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a b s t r a c t

The injection of CO2 in saline aquifers and depleted hydrocarbon wells is one solution to avoid the

emission of that greenhouse gas to the atmosphere. Carbon taxes can be avoided if geological

sequestration can efficiently be performed from technical and economic perspectives. For this purpose,

we present a combined rock-physics methodology of electromagnetic (EM) and seismic wave

propagation for the detection and monitoring of CO2 in crosswell experiments.

First, we obtain the electrical conductivity and seismic velocities as a function of saturation,

porosity, permeability and clay content, based on the CRIM and White models, respectively. Then, we

obtain a conductivity–velocity relation. This type of relations is useful when some rock properties can

be more easily measured than other properties. Finally, we compute crosswell EM and seismic profiles

using direct modeling techniques. P- and S-wave attenuation is included in the seismic simulation by

means of White’s mesoscopic theory. The modeling methodology is useful to perform sensitivity

analyses and it is the basis for performing traveltime EM and seismic tomography and obtain reliable

estimations of the saturation of carbon dioxide. In both cases, it is essential to correctly pick the first

arrivals, particularly in the EM case where diffusion wavelength is large compared to the source–

receiver distance.

The methodology is applied to CO2 injection in a sandstone aquifer with shale intrusions, embedded

in a shale formation. The EM traveltimes are smaller after the injection due to the higher resistivity

caused by the presence of carbon dioxide, while the effect is opposite in the seismic case, where water

replaced by gas decreases the seismic velocity.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Geological sequestration is an immediate option to solve in
part the problem of carbon-dioxide emission to the atmosphere.
Feasible possibilities are injection into hydrocarbon reservoirs
and saline aquifers (Alavian and Whitson, 2011; Arts et al., 2004;
Carcione et al., 2006). It is essential in CO2 sequestration to
monitor the injected plumes as they diffuse into the reservoir,
and any leakage has to be carefully monitored. The loss of
integrity of the cap rock above the reservoir and the potential
for leakage along bedding planes, faults and fractures should be
detected. Seismic and electromagnetic (EM) methods can be used
for non-invasive determination of subsurface physical and chemical
properties (Giese et al., 2009). Seismic measurements provide P- and
S-wave velocities and attenuations, while electromagnetic data at
ll rights reserved.

e),
low frequencies provide electrical conductivity, which can be related
to fluid saturation. The combined use of these methods can give
more reliable results if the interpretation is based on suitable
cross-property relations between seismic velocity and conductivity
(Carcione et al., 2007). In particular, the electrical conductivity of
reservoir rocks is highly sensitive to changes in water and CO2

saturation and on a lesser degree the P-wave velocity, while the
S-wave velocity remains nearly constant.

A few authors have used EM methods to monitor CO2 in the
underground. Norman et al. (2008) built a resistivity model from
seismic data and Archie’s law. The time-lapse responses for the
2001 and 2006 plumes at Sleipner versus the case without CO2

indicate peak anomalies of 25% and 50% at 3 km offset, respec-
tively. Bourgeois et al. (2009) performed a feasibility study of
monitoring a supercritical CO2 injection in a deep saline aquifer
by means of EM methods, where the source is a deep metallic
casing.

Hoversten et al. (2004) performed crosswell seismic and EM
imaging to produce a velocity tomogram and a conductivity
section to derive porosity and water saturation. They found a
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poor petrophysical relationship between velocity and porosity,
clay content, and water saturation, but strong petrophysical
relations between electrical conductivity and these parameters.
In Hoversten et al. (2006), the authors link reservoir parameters
to geophysical parameters through a rock-properties model. The
adopted model is the Hertz–Mindlin contact theory for the dry
frame and modified Hashin–Shtrikman lower bounds to calculate
the effective moduli. On the other hand, Archie’s law is used to
model electrical resistivity as a function of porosity and water
saturation. Lei and Xue (2009) performed laboratory measure-
ments at ultrasonic frequencies during the injection of CO2 into
a water-saturated sandstone sample. CO2 migration and water
displacement were mapped using tomographic images of velocity
and quality factor. On average, the P-wave velocity deceased by
7.5%, 12%, and 14.5% and the inverse quality factor increased by
factors of 3.3, 2.7, and 3.7 as a result of the replacement of water
with CO2 during the injection of gaseous, liquid, and supercritical
CO2, respectively. Both the velocity and attenuation data were in
good agreement with White’s model used in the present work.

Electrical resistivity tomography (ERT) in crosswell configura-
tions is another technique being employed for detecting CO2.
Christensen et al. (2006) have shown the potential of ERT to
detect the resistivity changes caused by CO2 injection and migra-
tion in geological reservoirs. Recently, Hagrey (2010) performed
an ERT crosswell numerical study and showed that the method
can discriminate the various components of a CO2 storage in
conductive saline reservoirs, namely, the plume, the host reser-
voir, and the cap rock.

