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The velocity of energy through a dissipative medium

José M. Carcione', Davide Gei', and Sven Treitel®

ABSTRACT

The velocity of seismic and electromagnetic signals de-
pends on properties such as elastic moduli, density, porosity,
viscosity, dielectric permittivity, and conductivity. Hence,
the identification of the correct velocity of energy transport is
essential to obtain the characteristics of the medium. The en-
ergy and group velocities, defined for a monochromatic plane
wave, are compared to the centrovelocity, related to the cen-
troid of the pulse in the time and spatial domains. The com-
parison is performed for a 1D medium and a band-limited
pulse with a given dominant frequency and taking into ac-
count that the centroid of the spectrum decreases with in-
creasing distance. For a lossless medium, the three velocities
coincide. In absorbing media, the centrovelocity is closer to
the group velocity at short travel distances, in which the wave
packet retains its shape. At a given distance, the centroveloc-
ity equals the energy velocity, and beyond that distance this
velocity becomes a better approximation. This is generally
the case for the propagation of acoustic and electromagnetic
waves in earth materials. In other cases, such as electromag-
netic propagation at the atomic scale (Lorentz model), the
meaning of the energy velocity needs to be revisited, and con-
cepts such as the signal velocity are required.

INTRODUCTION

The velocity of a pulse in an absorbing and dispersive medium is a
matter of controversy. The concept, which is relevant in the physics
of materials and earth sciences, has been actively studied under the
impetus provided by the atomic theory on the one hand, and by radio
and sound on the other (Eckart, 1948). In seismology, the concept of
velocity is very important because it provides the spatial location of
an earthquake hypocenter and geologic strata (Ben-Menahem and
Singh, 1981). Similarly, ground-penetrating radar applications are
based on the interpretation of radargrams, whereby the traveltimes
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of the reflection events provide information about the dielectric per-
mittivity and ionic conductivity of the shallow geologic layers (Car-
cione, 1996; Daniels, 1996).

Both descriptions of media, that is, seismic and electromagnetic
media used in seismology and seismic prospecting, imply the ab-
sorption and dispersion of the acoustic and electromagnetic pulses.
Traveltimes of seismic events are generally obtained from the onset
of the pulse or its maximum amplitude. If the source-receiver dis-
tance is known, useful information about the medium properties can
be inferred from the traveltime. This is done by using wave-velocity
concepts whose expressions are explicit functions of those proper-
ties. Therefore, the identification of the best physical measure of ve-
locity is essential.

The various velocities are strictly defined for a plane monochro-
matic wave, although they can be used also for quasi-monochromat-
ic waves. In isotropic media, the energy velocity, obtained from
Umov-Poynting’s theorem, is equal to the phase velocity (Buchen,
1971; Borcherdt, 1973; Mainardi, 1973, 1987; Carcione, 2007); i.e.,
itis equal to the angular frequency divided by the wavenumber. The
group velocity, obtained by the method of stationary phase (e.g.,
Eckart, 1948), is the derivative of the angular frequency with respect
to the wavenumber. Carcione (1994) and Carcione et al. (1996) show
that, generally, the concept of seismic group velocity as the velocity
of the energy is lost in the presence of high attenuation (quality fac-
tors approximately less than 5). Sommerfeld and Brillouin (Bril-
louin, 1960) clearly show the breakdown of the group-velocity con-
cept, which might exceed the velocity of light in vacuum and even
become negative. They introduced the concept of signal velocity,
which has been defined for the Lorentz model, but a general defini-
tion is still an open problem.

We note that in a general 3D medium (anisotropic and absorbing),
there are four different velocities corresponding to a time-harmonic
plane wave. They are the phase, energy, group, and envelope veloci-
ties (e.g., Carcione, 2007). The envelope velocity is a geometric con-
cept (Postma, 1955) and is very close to the energy velocity in prac-
tice (Carcione, 1994, 2007). All of the velocities coincide for a loss-
less and isotropic medium. For a lossless and anisotropic medium,
the envelope, energy, and group velocities coincide and differ from
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the phase velocity. For an absorbing and isotropic medium and ho-
mogeneous body waves, the phase, energy, and envelope velocities
coincide and differ from the group velocity. When there is no loss,
the energy velocity is identical to the group velocity, even if the me-
dium is dispersive (Felsen and Marcuvitz, 1973; Mainardi, 1987).

