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S U M M A R Y
We analyse the concepts of instantaneous frequency (IF) and quality factor (IQ). It is verified
that the time-averaged IF is equal to the centroid of the signal energy of the spectrum and that
the centroid of the signal spectrum is equal to the IF at the peak of the signal envelope. The
latter property can be used to obtain the frequency shift required by tomographic methods.
Then, we analyse the two-tone stationary Mandel signal in the lossless and lossy cases. The IQ
is not infinite in the lossless case, although its reciprocal average vanishes, and the lossless and
lossy IFs at the peak of the signal envelope are the same, whereas the IQ at this peak depends
on the amplitudes and quality factors of the tones. The IQ of a propagating Ricker wavelet
has a singularity at the peak of the envelope, which shows a shift in the lossy case, related to
the velocity dispersion. We consider a lossy layer described by the Zener model. Varying its
thickness implies a large variation in the IF, introducing unphysical spikes when the top and
bottom reflections of the layer start to overlap. Finally, a practical application to real seismic
data is presented.
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1 I N T RO D U C T I O N

Seismic traces exhibit time-varying frequencies, which are usu-
ally interpreted with spectrograms (Qadrouh et al. 2016), wavelet
transforms (Sinha et al. 2005) and the concept of instantaneous
frequency (IF) (Barnes 1991, 1993; Boashash 1992; Matheney &
Nowack 1995; Xing et al. 2019). The IF is the time derivative of
the phase of the complex trace, which is a complex continuation
of the real trace, where the imaginary part is the Hilbert transform
of the real signal (Taner et al. 1979; Cohen 1995). The complex
trace in exponential form basically separates amplitude (envelope)
from phase. The IF has been used to define ‘low-frequency shad-
ows’ (LFSs), generally interpreted as seismic attenuation due to the
presence of gas (e.g. Geletti & Busetti 2011). However, according
to Barnes (2013), only few cases of LFSs are convincing to reveal
the presence of gas. Caution is required since the presence of low
frequencies may be due to other causes, such as normal moveout
(NMO) stretch, which is important at far offset traces (Carcione
et al. 2018), and not to seismic attenuation (Ba et al. 2016, 2019;
Pang et al. 2019). These phenomena (LFS) also appear in seismic
exploration of hydrocarbons related to bright spots, but Castagna
et al. (2003) state that ‘For every example shown, the shadow
was stronger than the reservoir reflection at lower frequencies,
suggesting that shadows are not necessarily a simple attenuation
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phenomenon because low-frequency energy must have been added
or amplified by some physical or numerical process. Attenuation
alone should simply attenuate higher frequencies, not boost lower
frequencies’. Actually, the LFS may have multiple causes that are
not mutually exclusive. Ebrom (2004) lists six stack-related causes,
such as NMO stretch, two due to intrinsic attenuation, one due to
wave interference and another due to improper seismic deconvolu-
tion. One of the causes of this misinterpretation is the methodol-
ogy. Marfurt & Kirlin (2001) show that the simple peak-frequency
concept performs better than the IF (see their figs 6 and 7). The
problem also appears in the analysis of thin beds. Robertson &
Nogami (1984) show that the IF reaches an anomalously high value
when the bed thickness is about a quarter period. Although IF may
exceed physical values, it is true that this property can be used to
identify thin layers. Another concept arising from complex-trace
analysis is the instantaneous quality factor (IQ) (Tonn 1991). IQ is
claimed to be ‘a physical attribute with a strong relation to porosity,
permeability, and fracture’ (https://wiki.seg.org/wiki/Dictionary:
Instantaneous q factor). However, it is the IF and not the IQ that
has been used to estimate Q. Barnes (1991), Yang & Gao (2009)
and Gao et al. (2011) estimate Q from the IF, basically from its
value at the envelope peak. A similar method, based on this peak,
has been implemented by Engelhard (1996). Gao et al. (2011) ob-
tain a similar frequency-shift–Q equation to that of Quan & Harris
(1997), based on the spectrum centroid, as expected. Use of the
IF avoids the problem of a subjective time windowing of seismic
traces. Gao et al. (2011) tested the transmission problem (a VSP
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736 J.M. Carcione et al.

