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The physics and simulation of wave propagation at the ocean bottom

José M. Carcione∗ and Hans B. Helle‡

ABSTRACT

We investigate some aspects of the physics of wave prop-
agation at the ocean bottom (ranging from soft sediments
to crustal rocks). Most of the phenomena are associated
to the presence of attenuation. The analysis requires the
use of an anelastic stress-strain relation and a highly accu-
rate modeling algorithm. Special attention is given to mod-
eling the boundary conditions at the ocean-bottom inter-
face and the related physical phenomena. For this purpose,
we further develop and test the pseudospectral modeling
algorithm for wave propagation at fluid-anelastic solid in-
terfaces. The method is based on a domain-decomposition
technique (one grid for the fluid part and another grid for
the solid part) and the Fourier and Chebyshev differen-
tial operators. We consider the reflection, transmission, and
propagation of seismic waves at the ocean bottom, mod-
eled as a plane boundary separating an acoustic medium
(ocean) and a viscoelastic solid (sediment). The main physi-
cal phenomena associated with this interface are illustrated,
namely, amplitude variations with offset, the Rayleigh win-

dow, and the propagation of Scholte and leaky Rayleigh
waves. Modeling anelasticity is essential to describe these
effects, in particular, amplitude variations near and beyond
the critical angle, the Rayleigh window, and the dissipation
of the fundamental interface mode. The physics of wave
propagation is investigated by means of a plane-wave anal-
ysis and the novel modeling algorithm. A wavenumber–
frequency domain method is used to compute the reflec-
tion coefficient and phase angle from the synthetic seismo-
grams. This method serves to verify the algorithm, which is
shown to model with high accuracy the Rayleigh-window
phenomenon and the propagation of interface waves. The
modeling is further verified by comparisons with the ana-
lytical solution for a fluid-solid interface in lossless media,
with source and receivers away from and at the ocean bot-
tom. Using the pseudospectral modeling code, which allows
general material variability, a complete and accurate char-
acterization of the seismic response of the ocean bottom can
be obtained. An example illustrates the effects of attenua-
tion on the propagation of dispersive Scholte waves at the
bottom of the North Sea.

INTRODUCTION

The problem of reflection, refraction, and propagation at
a plane boundary separating an acoustic medium (fluid) and
a viscoelastic solid has practical application in seismic explo-
ration, seismology, foundation engineering, and nondestruc-
tive testing of materials (e.g., Roever et al., 1959; Ash and
Paige, 1985; Stephen, 1986; Brekhovskikh and Lysanov, 1991;
Robertsson and Levander, 1995; Lomnitz et al., 2002). In seis-
mic exploration, the relevant fluid-solid interface is the ocean
bottom, whose properties are useful for data processing of mul-
ticomponent seismic surveys acquired at the sea floor. Knowl-
edge of S-wave velocities is required for static corrections and
imaging of mode-converted PS-waves (Muyzert, 2000). Shear
velocity is also important for multiple removal. The viscoelastic
constitutive equation models the different attenuation mech-
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anisms present in ocean-bottom sediments (e.g., Hamilton,
1972).

In lossless media, Ergin (1952) investigated the reflection-
transmission problem for different sets of the acoustic pa-
rameters, and also considered incident P- and S-waves from
the solid. The seismic reflection-transmission problem in loss-
less media has also been studied by Berteussen and Alstad
(1985), who considered various cases (i.e., different values of
the P-wave velocity, S-wave velocity, and density of the ocean-
bottom sediment).

There exist two interface waves at a fluid-solid interface:
one that travels mainly in the liquid, and the other that has
most of its energy in the solid. Cagniard (1962) investigated
the first type of waves, calling them Scholte waves. In general,
the second type is a leaky Rayleigh wave, propagating along the
interface with attenuation (Strick, 1959; Auld, 1985). The leaky
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Rayleigh wave at a lossless fluid-solid interface decays with
depth in the bottom but corresponds to a propagating body
wave in the fluid (with characteristics similar to head waves).
The amplitude of this wave increases in the fluid away from
the interface (Farnell, 1970; Auld, 1985) (Rayleigh discarded
these solutions on the basis of this behaviour). Leaky Rayleigh
waves can explain arrivals of supersonic waves observed in
the Canadian Artic (Chamuel, 1991). See Padilla et al. (1999),
for experimental evidence of the existence of these two types
of waves. The anelastic Scholte wave has been investigated
by Favretto-Anrès (1996), Favretto-Anrès and Rabau (1997)
and Favretto-Anrès and Sessarego (1999). These waves are
important in studying the acoustic properties of sediments in
coastal waters (Rauch, 1980). Moreover, they can be used to
estimate shear-wave parameters, such as shear-wave velocity
and quality factor (e.g., Nolet and Dorman, 1996).