For nonperiodic (nonmonochromatic) waves with finite energy,
the concept of centrovelocity has been introduced (Vainshtein, 1957,
Smith, 1970; Gurwich, 2001). Smith (1970) defines the centroveloc-
ity as the distance traveled divided by the centroid of the time pulse.
Van Groesen and Mainardi (1989), Derks and Van Groesen (1992),
and Gurwich (2001) define the centrovelocity as the velocity of the
“mass” center, where the integration is done over the spatial variable
instead of the time variable, that is, on the snapshot of the wavefield
instead of the pulse time history. Carcione et al. (1996) use a similar
method to obtain the location of the energy in anisotropic anelastic
media.

Van Groesen and Mainardi (1989) show that their centrovelocity
differs from the energy velocity by a term that is due to the presence
of dissipation (1D homogeneous media). They obtain explicit rela-
tions for the Korteweg-de Vries-Burgers and Klein-Gordon differ-
ential equations. However, unlike the phase (or energy) and group
velocities, the centrovelocity depends on the shape of the pulse,
which changes with time and travel distance. Therefore, an explicit
analytic expression in terms of the medium properties alone cannot
be obtained, even for a homogeneous medium. Bloch (1977) intro-
duced another velocity, obtained from the crosscorrelation between
the initial pulse and the propagating pulse, which seems to give satis-
factory results when the pulse distortion is not very significant.

The concept of signal velocity introduced by Sommerfeld and
Brillouin (Brillouin, 1960; Mainardi, 1983) describes the velocity of
energy transport for the Lorentz model. It is equal to the group veloc-
ity in regions of dispersion without attenuation (Felsen and Marcu-
vitz, 1973; Mainardi, 1987; Oughstun and Sherman, 1994). There is
theoretical evidence that the group velocity exceeds the velocity of
light in vacuum (superluminal wave propagation) when a pulse
propagates through a strongly dispersive medium determined by
two spectral lines (Garrett and McCumber, 1970; Chiao, 1993).
However, this does not mean that information can be transmitted at
superluminal velocities, which implies the violation of causality.

Recently, Wang et al. (2000) reported a large superluminal effect
for laser pulses of visible light, in which a pulse propagates with a
negative group velocity. Basically, the conditions imply that the
group velocity remains constant over the pulse bandwidth, so that
the light pulse maintains its shape during propagation (Steinberg and
Chiao, 1994). Such a situation can be obtained with an inverted me-
dium possessing a doublet line. An example is the doublets occur-
ring in alkali-metal atoms, split by the several-GHz ground-state hy-
perfine splitting. The theory describing the phenomenon of disper-
sion under these conditions involves two Lorentz models with in-
verted atomic populations (Steinberg and Chiao, 1994). However,
the classical concepts of phase, energy, and group velocities break
down for the Lorentz model, depending on the value of the source
peak frequency and source bandwidth compared to the width of the
spectral line.

To clarify the concept of wave velocity in the presence of attenua-
tion, we consider a 1D medium and compare the energy (phase) and
group velocities of a monochromatic wave to the velocity obtained
as the distance divided by the traveltime of the centroid of the ener-
gy, where by energy we mean the square of the absolute value of the
pulse time history. This concept is similar to the centrovelocity intro-

duced by Smith (1970), in the sense that it is obtained in the time do-
main. Smith’s definition is an instantaneous centrovelocity, as well
as the Gurwich velocity (Gurwich, 2001), which is defined in the
space domain.

The traveltimes corresponding to the “theoretical” energy and
group velocities are evaluated by taking into account that the pulse
peak frequency decreases with increasing travel distance. Thus, the
peak frequency depends on the spatial variable and is obtained as the
centroid of the power spectrum. A similar procedure is performed in
the spatial domain by computing a centroid wavenumber. We con-
sider several attenuation theories, namely, the Zener and constant-Q
models of acoustics, and the Debye, ionic-conductivity, and Lorentz
models of electromagnetism. The case of a single Lorentz model for
resonance attenuation is controversial. The latter is not used in earth
sciences applications, but provides an extreme case wherein the dif-
ferent velocities cannot describe the location of the pulse. In this
case, the concept of signal velocity (Brillouin, 1960) and an energy-
velocity expression proposed by Loudon (1970) seem to provide a
satisfactory description of the pulse dynamics (Oughstun and Sher-
man, 1994).