Figure 1. (a) Amplitude distribution aj and (b) IF of the signal given in
eq. (7).

experiment) and found that the frequency-shift method of Quan &
Harris (1997) fails near interfaces due to overlapping of the direct
wave with reflected waves, whereas the method based on the IF is
less sensitive to interference reflections and has a higher resolution.
In the presence of noise, Gao et al. (2011) use the wavelet transform,
instead of the Hilbert transform, to compute the IF, improving in this
manner the estimation based on damping parameter (Matheney &
Nowack 1995). Wang et al. (2013) generalize the IF by introducing
fractional time derivatives, showing that an order of 0.99 instead of
the first-order derivative yields better results.

Here, we analyse the IF and IQ for the Mandel problem general-
ized to the anelastic case, a propagating Ricker wavelet in a lossy
medium and for the seismic-reflection trace in the presence of a
layer. An example with real seismic data is finally presented.

2 T H E I N S TA N TA N E O U S F R E Q U E N C Y

The complex trace of a real signal s(t) is

z(t) = s(t) + iH[s(t)] = a(t) exp[iφ(t)] ≡ �2 + i�1 (1)

(Cohen 1995), where i = √−1,H is the Hilbert transform operator,
a(t) = |z| is the instantaneous amplitude, φ(t) is the instantaneous
phase, and �2 and �1, respectively, are the real and imaginary parts

Figure 2. IF for the Mandel (1974) example, where f0 = 15 Hz, (a) �f =
5 Hz and (b) �f = 0.5 Hz. The physical range of frequencies is [10, 20] Hz
in (a) and [14.5, 15.5] Hz in (b).

Figure 3. Instantaneous attenuation for the Mandel (1974) example, where
f0 = 15 Hz and �f = 0.5 Hz.

of z. The IF is

fI(t) = φ̇

2π
= − 1

2π
iẇw∗ = �̇1�2 − �1�̇2

2π (�2
1 + �2

2 )
, w = z

|z| , (2)
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Instantaneous frequency and quality factor 737

Figure 4. (a) IF and (b) IQ for the Mandel example in the lossless and lossy
cases, where a1 = 1, Q1 = Q2 = 30, f0 = 15 Hz, and �f = 0.5 Hz.

which is eq. (12) in Barnes (2007), where the asterisk denotes
the complex conjugate and a dot above a variable indicates time
differentiation. If one uses a first-order accurate finite-difference
approximation to compute the time derivatives, eq. (2) is the same
as eq. (C-5) in Barnes (2007). Poggiagliolmi & Vesnaver (2014)
use eq. (2) to compute the trace attributes.

3 T H E I N S TA N TA N E O U S Q UA L I T Y
FA C T O R

The IQ is defined as

QI(t) = −π fI · a

ȧ
= − φ̇a

2ȧ
= 1

2
· �1�̇2 − �̇1�2

�1�̇1 + �2�̇2

(3)

(Barnes 1993), where we have used eq. (2). This definition is clear
in the following. Assume a simple stationary wave in a constant-Q
medium,

z = exp(i�t), � = ω + iβ, (4)

where

β = ω

2Q
, (5)

and Q is the quality factor. The amplitude and phase are then

a(t) = exp(−βt) and φ(t) = ωt. (6)

Figure 5. (a) IF and (b) IQ for the Mandel example in the lossless and lossy
cases, where a1 = 1, Q1 = ∞, Q2 = 100, f0 = 15 Hz and �f = 0.5 Hz. The
black and blue colours correspond to the lossless case, whereas the red and
green colours correspond to a2 = 0.2 and 1.8, respectively.

Substituting these quantities into eqs (2) and (3) gives fI = ω/(2π )
= f and QI = Q, where f is the frequency.

4 E X A M P L E S

4.1 Multiple-tone signal

Let us assume a real signal s(t) composed of N harmonic frequency
components (a sum of cosines), ωj, j = 1, . . . , N,

s(t) =
N∑

j=1

a j cos(ω j t), (7)

where ωj > 0 and aj are constant amplitudes. Its Fourier spectrum
is

S(ω) = π

N∑
j=1

a j [δ(ω − ω j ) + δ(ω + ω j )]. (8)

Since the Hilbert transform of the cosine function is the sine
(Bracewell & Bracewell 1986), we have

z(t) =
N∑

j=1

a j exp(iω j t). (9)
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738 J.M. Carcione et al.