In this work, we deal with transient fields that can be
processed to obtain the electrical conductivity with cross-hole
experiments (e.g., Wilt et al., 1995). We use the White/CRIM
relation between seismic velocity and electrical conductivity,
which has been successfully tested with well-log data of the
North Sea (Carcione et al., 2007). This relation provides a reason-
able fit to the data, indicating that it is possible to predict an
electrical property from an elastic property and vice versa. Then,
we perform a sensitivity analysis by computing the EM field and
synthetic seismograms corresponding to a geological model of
CO2 partial saturation, based on a cross-hole source–receiver
configuration. Finally, we obtain traveltime picks (first arrival
versus receiver locations) which are the basis for EM and seismic
tomography.
2. The cross-property relation between conductivity and
seismic velocity

The key property to relate the electrical conductivity to the
P- and S-wave velocities is the porosity. Assume that the con-
ductivity and velocity have the form s¼ f ðfÞ and v¼ gðfÞ, where
f is the porosity. Then, the relation is given by s¼ f ½g�1ðvÞ�. This
simple 1D concept is quite general and can be applied to higher
spatial dimensions and the case of anisotropy (e.g., Carcione et al.,
2007; Kachanov et al., 2001).

2.1. Electromagnetic properties. CRIM model

The complex refractive index method (CRIM) for a shaly
sandstone with negligible permittivity and partially saturated
with gas, can be expressed as

s¼ ½ð1�fÞð1�CÞsgqþð1�fÞCs
g
cþfð1�SgÞsgbþfSgsgg �1=g, g¼ 1=2

ð1Þ

(Carcione, 2007; Carcione et al., 2007; Schön, 1996), where sq,
sc , sb and sg are the sand-grain (quartz), clay, brine and gas
conductivities, C is the clay content, and Sg is the gas saturation.
If g is a free parameter, the equation is termed Lichtnecker–Rother
formula. It is based on the ray approximation. The travel time in
each medium is inversely proportional to the electromagnetic
velocity, which in turn is inversely proportional to the square root
of the complex dielectric constant. At low frequencies, displace-
ment currents can be neglected and Eq. (1) is obtained. Generally
sq ¼ sg ¼ 0 and Eq. (1) becomes

s¼ ½ð1�fÞCsgcþfð1�SgÞsgb�
1=g, g¼ 1=2: ð2Þ

For zero clay content, Eq. (2) is exactly Archie’s law used in
Hoversten et al. (2006).

2.2. Elastic properties. White model

The seismic velocities and quality factors are determined from
a mesoscopic rock-physics theory (White, 1975), which provides
realistic values as a function of porosity, gas saturation, clay
content, fluid viscosity and permeability (Appendix A). It is
assumed that the medium has patches of CO2 in a brine saturated
background, where brine has absorbed the maximum amount
of CO2. White’s model (see Carcione et al., 2003) describes wave
velocity and attenuation as a function of frequency. We introduce
shear dissipation as indicated in Appendix A, and for a given
reference frequency, f0, which is the dominant source frequency,
we obtain the P- and S-wave phase velocities. The model depends
on the patch size r0. White assumed spherical gas pockets much
larger than the grains but much smaller than the wavelength. He
developed the theory for a gas-filled sphere of porous medium of
radius r0 located inside a water-filled cube of porous medium. For
simplicity in the calculations, White considered an outer sphere
of radius r1 (r14r0), instead of a cube, where Sg ¼ r3

0=r3
1. More

details can be found in White (1975), Carcione et al. (2003) and
Carcione (2007).

For homogeneous waves in isotropic media, the phase velocity
and attenuation factors are given by

vp ¼ Re
1

v

� �� ��1

and a¼�o Im
1

v

� �
, ð3Þ

respectively, where v denotes the complex velocity of the wave
mode, and o is the angular frequency o¼ 2pf . The corresponding
quality factor is

Q ¼
Reðv2Þ

Imðv2Þ
, ð4Þ

and the quality factor associated with White bulk modulus K is

ReðKÞ

ImðKÞ
: ð5Þ

The P- and S-wave complex velocities of the partially saturated
porous medium are

vP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r Kþ
4

3
l

� �s
and vS ¼

ffiffiffiffi
l
r

r
, ð6Þ

respectively, where l is the shear complex modulus of the matrix
as given in Appendix A (Eq. (21)). The density of the medium is

r¼ ð1�fÞ½ð1�CÞrqþCrc�þfrf , ð7Þ

where rq and rc are the sand-grain (quartz) and clay densities,
respectively, and

rf ¼ Sgrgþð1�SgÞrb ð8Þ

is the density of the gas–liquid mixture, where rg and rb are the
gas and brine densities, respectively.

