

�1EG1

, EGj = Emj + �2
j
Mj, Emj = Kmj + 4�j∕3,

(20)M−1
j

= (�j − �j)∕Ksj + �j∕Kfj, �j = 1 − Kmj∕Ksj,

(21)�j = (1 − �j)�sj + �j�fj,

(22)l1 ≈ �

√
�

EG

, l2 ≈

√
i��EG

�MEm

,

(23)R =
1 − (1 − X)Z

1 + (1 + X)Z
,

(24)X =

√
−i��1EG1 ⋅ (m1 − m2)

2

P1 + P2

,

(25)Pj =

√
�jMjEmj

�jEGj

.

(26)Rk = r0 + r1
√
�k, � =

i���f

�
,
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where

Note that Ij [Eq.  (28)] are not Gassmann impedances 
�√

�jEmj

�
 as in the other approxi-

mations. Since subindex k is undetermined in Silin and Goloshubin (2010) [see Eq. (26)], 
we consider two reflections coefficients, corresponding to � of medium 1 ( k = 1 ) and � of 
medium 2 ( k = 2).
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