Figure 6. (a) IF and (b) IQ for the Mandel example in the lossless and lossy
cases, where a1 = 1, Q1 = 200, Q2 = 100, f0 = 15 Hz and �f = 0.5 Hz.
The black and blue colours correspond to the lossless case, whereas the red
and green colours correspond to a2 = 0.2 and 1.8, respectively.

The complex trace can be separated into instantaneous amplitude
a(t) and phase φ(t), such that

N∑
j=1

a j exp(iω j t) = a(t) exp[iφ(t)], (10)

where

a(t) =
√

�2
1 + �2

2 , φ(t) = arctan

(
�1

�2

)
, (11)

where

�1 =
N∑

j=1

a j sin(ω j t) and �2 =
N∑

j=1

a j cos(ω j t). (12)

After some simple calculations, we obtain

f I (t) = cos2 φ

2π�2

N∑
j=1

a jω j [cos(ω j t) + sin(ω j t) tan φ] (13)

and

QI (t) = π f I a2(t)∑N
j=1 a jω j [�1 cos(ω j t) − �2 sin(ω j t)]

. (14)

Figure 7. Real and imaginary parts of the complex trace (Ricker and its
Hilbert transform, respectively) and trace envelope (a), and IF and IQ (b),
corresponding to a Ricker wavelet of dominant frequency fp = 25 Hz. The
peak IF is (2/

√
π ) f p = 1.1284 fp.

Let us assume that ωj is such that the frequency f = ω/(2π ) spans
from 10 to 110 Hz with centre frequency at 60 Hz, and consider
three amplitude distributions, that is

a j = 1, ∀ j, uniform,

= sin(0.07 j), sine,
= cos(0.07 j), cosine,

where j = 1 and N = 100 correspond to 10 and 110 Hz, respectively.
Fig. 1 shows the amplitude distribution aj (a) and the IF (b) as a
function of frequency and time, respectively. The uniform distribu-
tion gives an average frequency of 60 Hz, but the sine and cosine
distributions show anomalous behaviours, with deviations beyond
the frequency range of the signal (0–120 Hz), including negative
frequencies. Then, the IF cannot be seen as the average frequency.
A similar behaviour has been observed by Mandel (1974), Cohen
(1995, fig. 2.2) and Loughlin & Tacer (1997) using simpler signals.

4.2 Mandel signal

The Mandel example is a particular case of eq. (1),

z(t) = a1 exp(iω1t) + a2 exp(iω2t), (15)

where N = 2 in eq. (9), ω1 = ω0 − �ω and ω2 = ω0 + �ω, with
a1 and a2 constants. The IF is
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Instantaneous frequency and quality factor 739

(a)

Figure 8. Propagation in a homogeneous medium with Q = 5. (a) Trace
envelope and IF; (b) IF and IQ (b); (c) IQ (red line) compared to the lossless
IQ (black line). The open circle in panel (a) indicates the IF at the peak
envelope, which is the centroid frequency according to eq. (A2).

f I (t) = f0 + � f (a2
2 − a2

1 )

a2(t)
, (16)

where

a2(t) = �2
1 + �2

2 = a2
1 + a2

2 + 2a1a2 cos(4π� f t), (17)

ω0 = 2π f0 and �ω = 2π�f. Cohen (1995) stated: ‘... while the IF
can range widely, the occurrences when it ranges outside the band-
width of the signal have small duration and hence do not contribute
significantly ... ’. Let us consider an example with f0 = 15 Hz and

Figure 9. 1-D layered model to simulate wave propagation along the vertical
direction.

Figure 10. Complex-trace attributes in the (a) elastic and (b) anelastic cases.
The dotted lines are the signal envelopes. The red curve in panel (b) is the
envelope in the elastic case.

two different values of �f = 5 and 0.5 Hz. Based on eq. (16), Fig. 2
shows that the contributions have components outside the band of
the signal: [10, 20] Hz in (a) and [15.5, 14.5] Hz in (b), even for
moderate signal durations. The IF shows a physical behaviour when
their averages and peak values are computed. This is illustrated in

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/227/2/735/6313281 by O

G
S (Istituto N

azionale di O
ceanografia e di G

eofisica Sperim
entale-O

G
S) Borgo G

rotta user on 22 D
ecem

ber 2023



740 J.M. Carcione et al.

Figure 11. (a) IF and (b) IQ corresponding to the signals of Fig. 8, where the
black and red lines correspond to the lossless (elastic) and lossy (anelastic)
cases, respectively. The horizontal line refers to 28.2 Hz, while the open
circles refer to 〈f〉2.