The presence of clay modifies the effective bulk and shear
moduli of the grains, Ks and ms. That is, the grains are formed by a
mixture of quartz and clay. We assume that this moduli are equal
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to the arithmetic average of the upper and lower Hashin–Shtrikman
bounds (Hashin and Shtrikman, 1963; Mavko et al., 1998).

The bulk modulus of the matrix is obtained by using Krief
model. A suitable expression is

Km ¼ Ksð1�fÞA=ð1�fÞ, ð9Þ

where A is a dimensionless parameter which depends on the pore
shape and Poisson ratio of the matrix. This parameter is a pore
compliance coefficient, and takes a value of about 2 for spherical
pores, increasing as the pores become more crack-like (David and
Zimmerman, 2011; Le Ravalec and Gueguen, 1996). We assume
the dry-rock shear modulus

mm ¼
ms

Ks
Km: ð10Þ

This relation implies that the Poisson ratio of the dry porous rock
is equal to the Poisson ratio of the mineral forming the rock
frame. This is generally not the case (David and Zimmerman,
2011; Le Ravalec and Gueguen, 1996), but that simplification is
used in the absence of data to calibrate the model. An alternative
model, based on the DEM theory (Li and Zhang, 2011), can be
used if one has information about the dominant aspect ratio of
the pores. In a real situation, one could evaluate the dry-rock
moduli from the wet-rock moduli obtained from sonic-log data
(by using the inverse Gassmann’s equations), or obtain those
moduli from cores by measuring the P- and S-wave velocities in
the laboratory.

As mentioned above, to relate the velocities to the conductiv-
ities, we replace f¼fðsÞ [taken from Eq. (1)] into Eq. (6), where

fðsÞ ¼
sg�ð1�CÞsgq�Csgc

ð1�SgÞsgbþSgsgg�ð1�CÞsgq�Csgc
ðg¼ 1=2 CRIMÞ: ð11Þ
Table 1
Elastic and electromagnetic properties.

Medium K m r R Z s
(GPa) (GPa) (g/cm3) (mm) (Pa s) (S/m)

Clay 25 20 2.65 1 – 0.2

Sand grains 39 40 2.65 50 – 0.01

Brine 2.25 0 1.03 – 0.0012 12

CO2 0.025 0 0.5 – 0.00002 0

f¼ 25%, r1¼10 cm.

Fig. 1. Rock conductivity as a function of gas saturation. The numbers indicate the

clay content.
3. Modeling methods

3.1. Electromagnetic modeling

The modeling method to compute diffusion fields is that of
Carcione (2006, 2007, 2010), who proposed a spectral algorithm
to solve the electromagnetic diffusion equation. Let us assume
that the material properties and the source are invariant in the
y-direction. Then, the propagation can be described in the
ðx,zÞ-plane, and Ex, Ez and Hy are decoupled from Ey, Hx and Hz,
corresponding to the so-called TM (transverse magnetic) and TE
(transverse electric) equations, where E and H denote electric and
magnetic fields, respectively. The TM equation is

m0
_Hy ¼ ðs�1Hy,xÞ,xþðs�1Hy,zÞ,z�m0

_MyþðJx,z�Jz,xÞ, ð12Þ

where m0 is the magnetic permeability of vacuum and My and J

are magnetic and electric sources, respectively. A dot above a
variable denotes time differentiation, and the subindices, x and, z

indicate spatial derivatives with respect to the Cartesian coordi-
nates. Electric-field components can be computed by using
Maxwell’s equations,

Ex

Ez

 !
¼

1

s
�@zHy

@xHy

 !
: ð13Þ

The algorithm uses an explicit scheme based on a Chebyshev
expansion of the evolution operator, and the spatial derivatives
are computed with a pseudospectral method, which allows the
use of coarser grids compared to finite-difference methods (see
Appendix B). The modeling allows general material variability and
provides snapshots and time histories of the electric and magnetic
fields.
3.2. Seismic modeling

The synthetic seismograms are computed with a modeling
code based on an isotropic and viscoelastic stress–strain relation.
The equations are given in Section 3.9 of Carcione (2007) and
were first introduced by Carcione et al. (1988) (see Appendix C).
The algorithm is based on the Fourier pseudospectral method for
computing the spatial derivatives and a 4th-order Runge–Kutta
technique for calculating the wavefield recursively in time.

The wave equation and propagation properties are given in
Appendix C, where it is shown how to obtain the viscoelastic
parameters. Shear loss is modeled as indicated in the appendices,
where a viscoelastic extension of White’s theory has been performed.
4. Examples and simulations

The properties of the shaly sandstone are given in Table 1.
Fig. 1 shows the conductivity s as a function of the gas saturation
Sg and clay content C. As expected, decreasing conductivity is
associated with increasing gas saturation, as well as decreasing
clay content.