In the first part of the paper, we study the physics of anelas-
tic wave propagation for material properties that are not com-
monly encountered. Under such circumstances, a number of
interesting phenomena arise, which are discussed in the pa-
per. Borcherdt et al. (1986) present theoretical and experimen-
tal results for a water-stainless steel interface, where the phe-
nomenon called the Rayleigh window occurs (e.g., Carcione,
2001, p. 214). This viscoelastic effect implies that the energy in-
cident on the boundary at angles within that window is substan-
tially transmitted. The theory has also been applied to ocean-
bottom reflections. To our knowledge, the Rayleigh window
has not been simulated with direct grid methods [see Carcione
et al. (2002) for a brief description of these methods].

Stephen (1986) has used the finite-difference method to
study seismo-acoustic problems. He shows simulations where
all the wave types are illustrated. His modeling method is het-
erogeneous, where the boundary condition at the fluid-solid
interface is implicitly modeled. Recently, Komatitsch et al.
(2000) developed a spectral finite-element approach to ex-
plicitly model the boundary condition. Similarly, van Vossen
et al. (2002) present an explicit method and show that only
five grid points per wavelength are needed for accurate cal-
culations with the finite-difference method. Interface waves
are exponentially damped away from the interface, so they re-
quire denser grid points than body waves. Therefore, an accu-
rate simulation of interface waves requires, in general, a special
boundary treatment, particularly when using finite-difference
(e.g., Mittet, 2002) and pseudospectral methods. All the meth-
ods mentioned above consider a lossless solid and, therefore,
phenomena like the Rayleigh window and attenuation of in-
terface waves cannot be modeled. Moreover, previous studies
based on anelastic constitutive equations, have not considered
these phenomena. Anelastic wave modeling has been used, for
instance, to investigate the difference between intrinsic dissipa-
tion and attenuation due to scattering at the sea floor (Stephen
and Swift, 1994).

We study the physics of wave propagation by using a domain-
decomposition method based on pseudospectral differential
operators. Explicit modeling of the slip boundary condition
is done by using domain decomposition techniques and pseu-
dospectral methods. The Fourier method is used along the in-
terface direction and the Chebyshev method is used along the
direction perpendicular to the interface. The approach for vis-
coelastic waves is illustrated in Carcione (1991, 1994a). Mod-
eling examples are given in Kessler and Kosloff (1991) and

Tessmer et al. (1992) for elastic media, and Carcione (1996)
for viscoelastic media. Here, we consider a flat interface, but
the algorithm can be extended to model topographic features
of the ocean bottom by using a mapping transformation (e.g.,
Carcione, 1994b).

The physics is mainly illustrated for a homogeneous ocean
bottom. In inhomogeneous media, interface waves are dis-
persive and several modes can propagate. Their phase and
group velocities versus frequency can be computed by using the
method of Runge-Kutta for a continuous velocity profile and
the Thomson-Haskell method for a stack of homogeneous lay-
ers (Takeuchi and Saito, 1972). McMechan and Yedlin (1981)
illustrate the use of these dispersion curves for the interpreta-
tion of interface waves in marine seismic surveys (Bohlen et al.,
1999; Glangeaud et al., 1999). An example of propagation in
the presence of an inhomogeneous ocean bottom illustrates
the propagation of dispersive interface modes.

The paper is organized as follows. The first five sections pro-
vide the theory. Then, the domain-decomposition method for
anelastic fields is described. The following sections introduce
the geo-acoustic properties and deal with the reflection coef-
ficients, including the Rayleigh-window phenomenon and the
amplitude-variation-with-offset (AVO) analysis (a test of the
algorithm is performed). Next, we present the results for the in-
terface waves, including a test of the modeling algorithm and
the analysis of the physics by solving the dispersion equation.
Finally, we present a simulation of a real seismogram.

