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S U M M A R Y
Thermoelastic attenuation is similar to wave-induced fluid-flow attenuation (mesoscopic loss)
due to conversion of the fast P wave to the slow (Biot) P mode. In the thermoelastic case, the
P- and S-wave energies are lost because of thermal diffusion. The thermal mode is diffusive at
low frequencies and wave-like at high frequencies, in the same manner as the Biot slow mode.
Therefore, at low frequencies, that is, neglecting the inertial terms, a mathematical analogy
can be established between the diffusion equations in poroelasticity and thermoelasticity. We
study thermoelastic dissipation for spherical and cylindrical cavities (or pores) in 2-D and 3-D,
respectively, and a finely layered system, where, in the latter case, only the Grüneisen ratio
is allowed to vary. The results show typical quality-factor relaxation curves similar to Zener
peaks. There is no dissipation when the radius of the pores tends to zero and the layers have the
same properties. Although idealized, these canonical solutions are useful to study the physics
of thermoelasticity and test numerical algorithm codes that simulate thermoelastic dissipation.
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1 I N T RO D U C T I O N

The theory of thermoelasticity is based on the heat equation coupled
with the theory of dynamic elasticity, specifically, it describes the
relation between the fields of stress-deformation and temperature.
The theory is relevant for geophysical studies such as seismic atten-
uation (Zener 1938; Treitel 1959; Savage 1966; Armstrong 1984).
Basically, a source of elastic waves induces a temperature field and
heat flow equalizes the temperature difference with the surround-
ings giving rise to the energy dissipation. Similarly, a heat source
generates viscoelastic waves and anelastic deformations.

Biot (1956) used the differential equations based on the Fourier
law of heat conduction, but this formulation has unphysical solu-
tions such as discontinuities and infinite velocities as a function of
frequency, since it is based on a parabolic-type differential equa-
tion. This behaviour is typical of pure diffusion equations. A more
general (physical) system of equations is based on a hyperbolic heat
equation. Carcione et al. (2018b) used the equations of Lord & Shul-
man (1967) to obtain finite phase velocities at all frequencies and
compute synthetic seismograms. Carcione et al. (2019) generalized
these equations to the poroelastic case by combining Biot’s equa-
tions (e.g. Carcione 2014) with those of Lord & Shulman (1967).
The thermoelastic theory predicts two P waves and an S wave, the
latter not affected by the thermal effects in the homogeneous case.

The P waves are an elastic wave (E wave) and a thermal wave (T
wave) having similar characteristics to the fast and slow P waves of
poroelasticity (e.g. Carcione 2014). Indeed, Carcione et al. (2019)
show that the Biot slow wave and the thermal wave co-exist and
have the same behaviour, that is, diffusive at low frequencies and
wave-like at high frequencies.

In geophysical applications, both the thermal wave and the Biot
slow P wave are diffusive. The diffusive character of the Biot wave
is the cause of attenuation of the fast P wave by means of the
mechanism called mesoscopic attenuation or wave-induced fluid-
flow attenuation (e.g. Müller et al. 2010). Energy transfer between
wave modes, with P-wave to slow P (Biot)-wave conversion be-
ing the main physical mechanism. The mesoscopic-scale length is
intended to be larger than the grain sizes but much smaller than
the wavelength of the pulse. In the thermoelastic case, the hetero-
geneities and/or cracks or cavities are much smaller than the signal
wavelength. Zener (1938) explained the physics of thermoelastic
attenuation in homogeneous media: ‘Stress inhomogeneities in a
vibrating body give rise to fluctuations in temperature, and hence to
local heat currents. These heat currents increase the entropy of the
vibrating solid, and hence are a source of internal friction’. Basi-
cally, the temperature variation caused by the passage of the P wave
provides the gradient from which the thermal dissipation and atten-
uation occur. Zener (1946) anticipated the concept of attenuation
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due to diffusion, where he mentions thermal, atomic and magnetic
diffusion as the causes. The Biot slow mode represents loss due to
fluid-pressure diffusion.