ENERGY AND GROUP VELOCITIES

Waves are necessarily homogeneous in 1D space; i.e., the wave-
number-vector direction coincides with the attenuation-vector di-
rection. Hence, the energy velocity is equal to the phase velocity
(Ben-Menahem and Singh, 1981; Carcione, 2007). The energy ve-

locity is given by
1 -1
ve(w) = Re(‘) (1)
v

(e.g., Carcione, 2007), where v is the complex velocity.
On the other hand, the group velocity is

R R YT

where k is the complex wavenumber, w is the angular frequency, and

w dv
a=1-=" 3)
vdw
(Ben-Menahem and Singh, 1981; Carcione, 2007). In general, v and
a are complex and frequency dependent. The complex wavenumber
is

k=

2=K—ia, (4)
v

where « is the real wavenumber and « is the attenuation factor, given
by

a= —wIm(l) (5)
v

The viscoelastic complex velocity is

v= \/E (6)
p

where M is the complex modulus and p is the mass density. The elec-
tromagnetic complex velocity is
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where e* is the complex dielectric permittivity and w is the magnetic
permeability. By virtue of mathematical analogies (Carcione and
Cavallini, 1995; Carcione and Robinson, 2002), M and p are mathe-
matically equivalent to 1/ e* and u, respectively.

The complex modulus M and dielectric permittivity e* of the dif-
ferent attenuation models analyzed in the following sections are de-
scribed in Appendix A.

GREEN’S FUNCTION AND TRANSIENT
SOLUTION

The 1D Green’s function (impulse response) of the medium is
G(w) = exp(— ikx) (8)

(e.g., Eckart, 1948), where x is the travel distance.
We consider that the time history of the source is

1 w(t—to) |?
.WF{B—JwM—m,B= T o)
2 I,
where 1, is the period of the wave (the distance between the side
peaks is y61,/ 1), and 1, = 1.5, is a delay time. Its frequency spec-
trum s

2
2 — — . — [0}
Flw) = <—%)ﬁ exp(— B —iwty), B = (-) ,
\NTT Wy
(10)
2
W, = .
Iy
The peak frequency is f,, = 1/1,,.
Then the frequency-domain response is
U(w) = F(w)G(w) = F(w)exp( — ikx), (11)

and its power spectrum is

2
P(w) =|U(0)* = (%)Bz expl — 2(ax + B)], (12)

where we have used equation 4 and « is given by equation 5. A nu-
merical inversion by the discrete Fourier transform yields the de-
sired time-domain (transient) solution.

NUMERICAL EVALUATION OF THE VELOCITY
OF THE ENERGY

In this section, we obtain expressions of the energy and group ve-
locities and two centrovelocities (i.e., computed with the centroid
concept) (Smith, 1970; Gurwich, 2001). Note that the centroid fre-
quency is not necessarily equal to the peak frequency of the source.
This is always true for the pulse given in equation 9 because the spec-
trum is not symmetrical with respect to the peak frequency.

The energy of a signal is defined as

E=f|u(r)|2dr=if |U(w)*dw, (13)
2
0 — o0

where u(1) is the Fourier transform of U(w), and Parseval’s theorem
has been used (Bracewell, 1965).

We define “location of the energy” as the time 7. corresponding to
the centroid of the function |u|? in the time domain (time history)
(Bracewell, 1965). That is

o

J tlux,0)|*dr

() = . (14)

f|u(x,t)|2dt
0

Then, the first centrovelocity, defined here as the mean velocity from
0tox,is

am:ﬁ%. (15)

The Smith centrovelocity is

ci(x) = ( dx

(Smith, 1970).

On the other hand, the energy and group velocities 1 and 2 are
evaluated at the centroid w, of the power spectrum. Because the me-
dium is lossy, frequency w. depends on the position x’, where 0 = x’
=x. We have

[ o

JwP(w,x’)dw fw|F|2 exp(— 2ax")dw

0 0
Q)C(x’) =" = s

©

fP(w,x’)dw f|F|2 exp(— 2ax")dw

0 0
(17)
where we have used equations 11 and 12.
The energy and group traveltimes then are obtained as
x x
dx' dx’'
%w‘{%wwﬂ’””g”‘{m%WH
(18)
and the respective mean velocities are
Bx) = —— and By(x) = —— (19)

to(x) to(x)”