EQUATIONS OF MOTION

The time-domain equations for propagation in a heteroge-
neous viscoelastic medium can be found in Carcione (2001,
p. 110). The anelasticity is described by the standard linear
solid, also called the Zener model, that gives relaxation and
creep functions in agreement with experimental results (Zener,
1948).

The two-dimensional velocity-stress equations for anelastic
propagation in the (x, z)-plane, assigning one relaxation mech-
anism to dilatational anelastic deformations (ν= 1) and one
relaxation mechanism to shear anelastic deformations (ν= 2),
can be expressed by:

1) Euler-Newton’s equations:

v̇x = 1
ρ

(σxx,x + σxz,z)+ fx, (1)

v̇z = 1
ρ

(σxz,x + σzz,z)+ fz, (2)

where vx and vz are the particle velocities, σxx, σzz and σxz

are the stress components, ρ is the density, and fx and
fz are the body forces. A dot above a variable denotes
time differentiation, and the subindices, “x” and “z” in-
dicate spatial derivatives with respect to the Cartesian
coordinates.

2) Constitutive equations:

σ̇xx = k(vx,x + vz,z+ e1)+ µ(vx,x − vz,z+ e2), (3)

σ̇zz= k(vx,x + vz,z+ e1)− µ(vx,x − vz,z+ e2), (4)

σ̇xz = µ(vx,z+ vz,x + e3), (5)
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where e1, e2, and e3 are memory variables, and k andµ are
the unrelaxed (high-frequency) bulk and shear moduli,
respectively.

3) Memory variable equations:

ė1 =
(

1

τ
(1)
ε

− 1

τ
(1)
σ

)
(vx,x + vz,z)− e1

τ
(1)
σ

, (6)

ė2 =
(

1

τ
(2)
ε

− 1

τ
(2)
σ

)
(vx,x − vz,z)− e2

τ
(2)
σ

, (7)

ė3 =
(

1

τ
(2)
ε

− 1

τ
(2)
σ

)
(vx,z+ vz,x)− e3

τ
(2)
σ

, (8)

where τ (ν)
σ and τ

(ν)
ε are material relaxation times, cor-

responding to dilatational (ν= 1) and shear (ν= 2) de-
formations. We recall that in a 2-D world, µ= ρV2

S and
k= ρ(V2

P −V2
S), where VP an VS are the compressional-

and shear-wave unrelaxed velocities.

The equations for the viscoacoustic medium are obtained
from equations (1)–(8) by setting σxx= σzz≡ σ , σxz= 0 and
µ= 0. Then, the equations of motion read

v̇x = σ,x

ρ
+ fx, (9)

v̇z = σ,z

ρ
+ fz, (10)

where

σ̇ = k(vx,x + vz,z+ e1), (11)

together with the memory-variable equation (6). The exten-
sion of the theory to many dissipation mechanisms is straight-
forward (Carcione, 2001, p. 210).

Complex velocities

The P- and S-wave complex velocities, v̄P and v̄S, are the
key quantities to obtain the phase velocities and attenuation
factors. They are defined by

ρv̄2
P(ω)= kM1(ω)+µM2(ω), and ρv̄2

S(ω)=µM2(ω)

(12)
(Christensen, 1982; Carcione, 2001, p. 65, 85), where ω is the
angular frequency, and

Mν = τ
(ν)
σ

τ
(ν)
ε

(
1+ iωτ (ν)

ε

1+ iωτ (ν)
σ

)
, ν = 1, 2 (13)

are the Zener complex moduli, and i =√−1.
The relaxation times can be expressed as

τ (ν)
ε =

τ0

Q(ν)
0

[√
Q(ν)

0

2 + 1+ 1
]
, τ (ν)

σ = τ (ν)
ε −

2τ0

Q(ν)
0

,

(14)
where τ0 is a relaxation time such that 1/τ0 is the center fre-
quency of the relaxation peak and Q(ν)

0 are the minimum qual-
ity factors. For the angular frequency ω, we take τ0ω= 1. This
means that we place the center of the relaxation peak at the
working frequency.

The quality factor, Q(1)
0 , associated with the bulk modulus, is

obtained from the relation

1+ σ
Q(1)

0

= 3(1− σ )
QP

− 2(1− 2σ )

Q(2)
0

,

σ = [(VP/VS)2 − 2]/2[(VP/VS)2 − 1] (15)

(Winkler and Nur, 1979), where σ is Poisson’s ratio, QP is
the P-wave quality factor, and QS= Q(2)

0 is the S-wave quality
factor.