Moreover, Armstrong (1984) found that the distribution and cor-
relation of heterogeneities play an important role in the determina-
tion of the frequency dependence of thermal dissipation, and here
the wave conversion is an additional loss mechanism. At low fre-
quencies, the thermal mode is diffusive and is responsible for the
attenuation and velocity dispersion of the P and S waves. Since the
inertial terms are neglected, as in the mesoscopic-loss case [see eq.
(6) in Carcione et al. (2011) and Chapter 7 in Santos & Gauzellino
(2017)], the equation to be solved is of purely diffusive type.

We first establish the analogy between the diffusion equations
in poroelasticity and thermoelasticity, and then study the solutions
proposed by Savage (1966) for empty round pores, by Armstrong
(1984) for a periodic system of thin slabs with the condition that no
heat escape the system, and boundary conditions that impose conti-
nuity of temperature and thermal current across the slab boundaries.
Savage (1966)’s theory underestimates attenuation in rocks, possi-
bly due to the fact that cracks do not interact. He reports an error in
Zener (1938)’s eq. (18), for computing the dilation due to a shear
strain in the presence of spherical cavities. In this case, P and S
waves suffer attenuation and dispersion due to shear loss, while
there are no losses due to dilatational deformations. On the other
hand, Armstrong (1984) provides the solution for the P-wave quality
factor across a set of periodic layers.

In all the cases, we use a method proposed by O’Donnell et al.
(1981), based on the Kramers–Kronig relations (e.g. Carcione et al.
2018a) to obtain the phase velocities and complex moduli.

2 D I F F U S I O N E Q UAT I O N O F
T H E R M O E L A S T I C I T Y A N D
A NA LY T I C A L S O LU T I O N S

Let us define by εij, i, j = 1,2,3 the components of the strain field,
by σ ij the components of the stress tensor and by T the increment
of temperature above a reference absolute temperature T0 for the
state of zero stress and strain. In a linear isotropic medium, the
stress–strain relations of thermoelasticity are given by [Biot (1956),
eq. (2.2)]

σi j = 2μεi j + (λε − βT )δi j , (1)

where ε is the trace of the strain tensor, λ and μ are the Lamé
constants,

β = (3λ + 2μ)α = 3αK , (2)

K is the bulk modulus, α is the coefficient of linear thermal expan-
sion (the volumetric one is 3α; e.g. Carcione et al. 2018b) and δij is
Kronecker’s delta. If we neglect inertial terms, the stress equilibrium
equation is

∂iσi j = 0 (3)

[Biot (1956), eq. (10.1)].
The law of heat conduction is

γ
T = cṪ + βT0ε̇ (4)

[Landau & Lifshitz (1970), eq. (32.2); Mainardi (2010), eq. (3.43)],
where γ is the coefficient of heat conduction (or thermal conductiv-
ity), c is the specific heat per unit volume, 
 is the Laplacian and a
dot above a variable denotes time derivative. (In many publications c
= ρC and 3α = αv, being C and αv the specific heat and volumetric

thermal expansion, respectively, and ρ is the mass density). Eq. (4)
assumes that the change in temperature is small and proportional to
the trace of the strain tensor [Landau & Lifshitz (1970), eq. (6.3)],
that is, variations in temperature-induced volume changes, provided
that the medium is homogeneous.

Since there are several distinct definitions of the thermoelastic
constants in the literature [e.g. compare eq. (4) to that of Savage
(1966)], we indicate here the units of the different constants in the
MKS system:

λ, μ, K → kg m−1 s−2 (or Pa),
γ → m kg s−3 K−1,

c → kg m−1 s−2 K−1,

β → kg m−1 s−2 K−1,

α → K−1,

T0 → K.