Appendix A, where it is shown that the centroid of the energy spec-
trum equals the average IF and the centroid of the spectrum equals
the IF evaluated at the peak of the signal envelope a(t). On the other
hand, the IQ is

QI(t) = fIa2(t)

4a1a2� f sin(4π� f t)

= a2
2 − a2

1 + ( f0/� f )a2(t)

4a1a2 sin(4π� f t)
. (18)

It is clear that the wave (eq. 15) is not subject to intrinsic loss,
since the ωj are real quantities, and therefore the wave is not damped.
However, Fig. 3 shows that the inverse of the IQ takes values other
than zero, including negative values, although oscillates around a
zero mean value, since the time average of Q−1

I has the form∫
Q−1

I (t)dt ∝ ln[A + B cos(4π� f t)], (19)

where A and B are constants (Jeffrey & Zwillinger 2007, p. 172,
eq. 2.553). Since the integral is an even function, the mean value is
zero.

Figure 12. (a) Envelope and (b) IF in the elastic (black line) and anelastic
(red line) cases, where the layer thickness is 50 m. The horizontal line refers
to 28.2 Hz, the Ricker’s centroid frequency, and the open circles refer to
values of 〈f〉2.

4.3 Generalization of the Mandel signal

Let us now consider the generalization of the Mandel example to
the lossy case,

z(t) = a1 exp(i�1t) + a2 exp(i�2t), �i = ωi + isβi , (20)

where s = sgn(t),

βi = ωi

2Qi
, i = 1, 2, (21)

in agreement with eq. (5). z(t) is a damped stationary wave and
the sign function is included to have damping also from t = −∞
to 0. Apparently, this signal has no relation to the seismic case.
It is however a simple combination of exponential functions with
different frequencies and therefore a simplified version of a real
seismic signal (e.g. Tary et al. 2014, eq. 10). Moreover, the objective
here is to study the effect of attenuation on the IQ.

In this case,

�1 = Im(z) = γ1 sin(ω1t) + γ2 sin(ω2t),

�2 = Re(z) = γ1 cos(ω1t) + γ2 cos(ω2t),

a2(t) = �2
1 + �2

2 = γ 2
1 + γ 2

2 + 2γ1γ2 cos(4π� f t),

γi (t) = ai exp(−βi |t |), (22)
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Instantaneous frequency and quality factor 741

Figure 13. As Fig. 11, but the layer thickness is 30 m.

where ω1 = 2π (f0 − �f), ω2 = 2π (f0 + �f), with f0 = (ω1 +
ω2)/(4π ). To compute the phase, which has the form (11), it is
simpler to differentiate the complex quantities and then take the
real part. We then obtain the IF from eq. (2), where

�̇1 = γ1[ω1 cos(ω1t) − sβ1 sin(ω1t)]

+ γ2[ω2 cos(ω2t) − sβ2 sin(ω2t)],

−�̇2 = γ1[ω1 sin(ω1t) + sβ1 cos(ω1t)]

+ γ2[ω2 sin(ω2t) + sβ2 cos(ω2t)], (23)

where we have used the property d|t|/dt = t/|t| = s. On the other
hand, the IQ is given by eq. (3).

Let us first consider Q1 = Q2 = 30. Fig. 4 shows the IF (a)
and IQ (b) as a function of time compared to the lossless case. A
slight damping as a function of time is observed for a2 = 0.2, but
the IF is amplified for a2 = 1.8. The mean value of the IQ is 30
(e.g. the red and green curves are shifted upwards). Fig. 5 shows
a similar plot with Q1 = ∞ and Q2 = 100. A strong damping of
the IF can be seen for a2 = 0.2, and the trend is inverted from
the second peak for a2 = 1.8. The case Q1 = 200 and Q2 = 100
is displayed in Fig. 6, where it can be seen that the IF reaches
the zero value and the inverse IQ takes very high values (strong
attenuation).