The P-wave and S-wave velocities at f0¼200 Hz are displayed
in Fig. 2 as a function of gas saturation and different values of clay
content. A¼ 3 is used in Eq. (9). The velocities have a minimum
value depending on the clay content. The velocity increase with
clay at a fixed low saturation is due to the fact that a small
amount of clay induces a substantial decrease in permeability in
the range C¼[5,10]%, and this generates a rock stiffening, i.e.,
White’s bulk modulus increases. This poroelastic effect mainly
affects factor W [see Eq. (16)]. However, the dominant trend is a
velocity decrease due to the substitution of brine by gas, while
beyond that range fluid density effects are more important and
the velocities increase. The density effects affect the whole range



Fig. 2. P-wave (a) and S-wave (b) velocities as a function of gas saturation at

200 Hz. The numbers indicate the clay content.

Fig. 3. P-wave velocity as a function of the conductivity, where the brine

saturation is 100%. The numbers indicate the clay content, and the triangles and

circles correspond to the sandy and shaly sections of the well.

Fig. 4. P- and S-wave velocities as a function of the conductivity at a frequency of

200 Hz. The clay content is C¼0.2 and the gas saturation is Sg¼0.1 (a) and 0.4 (b).
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of saturations in the S-wave velocity. Generally, when the clay
content increases the velocities decrease as expected.

Next, we analyze the cross-property relation between velo-
city and conductivity. We consider well-log data of the Gullfaks
field in the North Sea. The well is vertical and consists of sand
and shale filled with brine. The velocity–conductivity relation
is shown in Fig. 3, where the numbers correspond to the clay
content. The curves show a good agreement with the data. Fig. 4
shows the cross-property relation between the wave velocities
and the conductivity for Sg¼0.1 and Sg¼0.4. Higher velocity is
associated with lower conductivity, while at the same value of the
velocity, the conductivity is lower for higher gas saturation. At
high saturations and conductivities the relation does not yield
realistic values of the velocities, because the curves are generated
by taking the conductivity as the independent variable, and
beyond a given threshold the conductivity values are not compa-
tible with high gas saturation.

Fig. 5 displays the P-wave phase velocity (a) and the dissipation
factor (b) as a function of gas saturation and three values of the
clay content. As can be seen, the quality factor has a maximum at
8% gas saturation in the absence of clay content and the peak
moves to higher saturations for increasing clay content.

The conductivity can be related to the hydraulic permeability
through the porosity. Fig. 6 shows the permeability as a function
of conductivity for a clean sandstone (0) and pure shale (1).
As expected, the conductivity increases with increasing perme-
ability, since the electrolytic conduction of ions increases with
permeability.

We obtain in Appendix D the electromagnetic Green’s function
and indicate how to obtain the traveltime of the first arrival. This
is needed to perform, for instance, traveltime tomography
(Brauchler et al., 2003; Lee and Uchida, 2005; Lee et al., 2002;
Michelini, 1995). The Green function for s¼ 0:2 S=m is given in
Fig. 7, where the signals at two receivers are shown. Note that the
abscissa is the logarithm of time. This means that at earlier times



Fig. 5. P-wave velocity (a) and dissipation factor (b) as a function of the saturation

for 0%, 50% and 100% clay content. The frequency is 200 Hz.

Fig. 6. Permeability as a function of conductivity for C¼0 (clean sandstone) and

C¼1 (shale) (�12 correspond to 1D).

Fig. 7. Electromagnetic Green’s function as a function of time at two receivers. The

fields are normalized and the signal at 100 m has an amplitude 100 times weaker

than the signal at 10 m.

Fig. 8. Comparison between numerical and analytical solutions (normalized) at

(x,z)¼(50,50) m (r� 70 m) from the source location (center of the mesh). The solid

line corresponds to the analytical solution, obtained from Eq. (41).
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the signal is very steep and then decays smoothly. The peak times,
tp, are 6:28 ms and 628 ms, respectively. Diffusion fields resemble
waves in a log time scale. A test of the modeling algorithm is
displayed in Fig. 8, where the dots correspond to the numerical
solution. The medium is homogeneous with s¼ 0:2 S=m and
m¼ m0 ¼ 4p� 10�7 H=m (magnetic permeability of vacuum). The
number of grid points is nx¼nz¼315 and the grid spacing dx¼

dz¼2.5 m. The computations use b¼1.2�107/s and M¼14 000
at 1 s propagation time (these are maximum values) (see Appendix
B). The same solution can be obtained with b¼780 000/s and
M¼3500, i.e., less computer time, using dx¼dz¼10 m, at the
expense of a coarser grid. The numerical solver needs to be more
accurate than in the seismic case, since the peak is located at
0.3 ms, while the signal still decays with a finite amplitude at 1 s
propagation time, i.e., the solver has to capture the solution till
3000 times the onset time.