(5)

The analogy between poroelasticity and thermoelasticity is estab-
lished in Appendix A. Both fields obey a diffusion equation at
low frequencies when neglecting inertial (acceleration) terms. The
analogy identifies temperature with fluid pressure and thermal dif-
fusivity, dt, with hydraulic diffusivity, dh, such that

dt =
(

γ

c + β2T0/E

)
←→ M

(
κ

η

)(
Km + 4μm/3

KG + 4μm/3

)
= dh, (6)

where the properties are defined in Appendix A. Basically, there is
a correspondence between the quantities γ and 1/η, that is, the heat
and fluid fluxes increase with increasing thermal conductivity and
decreasing fluid viscosity. Both thermal diffusivities have units of
m2 s−1. The thermal diffusivity relates the adiabatic and isothermal
P-wave moduli as EA = Edt/c (see Appendix A). Typical values
are 1.3, 1.1 and 0.8 mm2 s−1 for sandstone, limestone and shale,
compared to 0.15, 20 and 114 mm2 s−1 for water, air and copper
(Robertson 1988).

Appendices B and C provide the solutions for the quality fac-
tors obtained by Savage (1966) for empty round cavities or pores
and by Armstrong (1984) for a periodic finely layered medium. In
poroelasticity, the mesoscopic-loss mechanism is associated with
the presence of the Biot slow wave. The critical fluid-diffusion
relaxation length is L = √

dh/ω (Carcione 2014, section 7.13). The
fluid pressures will be equilibrated if L is comparable to the period of
the stratification. For smaller diffusion lengths (e.g. higher frequen-
cies), the pressures will not be equilibrated, causing attenuation and
velocity dispersion. In thermoelasticity, the heat currents induced
by the mechanical waves have a diffusion length L = √

dt/ω. When
this length has the size of the pores or layers, maximum attenuation
is expected.

To obtain the phase velocity, we use an approximation reported
by O’Donnell et al. (1981), based on the Kramers–Kronig rela-
tions (Carcione et al. 2018a). The phase velocity, cph is related to
the attenuation factor, A, as

1

c0
− 1

cph(ω)
= 2

π

∫ ω

ω0

A(ω′)
ω′2 dω′, (7)

where c0 is a reference velocity at ω0 that can be assumed the low-
frequency limit (ω0 ≈ 0). For low-loss solids (Q � 1), we have A
≈ ω/(2c0Q) and

c0

cph(ω)
= 1 − 1

π

∫ ω

ω0

Q−1(ω′)
ω′ dω′. (8)

We can get the complex wave modulus, P, from the phase velocity
and Q factor, where P can be the shear or the P-wave complex
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modulus. Define

P = PR + PI = (p + iq)2, (9)

where the subindices denote real and imaginary parts. Then

PR = p2 − q2, and PI = 2pq. (10)

Since the phase velocity satisfies ρc2
ph ≈ Re2(

√
P) = p2 (for Q �

1) and PR = QPI, we obtain q ≈ p/(2Q). Hence, PR = p2[1 −
1/(4Q2)] and PI = p2/Q, so that

P(ω) = ρc2
ph

(
1 − 1

4Q2
+ i

Q

)
≈ ρc2

ph(ω)

(
1 + i

Q(ω)

)
. (11)

If the complex shear and P-wave moduli obtained above are μc and
Ec = Kc + 4μc/3, where Kc is the complex modulus, this is given
by Kc = Ec − 4μc/3.

3 E X A M P L E S

The medium considered by Savage (1966) is granite, but the values
of K/K̄ and σ (Poisson ratio) assumed by him lead to a porosity
greater than 1 according to eq. (B3), so we discard this example.
Actually, the theory holds for small porosities, since the cavities do
not interact (Eshelby 1957). Here, we assume an ideal medium with
a high thermal expansion coefficient, to obtain a high dissipation,
and the following properties:

α : 10−3 K−1

γ /c : 5 × 10−6 m2 s−1

� = β/c : 1.1
K/K̄ : 1.18
σ : 0.17
K : 39 GPa = 39 × 109 kg m−1 s−2

a : 0.2 mm = 0.0002 m
T0 : 300 K.