4.4 Ricker wavelet-based trace

A more realistic geophysical signal is based on a source given by
the Ricker wavelet, whose expression is

s(t) = (1 − 2a2) exp(−a2), a = π fp(t − ts), (24)

where fp is peak frequency and we take ts = 1.4/fp. Its frequency
spectrum is

S(ω) = 2ā2

√
π fp

exp(−ā2 − iωts), ā = ω

ωp
= f

fp
. (25)

Denoting by F and F−1 the forward and inverse Fourier opera-
tors, the complex trace is

z(t) = F−1[Z (ω)], Z (ω) =
⎧⎨
⎩

V (0), ω = 0,

2V (ω), ω > 0,

0, ω < 0,

(26)

where V is the spectrum of the trace (Cohen 1995, p. 30). The
real part of z(t) is v(t) = s(t) and the imaginary part is the Hilbert
transform of v(t).

The IF and IQ are given by eqs (2) and (3), where

�1 = Im(z), �2 = Re(z), �̇1 = ˙Im(z), �̇2 = ˙Re(z). (27)

We compute the time derivatives with the Fourier pseudo-spectral
method. For instance, �2 = u(t) →FFT U (ω) → iωU (ω) →FFT−1

u̇(t) = �̇2, where FFT is the fast Fourier transform (e.g. Carcione,
2014, Section 9.9.5). From eq. (2), f I = Re[ż/(2π iz)], so that

f I = 1

2π
Im

[
ż

z

]
, (28)

constituting an alternative test. In particular, the length of the FFT in
these computations is 29 = 512 and the time step for the discretiza-
tion is dt = 1.6 ms. First, we consider the Ricker wavelet v(t) = s(t)
with fp = 25 Hz. Robertson & Nogami (1984) showed explicitly
that the IF computed at the time corresponding to the peak of the
envelope is f I = (2/

√
π) fp = 1.1284 × fp = 28.2095 Hz, and it

is equal to the spectrum centroid 〈f〉2, in agreement with eq. (A2).
This is shown in Fig. 7 together with the complex-trace properties,
where in particular, the IQ takes very low positive and negative
non-zero values and tends to high values at the signal peak. More-
over, eq. (A1) yields 〈f〉1 = 26.5961 Hz. Next, we compute synthetic
seismograms with the modelling method outlined in Appendix B.
The source peak frequency is fp = 25 Hz. The grid spacing is 1 m
and the time step is 0.1 ms, resampled to 0.4 ms to obtain a time-
series of 211 = 2048 samples (maximum time is 0.8192 s). First, we
consider a homogeneous medium and propagation from source to a
receiver located at 300 m (the velocity c equal to 2 km s−1 and the
density is 1741 c0.25). For Q = ∞, the results are similar to those of
Fig. 7, since in this case, the signal propagates without attenuation
and velocity dispersion. The results for Q = 5 are shown in Fig. 8.
The open circle in (a) indicates the IF at the peak envelope, which
is the centroid frequency according to eq. (A2). This frequency de-
creases from 28.20 Hz to approximately 16.5 Hz. The IQ has the
same features as in the lossless case; the only difference is a shift of
the singularity (5 ms), related to the velocity dispersion. Next, we
consider the model shown in Fig. 9, consisting of a layer of thickness
100 m with velocity c = 1.5 km s−1 and Q = 5 embedded in a ho-
mogeneous medium characterized by c = 2 km s−1 and Q = 50. The
densities of the two media are 1741 c0.25. The source coincides with
the receiver and is located 300 m above the layer. Fig. 10 shows
the complex trace, with (a) and (b) corresponding to the lossless
(elastic) and lossy (anelastic) cases, respectively. The direct wave
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742 J.M. Carcione et al.

Figure 14. (a) Hammer shallow-refraction seismogram as recorded on the horizontal transverse component (SH waves). The red dashed lines indicate the
time windows used for the Fourier transform of the first-break wavelets. (b) Envelope and (c) IF of the seismograms, where the blue dashed lines refer to the
traveltimes at the envelope peaks. (d) IQ of the recorded signals.