Similarly, the complex velocity for the viscoacoustic medium
is obtained from

ρv̄2
P(ω) = kM1(ω). (16)

PROPAGATION CHARACTERISTICS

A general plane-wave solution for the particle velocity field
v= (vx, vz) is

v = iωU exp [iω(t − sxx − szz)], (17)

where sx and sz are the components of the complex slowness
vector, t is the time variable, and U is a complex vector. For
homogeneous viscoelastic waves, the directions of propagation
and attenuation coincide, and

sx = sin θ/v̄, sz = cos θ/v̄, (18)

where θ is the propagation angle, measured with respect to the
z-axis, and v̄= 1/s, (s2= s2

x + s2
z) is the complex velocity.

For homogeneous waves in isotropic media, the phase ve-
locity and attenuation factors are given by

vp =
[

Re
(

1
v̄

)]−1

and α = −ωIm
(

1
v̄

)
, (19)

and the quality factor is

Q = Re(v̄2)
Im(v̄2)

(20)

(e.g., Carcione, 2001, p. 99, 105), where v is given in the pre-
vious section [equations (12)–(16)]. For interfaces waves, the
complex velocity is given in the next sections.

THE SCHOLTE-WAVE DISPERSION EQUATION

The dispersion equation is obtained by requiring continuity
of the normal components of the displacement and stress at the
interface. Details can be found in Scholte (1942), Gusev et al.
(1996), Meegan et al. (1999), Padilla et al. (1999), and Glorieux
et al. (2002). Let us define

q = v̄2

v̄2
S2

, a = v̄2
S2

v̄2
P2

, b = v̄2
S2

v̄2
P1

, (21)

where v̄ is the complex velocity of the interface wave, and 1
denotes the fluid and 2 the solid. The dispersion equation of
the Scholte wave can be expressed as

S(q) = 4
√

1− q
√

1− aq− (2− q)2

−
(
ρ1

ρ2

)
q2

√
1− aq

1− bq
= 0 (22)
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(Brekhovskikh and Lysanov, 1991, p. 67). If ρ1= 0, this
equation reduces to the dispersion equation for viscoelastic
Rayleigh waves (e.g., Carcione, 2001, p. 104). Ansell (1972)
obtained the roots of the dispersion equation by a detailed
analysis in the complex wavenumber plane (see Padilla et al.,
1999). The Riemann surface of function S has eight sheets,
which correspond to different choices of the signs of the com-
plex square roots

√
1−q,

√
1−aq, and

√
1− bq. In the loss-

less case, roots of the Scholte wave are real, whereas roots
of the leaky Rayleigh wave are complex. Thus, the first wave
travels without attenuation and the second decays along the
interface. These surface waves are superpositions of inhomo-
geneous elastic waves, that is, the attenuation vector makes an
angle of 90◦ with respect to the propagation vector. For Scholte
waves, the attenuation vector is perpendicular to the interface,
whereas for leaky Rayleigh waves, the attenuation vector has
a nonzero projection on the interface.

In general, there are five causes of amplitude reduction: ge-
ometrical spreading, evanescent decay (diffraction), leaking,
intrinsic energy loss, and scattering. The term decay can be
used for all the cases, but the term attenuation applies to the
last two causes. In the lossless 2D case, the Scholte wave travels
without attenuation because it is not a leaking mode, but in 3D
space it would decay because of geometrical spreading. On the
other hand, the leaky Rayleigh wave decays for lossless media
in both 3D and 2D media because in both cases it leaks.

The existence of the leaky wave is subject to the condition
that the sound velocity in the liquid must be less than the shear
velocity in the solid (this a necessary but not a sufficient condi-
tion). The leaky Rayleigh wave approaches the Rayleigh wave
as the density of the liquid tends to zero. Hence, the Rayleigh
wave in a vacuum solid interface is not the Scholte wave when
the density of the liquid goes to zero. This applies to the rigid
bottom case (shear velocity higher than water velocity). On
the other hand, for the soft bottom case (shear velocity less
than water velocity), the Scholte wave pole converges to the
Rayleigh pole as the density of the water goes to zero (Rauch,
1980). Whereas the free Rayleigh wave always exists, the leaky
Rayleigh wave does not (Brower et al., 1979). Most quasi-
surface waves, corresponding to roots lying on lower Riemann
sheets, are not always physically separable on experimental or
numerical simulations due to their close association with body-
wave phases. For instance, Phinney (1961) predicts a pseudo-P
pulse coupled to the P-wave.