We define a second centrovelocity as the mean velocity computed
from the snapshots of the field, from O to time 7,
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&) == (t) (20)

where the location of the energy is

[

fx|u(x,t)|2dx

X (1) = S, (21)
f|u(x,t)|2dx
0

i.e., the centroid of the function |« in the space domain (snapshot).
The Gurwich centrovelocity is

dx, (t)

(1) = (22)

In this case, it is possible to compute the energy and group velocities
if we assume a complex frequency {2 = w + iw; and a real wave-
number «. The dispersion relation is obtained from equation 6 if we
consider a complex velocity equal to 2/ «; that is, the dispersion re-

lation is
0 M((
o_ 5@ o
K P

Generally, this equation has to be solved numerically for {2 to obtain
(k) = Re({2). Then the energy and group velocities are evaluated
at the centroid . of the spatial power spectrum. The centroid wave-
number . depends on the snapshot time #', where 0 = =t. We have

©

JKP(K,Z')dK

kelt') = (24)

fP(K,l')dK

0

where P(k,t') is the spatial power spectrum obtained by an inverse
spatial Fourier transform. The phase, energy, and group locations
then are obtained as

i fd—

xl) = ) vt
dt’

%)= { ool N]’

and

t

dr’
Xg“)—[ PTPr) 29

where

) A
vplo(k)]=——=Re), vlolk)]= {Re<l—))} )

z?w(K) Re[ c?!a)'((K)} .

vlo(k)] = (26)
Unlike the case of complex wavenumbers, an energy velocity that
differs from the phase velocity arises from the energy balance (see
Appendix B).

The respective mean velocities are

50 =27 ([), 5.(1) = (’), andag(z)=’%(t).

(27)

SIMULATIONS

We first define the properties of the attenuation models. The Zener
model has w, = 157/s and M.. = pc2, with c,. = 2 km/s. The Debye
and ionic-conductivity models have w, = 628/ us [f, = w/(27)

=100 MHz] and €.= u~'c,? with c.=29.9 cm/ns, with o
= €.wy/ Q, for the second model. The constant-Q model has w,
=157 Hz and M, = pcg, with ¢, = 2 km/s. The values of Q, are
given below. (The values of the density and magnetic permeability
are irrelevant for the calculations.)

Regarding the Lorentz model, a typical spectral-line example pos-
sessing a single ultraviolet resonance frequency has the following
parameters: w,=4X10'%/s =40 fs~!, b>=20X10%/s2, and §
=0.28X10'%/s = 2.8 fs~! (Oughstun and Sherman, 1994), where
fs represents femtoseconds (1 fs=10"'s). These values were
chosen by Brillouin (1960) in his analysis of light-wave propaga-
tion.

We first consider the Zener model and illustrate the propagation
effects. Figure 1 shows (a) the energy and group velocities as a func-
tion of frequency, (b) the initial spectrum (dashed line) and the spec-
trum at x = 50 m (solid line), and (c) the absolute value of the pulse
in a lossless medium (dashed line) and for Q, = 5 (solid line) (in this
case, the travel distance is x = 1 km). The group velocity is greater
than the energy (phase) velocity. The amplitude of the spectrum for
Qo = 5 is much lower than that of the initial spectrum, and the peak
frequency has decreased. In Figure 1c, we might roughly estimate
the pulse velocity by taking the ratio travel distance (1 km) to arrival
time of the maximum amplitude. This gives 2 km/s (1 km/0.5 s)
for Q, = o (dashed-line pulse) and 1.67 km/s (1 km/0.6 s) for Q,
= 5. More precise values are obtained in the following by using the
centrovelocity.

The comparison between the energy and group velocities to the
centrovelocities ¢, and ¢, (equations 15 and 20, respectively) is
shown in Figure 2. In this case, Qy = 10. The relaxation mechanism
has a peak at f, = 25 Hz, and Figure 2a and b correspond to source
(initial) peak frequencies of 50 Hz and 25 Hz, respectively. As can
be seen, the first centrovelocity is closer to the group velocity at short
travel distances, where the wave packet maintains its shape. Ata giv-
en distance, the first centrovelocity equals the energy velocity, and
beyond that distance this velocity becomes a better approximation,
particularly when the initial source central frequency is close to the
peak frequency of the relaxation mechanism (the case of Figure 2b).