(at t = 0) is filtered by applying to the seismograms a cosine taper
preserving the reflection response of the layer. A strong damping is
observed in (b), as well as velocity dispersion if one compares the
envelopes (red and black dotted lines in Fig. 10b). The envelopes
have peaks at the two reflection events corresponding to the up-
per and lower interface of the layer. The propagation times: 0.3536
and 0.4780 s (lossless case) and 0.3551 and 0.4944 s (lossy case).
Fig. 11 shows the IF and IQ in a time window that includes the two
events. The IF at the peak envelope in the lossless case is 28.2 Hz
for both events as expected, while the IFs in the lossy case are 25.1
and 15.91 Hz, which should correspond to the centroid frequencies
given by eq. (A2). Eq. (A1) yields 〈f〉1 = 26.61 Hz and 13.54 Hz in
the lossless and lossy cases, respectively. The IQ (Fig. 11b) shows
negative values and the behaviour is not very dissimilar to that of
the elastic case, so that no useful information can be inferred. The
shift around 0.5 s is due to the dispersion effect of anelasticity, since
the pulse in the lossy case is slower. We recall that dispersion in this
case means that each frequency component of the signal travels with
a different velocity and since the lossless (elastic) case is defined
at the high frequencies (or instantaneous response in the time do-
main), the overall effect of anelasticity is to delay the signal. Figs 12
and 13 show the envelopes and IFs in the elastic (black line) and
anelastic (red line) cases, for layer thicknesses of 50 m and 30 m,
respectively. The two events overlap but the envelope peaks can be
discriminated. The horizontal lines indicate the centroid frequency

of the Ricker wavelet, which coincides with the IF at the peak of the
two events in the lossless case. These values can be used to com-
pute the frequency shift required by the tomography methods (Quan
& Harris 1997) (see Figs 12b and 13b). The IF can take positive
and negative high values away from the envelope peaks, as can be
seen in Fig. 13(b), which shows a situation similar to that of fig. 5a
in Barnes (1993). These high values have also been predicted by
Robertson & Nogami (1984), when the layer thickness are about a
quarter period of the signal and remains high as the layer continues
to thin. These spike-like features occur at envelope minima and are
numerical artefacts due to a numerical instability when computing
the time derivatives or due to zeroes in the denominator in eq. (2),
which have to be filtered as in Yedlin et al. (2013).

Adding random noise could, in principle, worsen the interpreta-
tion, but when dealing with signal processing methods and attribute
analysis, it is known that noise (nearly white) most of the times
‘helps’ summations and divisions, at areas where the signal ampli-
tude is zero (or at local maxima or minima), creating instabilities.
However, we cannot rely on this fact and it is reasonable to state
that if an algorithm does not work with synthetic (well-controlled)
data, its application to real data cannot be better. The effect of noise
can be reduced by smoothing the frequency-time data, but reducing
both time and frequency resolution. Moreover, IF analysis also re-
lies on the use of specific filtering methods (e.g. Wiener), and can
be relatively intensive computationally. A relevant analysis of the
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Figure 15. (a) Amplitude spectra of the wavelets selected from the seismograms of Fig. 14(a). (b) Comparison between the spectral centroids and the IFs
selected at the envelope peaks, as shown in Fig. 14(c), and corresponding quality factors computed with the frequency-shift method.

performance of IF analysis is performed in Reiz & Morgos (2013)
and Xing et al. (2019), while Tary et al. (2014) review several types
of spectral estimations other than IF.

4.5 Analysis of real seismic data

We consider an application to real seismic data acquired on the
Pian di Neve glacier (Adamello massif, Italian Alps) by Picotti
et al. (2017) to assess the firn and ice seismic properties. Both
P and S waves were propagated in the subsurface by hammering
on a wooden plate embedded in the snow. The data were acquired
using a 24-channel seismic recording system with 10 Hz vertical
and horizontal geophones regularly spaced at 5 m. We consider five
traces, 15 m spaced, from the seismogram shown in Fig. 2(a) in
that paper. We select the SH-wave first breaks refracted at the base
of the firn and recorded between 25 and 85 m offset (Fig. 14a).
We estimate the SH-wave Q factor of the ice below the shallow
firn layer by using the frequency-shift method (Quan & Harris
1997) applied to the wavelet centroid frequencies and the IF peaks.
Fig. 15(a) shows the amplitude spectra of the wavelets selected from
the seismograms (see the time windows in Fig. 14a). The maximum
useful signal frequency being about 350 Hz, we apply a low-pass
filter to eliminate the high-frequency random noise and stabilize the
first-derivative computation. Fig. 14 displays the envelope (b), IF (c)
and IQ (d) of the signals represented in panel (a). Fig. 15(b) shows
the comparison between the spectral centroids and the IFs evaluated
at the envelope peaks (blue dashed lines in Fig. 14b) and between the
corresponding Q factors. The frequency-shift computation has been
done considering as reference signal the (first) wavelet recorded at
25 m offset and an SH-wave velocity of 1750 m s−1, obtained from
the first-break traveltimes. The agreement between frequencies and
Q factors is very good, while the IQ represented in Fig. 14(d) does
not add any useful new information to this analysis. The Q factor
values range between 10 and 14, denoting the presence of a highly
attenuating medium, the medium being just below the firn not pure
ice. This fact is also confirmed by the SH-wave velocity value,
which is lower than that of pure ice (1860 m s−1) inferred from the
far-offset first breaks of the same data set.