(12)

The porosity and μ̄/μ can be obtained from eq. (B3), with

φ = 1

3

(
K

K̄
− 1

)
2 − 4σ

1 − σ
. (13)

For spherical voids, we obtain φ = 9.5 per cent, μ/μ̄ =1.19, β =
3αK = 117 × 106 kg m−1 s−2 K, c = β/� = 106 × 106 kg m−1 s−2

K, γ = 532 m kg s−3 K, K̄ = 33 GPa, μ = 33 GPa, μ̄ = 27.6 GPa,
σ̄ = 0.173, and Ē = K̄ + 4μ̄/3 = 70 GPa [note that μ = 3K(1
− 2σ )/(2 + 2σ )] (see Appendix B for the definition of the above
properties).

Fig. 1 shows the relaxation peaks corresponding to spherical
pores. As can be seen, increasing the sphere radius the peaks move
to the lower frequencies, but the peak dissipation factor (inverse
of Q) remains constant. Zero radius implies that the peak moves
to infinite and the dissipation is zero at all frequencies. Since the
attenuation factor is proportional to the frequency (Carcione 2014,
eq. 2.123), this factor increases almost linearly with frequency. It is
believed that the Zener model (see Appendix D) is a representation
of the thermoelastic peak (Zener 1938). Fig. 2 compares the S-wave
and Zener dissipation factors, where f0 and the minimum quality
factor, Q0, is the same for both peaks, but the results are dissimilar.
The comparison between the 2-D (cylindrical) and 3-D (spherical)
cases is shown in Fig. 3. In the 2-D case, the dissipation is much
weaker, while the peak has moved slightly to lower frequencies.
Fig. 4 shows the Zener fit, which in this case is narrower than the
thermoelastic curve, as in the spherical case (Fig. 2). In all the cases,
the P-wave dissipation is smaller than the S-wave one.

Figure 1. Dissipation factors of the P and S waves as a function of frequency
for two different values of the radius of the spherical pores.

Figure 2. Comparison between the S-wave and Zener dissipation factors
for spherical pores of radius a = 0.4 mm.

Figure 3. Dissipation factors of the S waves as a function of frequency for
spherical (3-D, black) and cylindrical (2-D, red) pores. The radius is a =
0.4 mm.
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Figure 4. Comparison between the S-wave and Zener dissipation factors
for cylindrical pores of radius a = 0.4 mm.

Figure 5. Comparison between the S-wave phase velocity and that of the
Zener model for spherical (a) and cylindrical (b) pores, with radius a =
0.4 mm.

Let us compute the S-wave phase velocity of the medium. We
assume a density ρ = (1 − φ)ρs ≈ 2400 kg m−3, where ρs =
2650 kg m−3. Fig. 5 shows the S-wave phase velocity as a function
of frequency, compared to that of the Zener model for the 3-D (a)
and 2-D (b) cases. The dispersion is stronger for the thermoelastic
peaks. This is related to the width of the peaks, with the Zener one

(a)

(b)

Figure 6. Dissipation factor (a) and phase velocity (b) of the P waves as a
function of frequency for a periodic sequence of slabs (fine layering). The
thickness is h = 0.8 mm (period = 0.16 mm). The Zener fit is shown.

as a reference. A narrower peak implies less velocity dispersion.
An estimation of the phase-velocity dispersion based on the Zener
model is approximately 
cph = c0/Q0 (Carcione et al. 2018a), which
agrees with the results in the plots. For P waves, the phase velocities
show a similar behaviour, where μc has to be replaced by Kc + 4μc/3,
and the quality factor is scaled by the quantity 1.5(1 − σ̄ )/(1 − 2σ̄ )
(see eq. B1).