Let us consider the Debye model. Figure 3 shows (a) the energy
(solid line) and group (dashed line) velocities as a function of fre-
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quency, (b) the time pulse for a travel distance x = 30 m, and (c) the
first and second centrovelocities (dotted and dash-dotted lines, re-
spectively) compared to the energy (solid line) and group (dashed
line) velocities, as a function of travel distance. The minimum quali-
ty factor of the Debye peak is Q, = 5, and the source (initial) central
frequency is twice the Debye relaxation frequency. The group veloc-
ity exceeds the velocity of light in vacuum (29.9 cm/ns) for a certain
range of frequencies, whereas the energy velocity always is less than
the velocity of light.

The results for the ionic-conductivity model are displayed in Fig-
ure 4. This figure shows (a) the energy and group velocities, and (b)
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Figure 1. Zener model. (a) Energy (solid line) and group (dashed
line) velocities as a function of frequency for Q, = 5. (b) Initial spec-
trum (dashed line) and spectrum for x = 50 m (solid line) (the solid
and dashed vertical lines indicate the centroids.) (c) Pulse (absolute
value of the normalized displacement) in a lossless medium (dashed
line) and pulse for Qy =15 (solid line) (the travel distance is x
=1 km). The relation between the pulse maximum amplitudes is
1.7X 1073, The relaxation mechanism peaks at w,= 157/s (f,
= wy/27 = 25 Hz), and the source (initial) peak frequency is w,
=628/s(f, = w,/2m = 50 Hz).

the quality factor, as a function of frequency; (c) the magnetic field at
three locations versus propagation time; and (d) the velocities as a
function of distance. As before, the group velocity exceeds the ve-
locity of light. The velocity vanishes at the low-frequency limit, and
the attenuation factor « is constant for nonzero frequencies. In this
case, the group velocity is also a good approximation because the
pulse maintains its shape.

Figure 5 corresponds to the constant-Q model with Q= 5. It
shows (a) the energy (solid line) and group (dashed line) velocities
as a function of frequency; (b) the pulse for a travel distance x
= 4 km; and (c) the first (dotted line) and second (dash-dotted line)
centrovelocities compared to the energy (solid line) and group
(dashed line) velocities, as a function of travel distance. The source
(initial) peak frequency is f, = 50 Hz.

The velocities for the constant-Q model can be obtained analyti-
cally when the frequency is complex. The complex frequency is

U/(1-vy)
K w
Q(K)=wo(—> N k==, (28)
Ko Co

and we obtain

y/(1=7y)
vp(K) = c0<K£) cos{%}, (29)
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Figure 2. Zener model. First centrovelocity (dotted line), second
centrovelocity (dash-dotted line), and energy (solid line) and group
(dashed line) velocities as a function of travel distance and Q, = 10.
The relaxation mechanism peaks at f, = 25 Hz, and the source (ini-
tial) peak frequency is (a) f, = 50 Hz and (b) f, = 25 Hz.
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ve(K) = vp(K)cosz[z(lTr—_yy)}, (30)
and
(x)
vy(K) = 13% (31)

Next, we compute the centrovelocity in the space domain, corre-
sponding to the constant-Q model. Figure 6a shows the Gurwich
centrovelocity (dotted line), the Smith centrovelocity (dash-dotted
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Figure 3. Debye model. (a) Energy (solid line), group (dashed line),
and light (dotted line) velocities as a function of frequency, for Q,
= 5. (b) Pulse (absolute value of the normalized magnetic field) in a
lossless medium (dashed line) and pulse for Q, = 5 (solid line) for a
travel distance x = 30 m. (c) First centrovelocity (dotted line), sec-
ond centrovelocity (dash-dotted line), and energy (solid line) and
group (dashed line) velocities as a function of travel distance for Q,
= 5. The source (initial) peak frequency is w, = 1256/us [f,
= w,/(27) = 200 MHz], and the Debye mechanism has a peak at
fo =100 MHz.

line), and the energy and group velocities (solid and dashed lines, re-
spectively) as a function of travel distance, according to equations
22,16, and 19, respectively. Figure 6b shows the propagating pulse
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Figure 4. Tonic-conductivity model. (a) Energy (solid line) and
group (dashed line) and light (dotted line) velocities, (b) quality fac-
tor as a function of frequency, (c) magnetic field at three locations
versus propagation time, and (d) velocities as a function of travel dis-
tance: first centrovelocity (dotted line), second centrovelocity (dash-
dotted line), and energy and group velocities (solid and dashed lines,
respectively). The source (initial) peak frequency is w, = 1256/ns
[f, = w,/(27) = 200 MHz]. The conductivity is o = g.w,/Q,,
where Q, = 10;1.e.,Q = 10at 200 MHz.
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in the space-time domain. The time and space centroids (white dot-
ted and dashed lines) are computed along the vertical and horizontal
directions, respectively. The relaxation mechanism has a peak at f;
=25Hz, Qy =75, and the source (initial) peak frequency is f,
= 50 Hz. The two centrovelocities are slightly different, and this
difference increases for increasing attenuation.