For a stiff fluid-solid interface, the leaky Rayleigh wave has
a velocity slightly lower than the body-wave shear velocity,
and the Scholte wave velocity is lower than the liquid sound
velocity. As the solid becomes stiffer, the Scholte wave velocity
approaches that of the liquid. As mentioned above, for soft
solids (body-wave shear velocity lower than the sound velocity
of the liquid), the Rayleigh-type root is not a physical solution.
The leaky Rayleigh wave is also relevant in wave propagation
in boreholes (Paillet and White, 1982).

Surface waves at liquid-porous media classify into three
kinds. A true surface wave that travels slower than all the wave
velocities (the generalization of the Scholte wave), a pseudo-
Scholte wave that travels with a velocity between the shear-
wave velocity and the slow-wave velocity (leaking energy to
the slow-wave), and a pseudo-Rayleigh wave, which becomes
the classical Rayleigh wave if the liquid density goes to zero
(Holland, 1991; Edelman and Wilmanski, 2002).

MODELING AND DOMAIN-DECOMPOSITION METHOD

Two grids model the fluid and solid subdomains (labeled 1
and 2, respectively). The solution on each grid is obtained by
using the Runge-Kutta method as time stepping algorithm and
the Fourier and Chebyshev differential operators to compute
the spatial derivatives in the horizontal and vertical directions,
respectively (Carcione, 1992a, 1994a, 2001). In order to com-
bine the two grids, the wave field is decomposed into incoming
and outgoing wave modes at the interface between the solid
and the fluid. The inward propagating waves depend on the
solution exterior to the subdomains and therefore are com-
puted from the boundary conditions, while the behavior of the
outward propagating waves is determined by the solution in-
side the subdomain. The approach, given in Carcione (1991),
and adapted here for equations (1)–(11), involves the follow-
ing equations for updating the field variables at the grid points
defining the fluid-solid interface:

v(new)
x (1) = v(old)

x (1),

v(new)
z = [ZP(1)+ ZP(2)]−1

[
ZP(2)v(old)

z

+ ZP(1)v(old)
z σ (old)(1)− σ (old)

zz (2)
]
,

σ (new) = σ (new)
zz = ZP(1)ZP(2)

ZP(1)+ ZP(2)

[
v(old)

z (1)− v(old)
z (2)

+ σ
(old)(1)
ZP(1)

+ σ
(old)
zz (2)
ZP(2)

]
,

e(new)
1 (1) = e(old)

1 (1)+ [φ1(1)/k(1)]
[
σ (new) − σ (old)(1)

]
,

v(new)
x (2) = v(old)

x (2)− σ (old)
xz (2)/ZS(2),

σ (new)
xz (2) = 0,

σ (new)
xx (2) = σ (old)

xx (2)+ k(2)− µ(2)
k(2)+ µ(2)

[
σ (new)

zz − σ (old)
zz (2)

]
,

e(new)
1 (2) = e(old)

1 (2)+ [φ1(2)/(k(2)

+µ(2))][σ (new)
zz − σ (old)

zz (2)],

e(new)
2 (2) = e(old)

2 (2)− [φ2(2)/(k(2)

+µ(2))][σ (new)
zz − σ (old)

zz (2)],

e(new)
3 (2) = e(old)

3 (2)− [φ2(2)/µ(2)]σ (old)
xz (2), (23)

where φν = 1/τ (ν)
σ − 1/τ (ν)

ε , ZP(1)= ρ1VP1 , ZP(2)= ρ2VP2 , and
ZS(2)= ρ2VS2 .