Let us consider a realistic example, with a regular numerical
mesh with grid spacing dx¼dz¼2.5 m The model is a sandstone
aquifer with shale intrusions, embedded in a shale formation. The
properties at each grid point in the sandstone layer are obtained
as follows:
(i)
 set the porosity f, clay content C and saturation Sg;

(ii)
 use Eq. (1) to obtain the conductivity;

(iv)
 obtain the seismic velocities at f0 using Eq. (3);

(v)
 obtain the quality factor Q0 from Eq. (20) and set Q ð1Þ0 ¼ Q0

and calculate Q ð2Þ0 from Eq. (19). The relaxation times are
obtained using Eq. (32);
(vi)
 compute the density from Eq. (7).
It is assumed that A¼ 3 in Eq. (9) and 2pt0f 0 ¼ 1, where
f0¼150 Hz. We consider the model shown in Fig. 9, which shows
the porosity (a), clay content (b), permeability (c) and gas
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saturation after the injection (d). Before the injection, the layer is
fully saturated with water (Sg¼0). The conductivity before and
after the injection is shown in Fig. 10. On the other hand, Fig. 11
displays the seismic properties of the same model, before and
after the injection.

Both, the EM and seismic meshes have 315�315 points with
square cells of dx¼dz¼2.5 m size. The source time history is

hðtÞ ¼ u�
1

2

� �
expð�uÞ, u¼

pðt�tsÞ

T

� �2

, ð14Þ

where T is the period of the wave and we take ts ¼ 1:4T . The peak
frequency is f p ¼ 1=T. The simulations use an explosion as a
source [f xx ¼ f zz in Eqs. (25) and (26)] and a central frequency
fp¼150 Hz. The time step of the Runge–Kutta algorithm is 0.1 ms.

Fig. 12 shows the electromagnetic simulation before and after
the injection (black and red curves, respectively, in c and d). As
can be seen, the traveltimes after the injection are lower due to
the higher resistivity of the layer partially saturated with carbon
dioxide. The seismic (viscoelastic) simulations are shown in
Fig. 13 and in this case the traveltimes after the injection are
higher than the traveltimes obtained for a water saturated
aquifer.

In the upper part of the aquifer, the gas saturation after the
injection is about 20–40% (see Fig. 9a). The conductivity has been
reduced by a factor two, approximately from 1.6 S/m to 0.8 S/m
(see Fig. 10), which generates a maximum traveltime difference
(at receiver 15) of nearly 3 ms, before and after injection. This
difference and the related conductivity contrast should be sig-
nificant for a tomography inversion algorithm to detect the
presence of gas (e.g., Lee and Uchida, 2005).



D
en

si
ty

 (
kg

/m
3 )

0.7 ba

dc

fe

hg

0.8

0.9

1

1.1

1.2

1.3

1.4
2000

2100

2200

2300

2400

2500

2600

D
ep

th
 (

km
)

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1900

2000

2100

2200

2300

2400

2500

2600

D
ep

th
 (

km
)

D
ep

th
 (

km
)

P
−

w
av

e 
ve

lo
ci

ty
 (

km
/s

)

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
2.5

3

3.5

4

D
ep

th
 (

km
)

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
2.5

3

3.5

4

D
ep

th
 (

km
)

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.4

1.6

1.8

2

2.2

2.4

2.6

D
ep

th
 (

km
)

D
ep

th
 (

km
)

S
−

w
av

e 
ve

lo
ci

ty
 (

km
/s

)

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.4

1.6

1.8

2

2.2

2.4

2.6

D
ep

th
 (

km
)

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0

50

100

150

200

Q
p

D
en

si
ty

 (
kg

/m
3 )

P
−

w
av

e 
ve

lo
ci

ty
 (

km
/s

)
S

−
w

av
e 

ve
lo

ci
ty

 (
km

/s
)

Q
s

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0

50

100

150

200

Distance (km) Distance (km)

1900
0 0.20 0.2 0.4 0.6 0.4 0.6

Distance (km) Distance (km)
0 0.20 0.2 0.4 0.6 0.4 0.6

Distance (km) Distance (km)
0 0.20 0.2 0.4 0.6 0.4 0.6

Distance (km) Distance (km)
0 0.20 0.2 0.4 0.6 0.4 0.6

Fig. 11. Panels (a), (c), and (e) show the density, P-wave velocity and S-wave velocity before CO2 injection, respectively. Panels (b), (d) and (f) show the same properties

after CO2 injection. Panels (g) and (h) show Q P and Q S at f0, respectively, obtained from Eq. (4), after CO2 injection (QS ¼Q ð2Þ0 ).
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In the seismic case, the differences in P-wave velocity range
from 100 to 200 m/s (Fig. 11c and d) and P-wave quality-factor
values are less than 50 (Fig. 11g). These differences in the
properties of the medium can safely be detected by means of
traveltime and attenuation tomography (Michelini, 1995; Rossi
et al., 2007).
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Fig. 12. Snapshots of the normalized magnetic field at 20 ms before (a) and after (b) CO2 injection. The source and the vertical array of receivers are represented by the red