Finally, we display the velocities corresponding to the Lorentz
model in Figure 7. The solid, dashed, and dotted lines are the energy,
Loudon, and group velocities, respectively. The latter has two singu-
larities and takes negative values, and the classical energy velocity
exceeds the velocity of light. The Loudon velocity is well behaved
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Figure 5. Constant-Q model. (a) Energy (solid line) and group
(dashed line) velocities as a function of frequency; (b) pulse (nor-
malized displacement) for a travel distance x = 4 km; and (c) first
centrovelocity (dotted line), second centrovelocity (dash-dotted
line), and energy and group velocities (solid and dashed lines, re-
spectively). The source (initial) peak frequency is w, = 314/s [f,
= w,/(2m) =50 Hz] and Q, = 5. The relaxation mechanism has
the peak at f, = 25 Hz.

because it is not negative and does not exceed the velocity of light.
The group and Loudon velocities coincide outside the absorption re-
gion, in agreement with the fact that for a lossless but dispersive me-
dium the energy and group velocities should be the same (Felsen and
Marcuvitz, 1973; Mainardi, 1987). An analysis of the centroveloci-
ties for this kind of model, representing a nonearth material, is out-
side the scope of this work. We represent the velocities to show that,
for certain cases, even the energy velocity can have an unphysical
behavior by exceeding the velocity of light. A different type of ener-
gy balance is required in these cases (e.g., Oughstun and Sherman,
1994).
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Figure 6. Constant-Q model. (a) The Gurwich (dotted line) and the
Smith (dash-dotted line) centrovelocities, and energy and group ve-
locities (solid and dashed lines, respectively) as a function of travel
distance; (b) propagating pulse in the space-time domain. The time
and space centroids (dotted and dashed line) are computed along the
vertical and horizontal directions, respectively. The relaxation
mechanism has the peak at f, = 25 Hz, Q, = 5, and the source (ini-
tial) peak frequency is f, = 50 Hz.
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Figure 7. (a) Velocity and (b) attenuation as a function of frequency
for the Lorentz model. The solid, dashed, and dotted lines are the en-
ergy (phase), Loudon, and group velocities, respectively.

CONCLUSIONS

We have obtained the centrovelocities of different attenuation
models as a suitable indication of the location of the pulse, in princi-
ple corresponding to the location of the energy. Although for pulses
that are not monochromatic (or quasi-monochromatic), the simple
concepts of group velocity and energy velocities (obtained from the
Umov-Poynting theorem) are approximations; they provide a fairly
good indication of the location of the energy for absorbing materials.
In particular, the energy velocity performs better than the group ve-
locity in the presence of loss and, in any case, when exceeding a giv-
en travel distance.

For the Zener, Debye, and constant-Q models, the group velocity
approximates the centrovelocity at short travel distances. At a given
distance, the centrovelocity equals the energy velocity, and beyond
that distance it becomes a better approximation than the group veloc-
ity. However, it is important to note that for electromagnetic media,
the group velocity exceeds the velocity of light in vacuum for a cer-
tain range of frequencies, whereas the energy velocity is always less
than the velocity of light.

For the ionic-conductivity model, the group and energy velocities
vanish at the low-frequency limit, and the attenuation factor is con-
stant for nonzero frequencies. Due to this fact, the centrovelocity is
nearly constant. In this case, the group velocity also provides a good
approximation for the propagation of the localized pulse because
this gradually attenuates without changing its shape.

The centrovelocities computed in the time and spatial domains are
slightly different, and this difference increases for increasing attenu-
ation. For practical purposes, the two concepts can be considered to
be equivalent. Itis important to notice that, at least for the constant-Q
model, the mean (average) centrovelocities are closer to the energy
velocity than the instantaneous Gurwich and Smith centrovelocities.

There are cases when the classical velocities fail. The velocities

corresponding to the Lorentz model show anomalous behaviors. The
group velocity has singularities and takes negative values, and the
classical energy velocity exceeds the velocity of light. On the other
hand, the Loudon velocity is well behaved at all frequency ranges.