Next, we consider the solution for the P-wave quality factor of
a periodic sequence of slabs of thickness h (fine layering), corre-
sponding to a solution reported by Armstrong (1984, eq. 26; see
Appendix C). In this case, only the Grüneisen ratio is allowed to
vary. First, we assume properties of the same order of magnitude of
the previous example, with �1 = 1.1, �2 = 2, K = μ = 39 GPa, c =
106 × 106 kg m−1 s−2 K−1), γ /c = 5 × 10−6 m2 s−1 = 5 mm2 s−1,
E = 91 GPa and ρ = 2650 kg m−3. Then, γ = 532 m kg s−3 K−1.
β l = c�l, l = 1, 2, α1 = β1/(3K) = 0.0010 K−1 and α2 = β2/(3K)
= 0.0018 K−1. Fig. 6 shows the P-wave quality factor as a function
of frequency for h = 0.8 mm, which is equal to the diameter of
the pores considered in one of the previous examples. The Zener fit
is also shown, where, in this case, it provides a better match. The
higher attenuation at high frequencies implies more dispersion. The
attenuation is due to the difference between the Grüneisen ratios of
the layers. If this difference is zero, there is no loss, since Q0 → ∞
(see eq. C3). The location of the peak is approximately given by eq.
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Figure 7. Phase velocity (black curve) and dissipation factor (blue curve) of
the P waves as a function of frequency for a periodic sequence of slabs (fine
layering). The thickness is h = 1 mm (period = 2 mm). The thermoelastic
properties correspond to the Earth’s mantle (Anderson 2000).

(B6), where in this case f0 = 2γ /(ch2), that is, the layer thickness is
equivalent to the diameter of the cavities. As before, decreasing the
size of the layers moves the peak to the high frequencies without
affecting the value of the peak quality factor.

Finally we consider a realistic set of properties, related to the
Earth’s mantle, taken from table 5 in Anderson (2000) (MgSiO3

perovskite). The notation is such that α↔3α, γ↔�, KT↔K, T↔T0,
where the left-hand side corresponds to Anderson’s notation. For
the first layer, we consider the case T0 = 500 K, with α = 0.00073
K−1, �1 = 1.37, K = 258 GPa, ρ = 4087 kg m−3, β = 3αK =
562 × 106 kg m−1 s−2 K−1, c = 410 × 106 kg m−1 s−2 K−1 and
assume γ = 20.5 m kg s−3 K−1 (Volker et al. 2012) and μ = 3K/5
(a Poisson medium). Then, the diffusivity is γ /c = 5 × 10−8 m s−2,
E = 464 GPa and c0 = 10658 m s−1. The second layer has �2 =
1.8 and the layer thickness is h = 1 mm (period = 2 mm). Fig. 7
shows the phase velocity and dissipation factor of the P waves as a
function of frequency. The peak quality factor is 1000/8.3 ≈ 117 at
a frequency of 0.08 Hz, in agreement with experimental values in
the mantle (e.g. Birch et al. 1942; Romanowicz & Mitchell 2007).

Since in Savage (1966) the cavities do no interact, tests of nu-
merical codes, for example, frequency-domain finite-element codes
(Santos & Gauzellino 2017), to obtain the complex modulus should
be based on a single cavity. The codes can then be used to evalu-
ate the strength of this interaction by including several cavities. The
approximations inherent in Armstrong (1984) theory are long wave-
lengths compared to the size of the layers and negligible variations
of the elastic moduli with T (isothermal moduli are appropriate).
Moreover, the layers differ only in the values of their Grüneisen
ratio.

The analysis can be extended to the case of elliptical cavities
(cracks) and a succession of thin layers with a random, uncorrelated
distribution of the Grüneisen ratio. Moreover, an alternative theory
considering spherical cavities, similar to that of Savage (1966), is
that of Panteliou & Dimarogonas (1997), which can be compared
to the results obtained in this work. These authors report experi-
mental data. Furthermore, following Mainardi (1994, eq. 24), the
heat equation can be generalized so that the relaxation due to the
heat diffusion is governed by a fractional differential equation [see
also Mainardi (2010), eq. (3.48)]. The solutions can be expressed
in terms of Mittag-Leffler functions and a continuous spectrum of
relaxation times. The relaxation peak turns out to be broader than

the Debye peak exhibited by the classical Zener model. An applica-
tion of the fractional model to pressure-diffusion loss can be found
in Picotti & Carcione (2017).