5 C O N C LU S I O N S

We have analysed the IF and IQ of a two-tone stationary and lossy
signal, showing that these concepts cannot be interpreted as physical
averages as a function of time, since the IF may fall outside the range
of frequencies of the signal, and the IQ takes non-zero values in the

lossless case, and can take very high positive and negative values in
the lossy case. The correct interpretation of the IF involves averages
and specific values at fixed times, which coincide with the centroids
of the signal spectrum. However, using IF to establish the presence of
hydrocarbon-saturated rocks on the basis of low-frequency shadows
is dubious, since low frequencies may be due to other causes, such
as unphysical low values of this attribute, NMO stretch, which
is important at far offset traces, etc. Basically, complex seismic-
trace analysis provides the same information as the Fourier analysis,
which produces global measures. Unlike spectrograms, IF cannot
be interpreted as the average frequency at each time in the signal,
and IQ only reveals the degree of velocity dispersion. However,
the complex-trace attributes, specifically IF, at the maximum of
instantaneous amplitude in an event (signal envelope) can be used
instead of the Fourier transform to estimate dominant frequency
changes with time, avoiding, in theory, the subjective use of time
windows. Ideally, events have to correspond to single interfaces,
since interference can generate false interpretations, and the signal-
to-noise ratio has to be high enough. An example of application to
real seismic data is shown. Thus, despite the amount of literature
published on the subject, IF and IQ are of limited use from a practical
point of view, and a misusage can lead to erroneous interpretations.
In summary, although the novel aspect in this work regards the
IQ, alternative examples of the IF are given, considering signals
that can lead to false interpretations. Some of these cases were not
considered in the geophysical literature.
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A P P E N D I X A : L I N K B E T W E E N T H E
AV E R A G E A N D P E A K I F A N D
C E N T RO I D F R E Q U E N C I E S

Gabor (1946) showed that the centroid of the signal energy of the
spectrum is equal to the time average of the IF,

〈 f 〉1 =

∫
f |Z ( f )|2d f∫
|Z ( f )|2d f

=

∫
fI|z(t)|2dt∫
|z(t)|2dt

= 〈 fI〉, (A1)

where Z(f) is the Fourier transform of z(t) and the integration on
the spectrum is, in principle, intended from 0 to ∞ if the signal is
causal (see also Barnes 1993).

On the other hand, Robertson & Nogami (1984), Saha (1987) and
Barnes (1991) showed that the centroid of the signal spectrum is
equal to the IF at the peak of the signal envelope,

〈 f 〉2 =

∫
f |Z ( f )|d f∫
|Z ( f )|d f

= fI(t0), (A2)

where t0 is obtained from ȧ(t = t0) = 0. (Proof: For z given by
eq. (10), and imposing ȧ = 0, it is ż = iφ̇z or φ̇ = ż/(iz); since the
Fourier transform of ż is 2π ifZ(f), we obtain (A2) if t0 is taken as
the origin of time.) Eq. (A2) is the basis of the phase-shift method
of Quan & Harris (1997) to obtain the quality factor Q (e.g. Lin
et al. 2018). For instance, for a spectrum of rectangular shape of
width W, it is

〈 f 〉2(receiver) ≈ 〈 f 〉2(source) − πW 2

12
· τ

Q
(A3)

(Quan & Harris 1997), where τ is the traveltime between source
and receiver. Similarly, Yang & Gao (2009) and Gao et al. (2011)
obtain 〈f〉2(receiver) ≈ 〈f〉2(source) − k(τ /Q), for a realistic source
wavelet, where k is a constant depending on the source parameters.
For τ = 0 or Q = ∞, the source and receiver centroids are the same.