This analysis is performed in 1D space. All of the concepts can be
generalized to the case of extended spatial dimensions, wherein the
wavenumber and attenuation vectors do not point in the same direc-
tion (wave inhomogeneity). This implies additional attenuation and
dispersion effects due to the inhomogeneity angle.
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APPENDIX A

ATTENUATION MODELS
Relaxation model

Itis well known that the Debye model used to describe the behav-
ior of dielectric materials is mathematically equivalent to the Zener
or standard linear solid model used in viscoelasticity to describe a
single relaxation peak (e.g., Carcione, 1999). The complex modulus
of a Zener element is

l+iowT,
M(w) :Mo<+>, (A-1)
| +ioT,
where M, is the relaxed modulus,
To, 5 27
Ty = —O(V’Q(z) +1-1), and 7, =7,+ =2 (r.<7,)
Qo 0
(A-2)

(Itis verified that 7y = V7, 7). The quality factor of the Zener model
has the minimum value Qg at wy, = 1/ 7.
Equation A-1 can be rewritten as

My— M.,

M(w) =M, + -
l+iwT,

) (A-3)

where M., = M7,/ 7, is the unrelaxed modulus (M., > M,).
The analogy between the dielectric and viscoelastic models is

60<—>M(;1

Tp< Te
TEe Ty (A-4)

(Carcione, 1999), where €, is the static (low-frequency) dielectric
permittivity, €.. = €,7/ 7, is the optical (high-frequency) dielectric
permittivity (€. < €,), 7x and 7, are relaxation times (7z < 7)),
and
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1+
e*(w) = eo(—f"’”), (A-5)
1+iowtp
or
s €)— €4
=€, +—. A-6
*(w)=e€ 1 +iowTp ( )

The dielectric permittivity A-6 describes the response of polar mole-
cules, such as water, to the electromagnetic field (Debye, 1929;
Turner and Siggins, 1994), and is used to model propagation for
ground-penetrating radar applications (Carcione, 1996; Carcione
and Schoenberg, 2000). Similar to the viscoelastic case, the relax-
ation times can be expressed in terms of the minimum quality factor
and central frequency of the Debye peak,

2T
TE:<E)(\Q%+1_1) andTD:TE+_0.
Qo Qo
(A-7)
Itis found that
2(1 — sz(z)) +iw(r.+37,)
2(1 +iw7y)(1 +iwT,)

a(w) = (A-8)

for the Zener model, and an equivalent expression, according to the
correspondence A-4, for the Debye relaxation model (see equation
2).

Ionic-conductivity model
Electromagnetic propagation along the x-axis can be described by
Maxwell’s equations,

9,E,= puH, —d.H,=0E, + €L, (A-9)

(Wait, 1985), where E. is the electric field, H, is the magnetic field, o
is the ionic conductivity, € is the dielectric permittivity, d, is the spa-
tial derivative, and a dot above a variable denotes time differentia-
tion. If the first equation is differentiated with respect to the time
variable and the second equation is differentiated with respect to x,
combination of the two results and a time Fourier transform gives the
Helmholtz equation

doH, + kKH, =0, (A-10)
where k and v are given by equations 4 and 7, with
io
ef=€— —. (A-11)
0}

This electromagnetic model has its viscoelastic equivalent in the
Maxwell stress-strain relation (Ben-Menahem and Singh, 1981;
Carcione, 2007). The analogy is

ef—M!

ogen ! (A-12)

(Carcione and Cavallini, 1995; Carcione and Robinson, 2002),
where 7 is the viscosity of the Maxwell model. The corresponding
bulk modulus is

=7 (A-13)

i)
wT —1

where 7 = n/M..1s arelaxation time.
We obtain, for the ionic-conductivity model,

a(w) =1+ (A-14)

2we*’

Constant-Q model

Constant-Q models provide a good parameterization of seismic
attenuation in rocks. Moreover, there is physical evidence that atten-
uation is almost linear with frequency (therefore Q is constant) in
many frequency bands. Bland (1960) and Kjartansson (1979) dis-
cuss a linear attenuation model with the required characteristics, but
the idea is much older (Scott-Blair, 1949). The complex modulus is
given by

iw )\
M(w)=MO<w—> , (A-15)

0

where M, is a bulk modulus, 7y is a dimensionless parameter, and w,
is areference frequency. The parameter y quantifies the attenuation

()
Yy = — tan -,
T Qo
where Q, is the quality factor. Hence, we see that O, > 0 is equiva-
lentto0 < y < 1/2.Atvery high frequencies, the signal propagates
at almost infinite velocity, and the differential equation describing
the wave motion is parabolic (e.g., Carcione et al., 2002; Carcione,
2007).