4 C O N C LU S I O N S

We have obtained analytical solutions of the thermoelastic problem
in media with cavities or pores (a dry porous medium) and a set of
thin periodic layers. The loss mechanism is that of conversion of
mechanical energy in the form of deformations and/or waves to the
slow thermal mode, similar to the wave-induced fluid-flow atten-
uation in poroelasticity. Other ‘non-Biot’ dissipation mechanisms,
such as internal friction and local heat flow (squirt flow in poroe-
lasticity), have to be included ‘ad hoc’ in the background media
in the case of cavities and in the single layers in the case of fine
layering. Existing solutions provide the quality factor, whereas here
we have also obtained the phase velocity and complex modulus
as a function of frequency by using the Kramers–Kronig relations.
The resulting relaxation curves resemble peaks obtained with the
standard-linear solid (Zener) mechanical model, although there are
some differences, mainly in the case of cavities.

In the 2-D case (cylindrical pores), the peak is wider and dissi-
pation is weaker compared to the case of spherical 3-D pores, and
the P-wave dissipation is smaller than the S-wave one. An example
of periodic layers, with realistic values of the thermoelastic prop-
erties, typical of the Earth’s mantle, gives a P-wave quality factor
in agreement with experimental data. In all the cases, the location
of the relaxation peaks move to the low frequencies when the size
of the pores or the layer thickness increases. Moreover, attenuation
(and velocity dispersion) increases with the medium temperature
and thermal expansion coefficient.

The solutions obtained herein for these idealized problems pro-
vide analytic formulae for the thermal dissipation over the entire
frequency range, which are useful to test numerical algorithms, as
for instance finite-element harmonic experiments to obtain the bulk
and shear complex moduli due to heat currents. This analysis will
be extended to the case of elliptical cavities (cracks) and a succes-
sion of thin layers with a random, uncorrelated distribution of the
Grüneisen ratio.
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A P P E N D I X A : A NA L O G Y B E T W E E N
T H E S TAT I C ( D I F F U S I V E )
T H E R M O E L A S T I C I T Y A N D
P O RO E L A S T I C I T Y F I E L D S

Chandrasekharaiah & Cowin (1989) unified in one set of equa-
tions the theories of thermoelasticity and poroelasticity, including
the properties responsible for attenuation and velocity dispersion,
but they do not provide explicit solutions. On the other hand, Nor-
ris (1992) established the exact mathematical analogy between the
equations of static poroelasticity, but excluded the loss properties.

Here, we obtain an analogy between the respective diffusion equa-
tions focused on attenuation and dispersion. Let us consider the
thermoelastic case. From eqs (1) and (3), we obtain

∂i∂ jσi j = 2μ∂i∂ jεi j + λ∂i∂iε − β
T = 0. (A1)

Since ∂ i∂ jεij = ∂ i∂ iε = 
ε, we have

E
ε − β
T = 0, (A2)

where E = λ + 2μ = K + 4μ/3. Combining eqs (4) and (A2) and
after some calculations, we obtain

Ṫ =
(

γ

c + β2T0/E

)
T = dt 
T = ∂tT , with T = 
T . (A3)

The quantity

dt = γ

c + β2T0/E
(A4)

is the corresponding thermal diffusivity. This quantity has been
obtained by Zimmerman (2000) in a diffusion equation coupled
to the rate of confining pressure (static thermo-poroelasticity) [his
eq. (59)], and by Treitel (1959) in his eq. (17) relating the adiabatic
P-wave modulus, EA, to the corresponding isothermal modulus, E,
that is, EA = Edt/c. For zero thermal expansion (α = 0, β = 0), EA

= E. Eq. (17) in Carcione et al. (2018), relating the adiabatic and
isothermal P-wave velocities, is equivalent to Treitel’s equation.