star and vertical line, respectively. Panel (c) represents the normalized amplitude variation versus receiver number before and after injection (black and red curves,

respectively), and panel (d) shows the traveltime picks before and after injection (dashed black and red curves, respectively). (For interpretation of the references to color

in this figure caption, the reader is referred to the web version of this article.)
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Fig. 13. Snapshot of the normalized pressure field at 90 ms before (a) and after the injection (b). The source and the vertical array of receivers are represented by the red

star and vertical line, respectively. Panel (c) represents the normalized amplitude variation versus receiver number before and after injection (black and red curves,

respectively), and panel (d) shows the traveltime picks before and after injection (dashed black and red curves, respectively). (For interpretation of the references to color

in this figure caption, the reader is referred to the web version of this article.)
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The combined use of traveltime and attenuation tomographies
provides velocity-Q-factor sections (Rossi et al., 2007). Attenuation
has been recognized as a significant seismic indicator, which is not
only useful for amplitude analysis and improving resolution, but
also to obtain information on lithology, saturation (fluid type),
permeability and pore pressure (e.g., Carcione and Gangi, 2000).
5. Conclusions

Time-lapse surveys are essential to detect and monitor the
presence of CO2 in geological formations. The success of this
process is subject to a correct description of the physical proper-
ties of the CO2 bearing rocks and use of integrated geophysical
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methods. We use the White/CRIM relation between seismic
velocity and electrical conductivity, which has been successfully
tested with well-log data. This integrated model constitutes a
porous description of the geological formation, where grain
properties, fluid types, porosity, clay content and permeability
are explicitly considered, to obtain the electrical conductivity,
seismic velocities and seismic quality factors.

Then, we compute the magnetic-field time histories and
synthetic seismograms corresponding to a geological model of
CO2 partial saturation, based on a cross-hole source–receiver
configuration, and obtain traveltime picks (first arrival versus
receiver locations), which are the basis for electromagnetic and
seismic tomography. The computed fields before and after CO2

injection show the expected differences, i.e., higher traveltimes in
the electromagnetic case and lower traveltimes in the seismic
case. Further research involves the use of various inversion
techniques to obtain the location of the CO2 bubble.
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Appendix A. White’s mesoscopic model including S-wave
dissipation

White (1975) assumed spherical patches much larger than the
grains but much smaller than the wavelength. He developed the
theory for a gas-filled sphere of porous medium of radius r0

located inside a water-filled sphere of porous medium of outer
radius r1 (r0or1). The saturation of gas is

Sg ¼
r3

0

r3
1

and Sb ¼ 1�Sg ð15Þ

is the brine saturation.
Assuming that the dry-rock and grain moduli and permeabil-

ity, k, of the different regions are the same, the complex bulk
modulus as a function of frequency is given by

K ¼
K1

1�K1W
, ð16Þ

where K1 is a – high frequency – bulk modulus when there is no
fluid flow between the patches, and W is a compliance propor-
tional to the permeability. The explicit expressions are not given
here for brevity and can be found in Mavko et al. (1998), Carcione
et al. (2003) and Picotti et al. (2010). For values of the gas
saturation higher than 52%, or values of the water saturation
between 0% and 48%, the theory is not rigorously valid. Another
limitation to consider is that the size of gas pockets should be
much smaller than the wavelength.

Clay content also affects the permeability. Carcione et al.
(2000) derived a model of permeability as a function of clay
content. They assumed that a shaly sandstone is composed of a
sandy matrix and a shaly matrix with partial permeabilities

kq ¼
R2

qf
3

45ð1�fÞ2ð1�CÞ
and kc ¼

R2
cf

3

45ð1�fÞ2C
, ð17Þ

where Rq and Rc denote the average radii of sand and clay
particles, respectively. Assuming that permeability is analogous
to the inverse of the electrical resistance, the average perme-
ability of the shaly sandstone is given by

1

k ¼
1�C

kq
þ

C

kc
¼
ð1�fÞ2

Af3
½ð1�CÞ2þC2B2

�, ð18Þ
where A¼ R2
q=45 and B¼ Rq=Rc or can be assumed as empirical

parameters.
Since White’s theory does not predict any shear dissipation,

we assume that the complex modulus l is described by a Zener
element having a peak frequency f0 and a minimum quality factor
given by

Q ð2Þ0 ¼
mm

Re½Kðf 0Þ�
Q0, ð19Þ

where Q 0 is the quality factor associated with K at f0, i.e.,

Q0 ¼Q ð f 0Þ ¼
Re½Kðf 0Þ�

Im½Kðf 0Þ�
: ð20Þ

The model for the anelastic dilatations is based on a poroelastic
model, but the viscoelastic behavior of the shear waves is
incorporated into the modeling in an ad hoc manner. The problem
is the lack of a mesoscopic theory for shear deformations, i.e.,
something similar to White’s model. To model the amount of loss
related to the shear motions, we assume that the stiffer the
medium the higher the quality factor (relation (19)), i.e., if the
modulus increases the attenuation decreases and vice versa.
However, the Zener model is consistent with White’s theory,
since both models describe anelasticity in the form of a relaxation
peak in the frequency domain. Picotti et al. (2010) show that
White’s model can be represented by a Zener mechanical
element.