For this model, the coefficient a of the group velocity 2 is con-
stant,

(A-16)

a=1-—1vy. (A-17)

Lorentz model

The theory of resonance attenuation in solid, liquid, and gaseous
media is due mainly to Lorentz. The model describes dielectric-type
media as a set of neutral atoms with “elastically”” bound electrons to
the nucleus, where each electron is bound by a Hooke’s law restoring
force (Nussenzveig, 1972; Oughstun and Sherman, 1994). The at-
oms vibrate at a resonance frequency under the action of an electro-
magnetic field. This process implies attenuation because the elec-
trons emit electromagnetic waves, which carry away energy. The
classical Lorentz model for a homogeneous dispersive medium has
the following complex dielectric permittivity:

€ = 60<1 - (A-18)

bZ
w? — a)(z) — 2i5w)

(Born and Wolf, 1964), where € is the free-space dielectric permit-
tivity, b is the plasma frequency of the medium, w, is the resonance
frequency, and & is the associated phenomenological damping con-
stant. A Lorentz medium shows strong attenuation near the absorp-
tion line, i.e., near the resonance frequency wy.

In this case,
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alw)=1-—

oo owf,_PE

b* ! ) e
Loudon (1970) has derived a different expression of the energy
velocity, based on the fact that when the frequency of the wave is
close to the oscillator frequency wy, part of the energy resides in the
excited oscillators. This part of the energy must be added to the elec-
tromagnetic field energy. The Loudon energy velocity is

_<L+2)1
oL Ve O

(Oughstun and Sherman, 1994), where v, and « are given by equa-
tions 1 and 5, respectively.

(A-20)

APPENDIX B

ENERGY VELOCITY FOR COMPLEX
FREQUENCIES

Let us consider the 1D elastic case and the displacement plane
wave

u = uy expli(Qt — kx)], (B-1)

where 2 = w + iw; is the complex frequency, and « is the real
wavenumber. It is clear that the phase velocity is equal to w/ k.
The balance between the surface and inertial forces is given by

Jo
— = pii, (B-2)
Jx

here o is the stress. Because 0 = Me = Mdu/dx, where € is the
strain, we obtain the dispersion relation

Mk? = p0?, (B-3)

which gives the complex velocity

U(K):QZ 1/M. (B-4)
K p

To compute the balance equation for average quantities, we note that
— kv*o = Qplv[? (B-5)
and

— kv*o = 0*M|el, (B-6)

where the asterisk indicates complex conjugate. These equations
were obtained by multiplying equation B-2 by v* and (dv/dx)*
= é*by o, respectively.

We introduce the complex Umov-Poynting energy flow

1
p=- EGU*’ (B-7)

the time-averaged kinetic-energy density

(1) = (pIRe(v)]) = 1p Refwr”) = 1plof’, (B-8)

the time-averaged strain-energy density

(V)= %(Re(e)Re(M)Re(e)) = iRe(eMe*) = iRe(M)

X|el?, (B-9)

and the time-averaged dissipated-energy density

(D) = (Re(€)Im(M)Re(e)) = % Im(eMe*) = % Im(M)|e|*.

(B-10)

Thus, in terms of the energy flow and energy densities, equations B-5
and B-6 become

Kp
— =2 B-11
=21 (B-11)
and
Kp .
0 2V)y +iD). (B-12)
Adding equations B-11 and B-12, we have
1
2Kp Re<5> =2w(E) + i(D), (B-13)
where
(E)=(T+V) (B-14)

is the time-averaged energy density.
Separating equation B-13 into real and imaginary parts, and us-
ing the concept that

(p) =Re(p) (B-15)

is the time-averaged power-flow density, the energy velocity is given

C gl

i.e., the energy velocity has the same expression as a function of the
complex velocity, no matter if the frequency is complex or the wave-
number is complex. On the contrary, the phase velocity is given by
equation B-16 for real frequencies, and it is equal to Re(v) for real
wavenumbers and complex frequencies.

(B-16)
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