In poroelasticity, defining P = 
p f , where pf is the fluid pres-
sure, we obtain the diffusion equation

dh 
P = ∂tP, (A5)

where

dh = M

(
κ

η

) (
Km + 4μm/3

KG + 4μm/3

)
(A6)

is the corresponding hydraulic diffusivity constant, where M is the
fluid modulus, η is the fluid viscosity, κ is the hydraulic permeability,
Km and μm are the dry-rock bulk and shear moduli, and KG is the
Gassmann bulk modulus. This is given by

KG = Km +
(

1 − Km

Ks

)2

M, (A7)

where

M = Ks

1 − φ − Km/Ks + φKs/K f
, (A8)

φ is the porosity, and Ks and Kf are the solid and fluid bulk moduli,
respectively (Carcione 2014, eq. 7.336).

Comparing eqs (A3) and (A5), the analogy between T and pf

and dt and dh is clear. These diffusivities govern the wave-induced
attenuation in thermoelastic and poroelastic media, respectively.

Alternatively, Biot (1956) obtains the analogy between the en-
tropy, s, in thermoelasticity and the variation of fluid content, ζ , in
poroelasticity, where

cT

T0
+ βε = s ↔ ζ = p f

M
+ αε,

T ↔ p f ,

1/M ↔ c/T0,

β ↔ α

(A9)

(Biot’s eqs 2.14 and 4.6; Carcione 2014, eq. 7.32). Both, s and ζ sat-
isfy diffusion equations similar to eqs (A3) and (A5), respectively.
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A P P E N D I X B : T H E R M O E L A S T I C
AT T E N UAT I O N B Y A M E D I U M W I T H
S P H E R I C A L A N D C Y L I N D R I C A L P O R E S

Savage (1966) obtained the quality factor of the P and S waves for
media filled with spheres (3-D) and cylindrical cavities (2-D) or
pores, both of radius a. Eq. (2) in that paper is uniquely identified
with the diffusion equation (4) if D, � and ρC in Savage (1966) are
identified with γ /c, β/c and c in our paper, respectively (ρ is the
mass density). � is called the Grüneisen ratio (see Appendix C). In
Savage (1966), � = αvK/c, while here � = 3αK/c. This is due to
the difference between the linear and volumetric thermal expansion
coefficients, α and αv = 3α, respectively.

Savage (1966) considered the (x, y)-plane for both the spherical
and circular-cylinder cavities, and an applied plane strain ε12. This
shear strain produces a dilatation in the cavities, which in turn
generates a heat current and a temperature field T. Instead, for an
applied pure dilatation (related to the bulk modulus), there is no
energy dissipation, that is, when a small spherical cavity is placed
in a medium with pure dilation, the only strains introduced by the
cavity are pure shears (Love 1944). The same situation happens in
a circular-cylinder cavity, where the applied pure dilatation is the
2-D hydrostatic strain εxx = εyy, ε33 = 0, and εij = 0, i �= j.

B1 Spherical pores

For P waves,

Q P = 3

2
· 1 − σ̄

1 − 2σ̄
· QS (B1)

where QS is the S-wave quality factor given below, and σ̄ is the
relaxed effective Poisson ratio for the porous medium (at zero fre-
quency), given by

σ̄ = 3K̄ − 2μ̄

2(3K̄ + μ̄)
, (B2)

where

K̄ = K

1 + 3φ(1 − σ )

2 − 4σ

, μ̄ = μ

1 + 15φ(1 − σ )

7 − 5σ

(B3)

(Eshelby 1957), φ is the porosity, and K and μ are the bulk and
shear moduli of the mineral. Eq. (B1) is due to the absence of
attenuation related to dilatational deformations, that is, the bulk
modulus, K̄ , is a real quantity in the frequency domain. If ν =
cP/cS = 2(1 − σ̄ )/(1 − 2σ̄ ) is the relaxed P/S velocity ratio, and
Re(K̄ ) � ρ(c2

P − 4c2
S/3) and Im(μ̄) � ρc2

S (low-loss medium), it
can be shown that ν(QP

−1 − QK
−1) = (4/3)(QS

−1 − QK
−1). If

Q−1
K = 0, we obtain eq. (B1).
For S waves,

Q−1
S = 16μφβ2T0

3cμ̄K
· p(σ )(1 − 2σ )(1 + σ )F(ω), (B4)

where

p(σ ) = 135

4(7 − 5σ )
,

F(ω) = χ 2(2χ 2 + 5χ + 4)

[(2χ 3 − 9χ − 9)2 + χ 2(2χ 2 + 8χ + 9)2]
,

χ 2 = ωca2

2γ
(B5)

and ω is the angular frequency. The quantities χ , p and F are
dimensionless. Pure dilatations do not cause attenuation.