Then, the dimensionless modulus is given by Eq. (31), and

l¼ mM2, ð21Þ

where m and M2 are given in the next section. Note that Q 0

depends on gas saturation. The frequency f0 is taken in the
seismic frequency range in this work, particularly, equal to the
source dominant frequency.
Appendix B. Electromagnetic modeling

Eq. (12) has the form @tHy ¼OHy, with O¼ ½ðs�1Hy,xÞ,x

þðs�1Hy,zÞ,z�=m. The eigenvalue equation in the complex l-domain
(l¼ -io), corresponding to operator O, is l½lþDðk2

xþk2
z Þ� ¼ 0, where

o is the frequency and D¼ 1=ðmsÞ. The eigenvalues are therefore
zero and real and negative, and the maximum (Nyquist) wavenumber
components are kx ¼ p=dx and kz ¼ p=dz for the grid spacings dx and
dz. The solution of Eq. (12) can be obtained as

HyðtÞ ¼
XM
k ¼ 0

ck expð�btÞIkðtRÞQkðO=bþ1ÞHy0, ð22Þ

where Hy0 is a discrete spatial delta function applied at the source
location, b is the absolute value of the largest eigenvalue of O, Ik is
the modified Bessel function of order k, c0¼1 and ck¼2 for ka0,
and Q k are modified Chebyshev polynomials. The value of b is
equal to ðp2=DÞð1=dx2

þ1=dz2
Þ, while R should be chosen slightly

larger than b. The maximum polynomial order M should be
Oð

ffiffiffiffiffi
bt
p
Þ. It can be shown that M¼ 6

ffiffiffiffiffi
bt
p

is enough to obtain
stability and accuracy (Carcione, 2006).

The algorithm is a three-level scheme, since it uses the
recurrence relation of the Chebyshev polynomials. The solution
is obtained at one large time step T. Results at smaller time levels,
toT , to compute time histories at specified points of the grid, do
not require significant computational effort, since the terms
involving the spatial derivatives do not depend on the time
variable and are calculated in any case. Only the coefficients
expð�btÞIkðtRÞ are time dependent, such that additional sets of
Bessel functions need to be computed. The intermediate time
levels can be defined on a logarithm scale to better capture the
peak of the first arrival (see Appendix D).
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The boundaries of the mesh may produce wraparounds due to
the periodic properties of the Fourier method. We use the
classical damping approach to avoid these non-physical artifacts
(Carcione, 2007; Kosloff and Kosloff, 1986). The method simply
requires to modify the differential operator as O-O�o in the
absorbing strips around the mesh, where o is different from zero
at narrow strips surrounding the mesh. Its value has to be
optimized in such a way that the diffusion field agrees with an
analytical solution at times much larger than the peak of the
signal (see Appendix D).
Appendix C. Viscoelastic differential equations

The time-domain equations for propagation in a heteroge-
neous viscoelastic medium can be found in Carcione (2007). The
anelasticity is described by the standard linear solid, also called
the Zener model, that gives relaxation and creep functions in
agreement with experimental results.

The two-dimensional velocity–stress equations for anelastic
propagation in the (x, z)-plane, assigning one relaxation mechan-
ism to dilatational anelastic deformations (n¼ 1) and one relaxa-
tion mechanism to shear anelastic deformations (n¼ 2), can be
expressed by

(i) Euler–Newton’s equations:

_vx ¼
1

r
ðsxx,xþsxz,zÞþ f x, ð23Þ

_vz ¼
1

r
ðsxz,xþszz,zÞþ f z, ð24Þ

where vx and vz are the particle velocities, sxx, szz and sxz are the
stress components, r is the density and f x and fz are the body
forces.

(ii) Constitutive equations:

_sxx ¼ kðvx,xþvz,zþe1Þþmðvx,x�vz,zþe2Þþ f xx, ð25Þ

_szz ¼ kðvx,xþvz,zþe1Þ�mðvx,x�vz,zþe2Þþ f zz, ð26Þ

_sxz ¼ mðvx,zþvz,xþe3Þþ f xz, ð27Þ

where e1, e2 and e3 are memory variables, fij are external sources,
and k and m are the unrelaxed (high-frequency) bulk and shear
moduli, respectively, given by in the next section.