The upper boundary of subdomain 1 (the fluid) may satisfy
free-surface or nonreflecting boundary conditions (Carcione,
1992a, 1994a,b). The free-surface boundary equations are

v(new)
x = v(old)

x ,

v(new)
z = v(old)

z − σ (old)/ZP,

σ (new) = 0,

e(new)
1 = e(old)

1 − (φ1/k)σ (old). (24)



Wave Propagation at Ocean Bottom 829

The nonreflecting boundary equations are

v(new)
z = 1

2

(
v(old)

z − σ (old)/ZP

)
,

σ (new) = 1
2

(
σ (old) − ZPv

(old)
z

)
,

e(new)
1 = e(old)

1 − [φ1/(2k)](σ (old) + ZPv
(old)
z ), (25)

The lower boundary of subdomain 2 (the solid) satisfies non-
reflecting boundary conditions (Carcione, 1992a, 1994a,b)

v(new)
x = 1

2

(
v(old)

x + σ (old)
xz

/
ZS

)
,

v(new)
z = 1

2

(
v(old)

z + σ (old)
zz

/
ZP

)
,

σ (new)
xx = σ (old)

xx − [k(2)− µ(2)]
2[k(2)+ µ(2)]

(
σ (old)

zz − ZPv
(old)
z

)
,

σ (new)
zz = 1

2

(
σ (old)

zz + ZPv
(old)
z

)
,

σ (new)
xz = 1

2

(
σ (old)

xz + ZSv
(old)
x

)
,

e(new)
1 = e(old)

1 − [φ1/(2(k+ µ))]
(
σ (old)

zz − ZPv
(old)
z

)
,

e(new)
2 = e(old)

2 + [φ2/(2(k+ µ))]
(
σ (old)

zz − ZPv
(old)
z

)
,

e(new)
3 = e(old)

3 − [φ2/(2µ)]
(
σ (old)

xz − ZSv
(old)
x

)
. (26)

(Note that to obtain the boundary equations for the oppo-
site boundary, say, horizontal boundaries, the method requires
the following substitutions: z→−z, which implies vz→−vz,
σxz→−σxz, and e3→−e3.)

In addition to the nonreflecting conditions, absorbing strips
are used to further attenuate the wave field at nonphysical
boundaries (Carcione, 1992a).

It is important to consider that the modeling algorithm is 2D.
In this case, the amplitude decay of the interface waves with
range differs from that of a point source in 3D media, resulting
in the absence of the 3D geometrical spreading. However, this
limitation does not affect the analysis of the anelastic effects.

REFLECTION AND TRANSMISSION COEFFICIENTS

The plane-wave theory (Aki and Richards, 1980; Carcione,
2001, p. 212–214), is used to compute the reflection and trans-
mission coefficients of sea-floor interfaces where the sea-floor
is modeled by a viscoelastic solid. Various cases are shown in
Figure 1, from a stiff ocean floor Figures 1a and 1d to a soft
ocean floor (Figure 1c), where by stiff we denote those solids
for which the S-wave velocity is greater than the sound velocity
in water. The properties of water are taken as VP1 = 1490 m/s,
ρ1= 1040 kg/m3, and Q0= 10 000. The unrelaxed velocities,
density, and loss parameters are indicated. The solid and
dashed lines correspond to the elastic and viscoelastic cases,
respectively. Let us analyze the lossless case. For VP = 4000 m/s,
we recognize the P-wave and S-wave critical angles at 22◦

and 51◦, respectively. The S-wave critical angle is equal to 90◦

when VP = 3105 m/s because the shear-wave velocity equals the
sound speed in water. Similarly, the P-wave critical angle dis-

appears when the P-wave velocity of the sediment is less than
the sound speed in water. When VP = 1490 m/s, we observe a
Brewster angle at 72◦. This angle approaches zero when the
impedance of the sediment equals the impedance of water. In
the viscoelastic case, critical and Brewster angles are very rare
(e.g., Borcherdt et al., 1986; Carcione, 2001, p. 110).

Figure 1d shows the P-wave transmission coefficient for
propagation from the sediment to the ocean for the case shown
in Figure 1a. The incident wave is inhomogeneous (i.e, the at-
tenuation vector is perpendicular to the water-sediment inter-
face) (Carcione, 2001, p. 207). This condition is required to
satisfy Snell’s (viscoelastic) law at the interface, because water
is practically a lossless medium.