Thermoelastic attenuation peaks approximately at the frequency

f0 = γ

2ca2
, (B6)

where γ /c is a thermal diffusivity in eq. (4), and χ 2 = (π /2)(f/f0).

B2 Cylindrical pores

For P waves, QP is given by eq. (B1). For S waves,

Q−1
S = 16μφβ2T0

3cμ̄K
· (1 − 2σ )(1 + σ )F(ω), (B7)

where here

μ̄ = μ

1 − 4φ(1 − σ )
,

F(ω) = |b|−2Re

[
H (1)

1 (b)

H (1)
2

′
(b)

]
,

b =
√

iωca2

γ
= a(1 + i)

√
ωc

2γ
. (B8)

where H (1)
n are cylindrical Hankel functions and the prime indicates

a derivative with respect to the argument.
The value of the minimum quality factor depends mainly on β

= 3αK, the higher α, the lower the Q factor, see eqs (B4) and (B7).
Note also that increasing the absolute temperature T0 implies higher
attenuation.

A P P E N D I X C : T H E R M O E L A S T I C
AT T E N UAT I O N B Y F I N E L AY E R I N G

Let us consider a periodic system of alternating layers (slabs) each
with thickness h, much smaller than the signal wavelength. We
assume that the attenuation is small, that is, Q � 1. Armstrong
obtained the relaxation peak caused by the passage of a P wave.
There is an induced temperature variation, which in turn induces
a heat current and attenuation. Due to the different notations, we
compare our eq. (4) to eq. (1) in Armstrong (1984). The equivalence
is χ↔γ /c, γ↔β/c and κ↔γ , where the left-hand side properties
correspond to those of Armstrong (1984). He gives the result for
the case where only the Grüneisen ratio,

� = β

c
(C1)

(dimensionless) varies from slab to slab.
For cyclic boundary conditions of continuity of temperature and

thermal current, we have

Q P = q(cosh q + cos q)

sinh q − sin q
· Q P0, q = h

√
ωc

2γ
, (C2)

where

Q P0 = 4E

cT0(�2 − �1)2
, (C3)

E = K + 4

3
μ (C4)

is the relaxed P-wave modulus.

A P P E N D I X D : Z E N E R M E C H A N I C A L
M O D E L

The Zener or standard-linear-solid model can be used to approxi-
mate the quality factors. The complex modulus of the Zener model
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is

M( f ) = Q0 + i( f/ f0)(R + 1)

Q0 + i( f/ f0)(R − 1)
· M0, R =

√
1 + Q2

0, (D1)

where f0 is the relaxation frequency, Q0 is the minimum quality
factor at f0, M0 is the zero-frequency modulus, f is the frequency and
i = √−1. The unrelaxed modulus (f → ∞) is M∞ = [(R + 1)/(R −
1)]M0, and the following relations holds, Q0 = 2

√
M∞ M0/(M∞ −

M0), so that the modulus dispersion M∞ − M0 can approximately
be obtained from Q0. Eq. (D1) has been obtained by Zener (1937)
for a rod of arbitrary cross-section vibrating transversely, where M0

and M∞ correspond to the isothermal and adiabatic moduli [Zener
(1938); Mainardi (2010), eq. (3.41)].

The Zener Q factor is

QZ = Re(M)

Im(M)
= Q0

2
· 1 + ( f/ f0)2

f/ f0
(D2)

(e.g. Carcione 2014), and the phase velocity is

cph =
[

Re

{
1

vc

}]−1

, vc =
√

M

ρ
, (D3)

where vc is the complex velocity and ρ is the mass density (e.g.
Carcione 2014).
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