Examples: Let us consider the Mandel signal (15), whose Fourier
transform is

Z ( f ) = a1δ( f − f1) + a2δ( f − f2) (A4)
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where δ is Dirac delta, and

|z(t)|2 = a2(t). (A5)

(see eq. 17).
Integrating from −T to T, eq. (A1) gives

〈 f I 〉 = f0 + T � f (a2
2 − a2

1 )

T (a2
1 + a2

2 ) + a1a2
sin(4π� f T )

2π� f

. (A6)

For T → ∞, we obtain

〈 fI〉 = f0 + a2
2 − a2

1

a2
1 + a2

2

� f = 〈 f 〉1. (A7)

The second equality uses the fact that any power of the Dirac delta
gives the delta (Fischer 2018).

Regarding the value of t at the maximum amplitude a(t), it is ȧ2 =
−8a1a2π� f sin(4π� f t) and ä2 = −32a1a2π

2� f 2 cos(4π� f t).
We have a maximum if the second derivative is negative. Then,
t0 = n/(2�f), n = 0, 1, 2. . . for a1a2 > 0 and t0 = [n/(4�f)], n =
1, 3. . . for a1a2 < 0. It is enough to take t0 = 1 and t0 = 1/(4�f),
respectively. Referring to eq. (16), a2 = (a1 + a2)2 for a1a2 > 0 and
a2 = (a1 − a2)2 for a1a2 < 0. Then,

〈 f 〉2 = fI(t0) = f0 + a2 − a1

a1 + a2
� f, a1a2 > 0,

〈 f 〉2 = fI(t0) = f0 − a2 + a1

a1 − a2
� f, a1a2 < 0.

(A8)

Assuming, without loss in generality, that a1 > 0, the two eq. (A8)
are identical.

Then, t0 = 0 for a1a2 > 0 and t0 = 1/(4�f) for a1a2 < 0 , where
t0 is the time at which the signal envelope is maximum. These
values are exact for the lossless case, while the second one is an
approximation for the lossy case. Taking t0 = 0, the IF in eq. (2)
(peak IF) is that of the lossless case, that is eq. (A8). The Fourier
transform of the lossy signal (20) is

Z (ω) = 2a1β1

β2
1 + (ω − ω1)2

+ 2a2β2

β2
2 + (ω − ω2)2

. (A9)

It can be shown that the centroid (A2) yields the value (A8) after
performing the integrations in the numerator and denominator.

Similarly, for t0 = 0, the IQ in eq. (3) is

QI = (a1 + a2) f0 + (a2 − a1)� f

(a1 Q−1
1 + a2 Q−1

2 ) f0 + (a2 Q−1
2 − a1 Q−1

1 )� f
. (A10)

For Q1 = Q2 = Q0, we obtain QI = Q0.

A P P E N D I X B : F U L L - WAV E F O R M
M O D E L L I N G M E T H O D

The full-waveform synthetic seismograms are computed with a
modelling code based on the viscoacoustic stress–strain relation
corresponding to a single relaxation mechanism, represented by the
Zener or standard-linear-solid mechanical model. The equations
are given in Section 2.10.4 of Carcione (2014). The 1-D parti-
cle velocity–stress formulation describing propagation along the
x-direction is

v̇ = 1

ρ
∂xσ,

σ̇ = ρc2 (∂xv + e) + s,

ė + e

τσ

+
(

2

τ0 Q

)
∂xv = 0,

(B1)

where v is particle velocity, σ is stress, s is the source (explosion), e
is a memory variable, τ σ denotes a relaxation time and a dot above
a variable indicates time differentiation. The relaxation time is

τσ = τ0

(√
Q−2 + 1 − Q−1

)
, (B2)

where Q is the minimum quality factor and τ 0 = 1/2π f0. If fp is
the central frequency of the source wavelet, we assume that the
relaxation peak is located at ω0 = 1/τ 0 = 2π fp. The velocity c
in these equations corresponds to the unrelaxed or high-frequency
limit velocity.

The complex velocity associated with eq. (B1) is

c̄( f ) = c

√
i f/ f0 + 1/φ

i f/ f0 + φ
, φ = Q−1 +

√
1 + Q−2 (B3)

The phase velocity is cp = 1/Re(1/c̄), and the relaxed (low-
frequency) velocity is c/a. This model describes attenuation of the
wavefield and velocity dispersion.

The numerical algorithm to solve eq. (B1) is based on the Fourier
pseudo-spectral method for computing the spatial derivatives and a
fourth-order Runge–Kutta technique for calculating the wavefield
recursively in time (e.g. Carcione 2014).
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