(iii) Memory variable equations:

_e1 ¼
1

tð1ÞE
�

1

tð1Þs

 !
ðvx,xþvz,zÞ�

e1

tð1Þs
, ð28Þ

_e2 ¼
1

tð2ÞE
�

1

tð2Þs

 !
ðvx,x�vz,zÞ�

e2

tð2Þs
, ð29Þ

_e3 ¼
1

tð2ÞE
�

1

tð2Þs

 !
ðvx,zþvz,xÞ�

e3

tð2Þs
, ð30Þ

where tðnÞs and tðnÞE are material relaxation times, corresponding to
dilatational (n¼ 1) and shear (n¼ 2) deformations.

C.1. Propagation properties

The complex moduli associated with bulk and shear deforma-
tions are the Zener moduli,

Mn ¼
tðnÞs
tðnÞE

1þ iotðnÞE
1þ iotðnÞs

 !
, n¼ 1,2, ð31Þ
where i¼
ffiffiffiffiffiffiffi
�1
p

, such that the relaxation times can be expressed as

tðnÞE ¼
t0

Q ðnÞ0

ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q ðnÞ0 2þ1

q
þ1Þ, tðnÞs ¼ t

ðnÞ
E �

2t0

Q ðnÞ0

, ð32Þ

where t0 is a relaxation time such that 1=t0 is the center
frequency of the relaxation peak and Q ðnÞ0 are the minimum
quality factors. The complex (viscoelastic) bulk and shear moduli
are

K ¼ kM1 and l¼ mM2: ð33Þ

In order to obtain m and k, we express the P and S viscoelastic
phase velocities as

cP ¼ Re
1

vP

� �� ��1

and cS ¼ Re
1

vS

� �� ��1

, ð34Þ

where

vP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r Kþ
4

3
l

� �s
and vS ¼

ffiffiffiffi
l
r

r
, ð35Þ

respectively. First, we obtain m as

m¼ mm Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M2ðf 0Þ

s" #2

, ð36Þ

assuming mm ¼ rc2
S ðf 0Þ, and k is computed by solving

Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

kM1ðf 0Þþ4mM2ðf 0Þ=3

r
�

1

cPðf 0Þ
¼ 0: ð37Þ
Appendix D. Electromagnetic Green’s function and traveltime
picking

Traveltime tomography is based on the first arrival at each
receiver (e.g., Michelini, 1995). To illustrate the physics we
consider a solution of Eq. (12) in the case of isotropic homo-
geneous media. The Green function corresponding to Eq. (38),
with Jx¼ Jz¼0, and a magnetic source

Myðx,y,tÞ ¼M0dðxÞdðzÞ½1�HðtÞ�, ð38Þ

is the solution of

@tHy ¼DDHyþM0dðxÞdðzÞdðtÞ, ð39Þ

where M0 defines the direction and the strength of the source, and

D¼
1

ms ð40Þ

is the diffusivity. Eq. (39) has the following solution (Green’s
function):

Hyðr,tÞ ¼
M0

ð4pDtÞN=2
exp½�r2=ð4DtÞ�, ð41Þ

where N is the space dimension (N¼2 in this work), and

r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þz2

p
ð42Þ

(Carcione, 2010; Carslaw and Jaeger, 1959; Oristaglio and
Hohmann, 1984).

The solution Hy(t) has a maximum at

tp ¼
r2

4D
¼
msr2

4
ð43Þ

[tp ¼ r2=ð6DÞ in 3D space]. Then, in a homogeneous medium, the
conductivity can simply be obtained as s¼ 4tp=ðmr2Þ, at a source–
receiver distance r. Eq. (43) indicates that the diffusion is faster in
resistive media. The phase velocity and attenuation factor for
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planes waves is

vp ¼ 2

ffiffiffiffiffiffiffi
pf

ms

s
, and a¼

ffiffiffiffiffiffiffiffiffiffiffiffi
pfms

q
, ð44Þ

respectively, where f is the frequency (e.g., Carcione, 2007); a is
the reciprocal of the skin depth and therefore the penetration is
less in more conductive media.

In inhomogeneous media we need to perform traveltime
tomography (e.g., Brauchler et al., 2003), which is based on the
following line integral:

ffiffiffiffi
tp

p
¼

1

4

Z x2

x1

dsffiffiffiffi
D
p , ð45Þ

where x1 and x2 refer to the source and receiver locations,
respectively. The procedure is similar to seismic traveltime
tomography, where the line integral has the form tp ¼

R
ds=vp,

with vp the wave velocity (Michelini, 1995). In our case, one has
to find the diffusivity (or conductivity) model that minimizes the
functional

Pn
i ð

ffiffiffiffiffiffi
tm

i

p
�

ffiffiffiffi
ti

p
Þ
2, where ti

m is the measured traveltime
and ti is the ray-tracing (computed) traveltime. The first break is
obtained as the time that the first derivative of the field is maxi-
mum (Yu and Edwards, 1997). An alternative picking method is
given in Lee and Uchida (2005).
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