The Rayleigh-window phenomenon

We first apply the theory to a water-steel interface, whose
reflection coefficient was measured experimentally by Becker
and Richardson (1970). Their ultrasonic experiments were ver-
ified with an anelastic model in a later paper (Becker and
Richardson, 1972), in particular the Rayleigh-window phe-
nomenon that cannot be predicted by using reflection coef-
ficients based on the elasticity theory (Brekhovskikh, 1960,
p. 34). The problem has been investigated by Borcherdt et al.
(1986), who found that the Rayleigh window should be ob-
servable in appropriate sets of wide-angle reflection data and
that can be useful in estimating attenuation for various ocean-
bottom reflectors.

The compressional and shear velocities of steel are
VP2 = 5740 m/s and VS2 = 3142 m/s, and the density is ρ=
7932 kg/m3. The quality factors at 10 MHz are Q(1)

0 = 140 and
Q(2)

0 = 80. Figure 2 represents the P-wave reflection coefficient
and phase, where the value corresponding to Q(1)

0 = 40 is also
shown. Actually, the value of the frequency has no influence,
since the reflection coefficient is computed at the peak fre-
quency of the Zener mechanism. The main factor affecting the
window is the shear-wave attenuation, and the shear velocity
controls the angular location of the minimum. The amplitude
reaches zero at Q(2)

0 = 44, and below this value there is a phase
reversal.

Let us consider now the same phenomenon at the ocean bot-
tom. The compressional and shear velocities of a stiff oceanic
crust are VP2 = 4850 m/s and VS2 = 2800 m/s, the density is
ρ= 2600 kg/m3, and Q(1)

0 = 1000 (although this value has prac-
tically no influence). Figure 3 represents the P-wave reflection
coefficient and phase, for different values of the shear-wave
quality factor. The value of least reflection is slightly higher
than 10. For this value, there is a phase reversal. Simulations,
corresponding to this case, are presented below.

Comparison of numerical and analytical solutions

We test the numerical solution against the analytical solution
for lossless media. The analytical solution for the fluid-solid
plane interface in lossless media is obtained by the method of
Cagniard–de Hoop (de Hoop and van der Hijden, 1983; Berg
et al., 1994). Regarding the simulation, each grid, correspond-
ing to the fluid and solid phases, has 243× 81 points with a grid
spacing of 10 m in the horizontal direction and a vertical size of
510 m. The source is a dilatational Ricker-type wavelet located
at 300 m above the interface, and has a dominant frequency of
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20 Hz. The receiver is located at 400 m from the source and
300 m from the interface. We consider the properties of wa-
ter and stainless steel, which implies a high material contrast
at the interface. The Runge-Kutta algorithm requires a time
step of 0.5 ms to be stable (sediments require, in general, 1 ms
and therefore fewer time steps). The numerical and analyti-
cal solutions are compared in Figure 4, where it is clear that
the agreement is excellent for lossless media. Later, we further
compare numerical and analytical solutions when illustrating
the propagation of interface waves.

Figure 1. Water-ocean bottom interface. P-wave reflection coefficients and phase versus incidence angle for
different material properties [from a stiff ocean floor (a) to a soft ocean floor (c)]. Panel (d) shows the P-wave
transmission coefficients and phase versus incidence angle for waves traveling from the ocean crust to the ocean
(the incident wave is inhomogeneous in this case). The unrelaxed velocities, density, and loss parameters are
indicated. The solid and dashed lines correspond to the elastic and viscoelastic cases, respectively. Units are in
the SI system.

AVO ANALYSIS

In order to verify the performance of the domain-
decomposition method in the viscoelastic case, we compute
the reflection coefficient versus incidence angle (AVO) from
synthetic data generated by the modeling algorithm. The tech-
nique has been used by Kindelan et al. (1989) for elastic media.
It consists of the following procedure.

1) Generate a synthetic seismogram of the pressure field by
using a dilatational point source in water. Place a line
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of receivers at each grid point above the interface. This
record contains the incident and reflected fields.

2) Compute the synthetic seismogram without interface
(without ocean bottom) at the same location. The seis-
mogram contains the incident field only.

3) Perform the difference between the first and second seis-
mograms. The difference contains the reflected field only.

4) Perform an (ω, kx)-transform of the incident field to ob-
tain σ0(ω, kx).

5) Perform an (ω, kx)-transform of the reflected field to ob-
tain σ (ω, kx).

6) The ratio |σ (ω, kx)|/|σ0(ω, kx)| is the reflection coeffi-
cient.

7) The phase angle is given by arctan[σ (ω, kx)/σ0(ω, kx)].
Transform kx to incidence angle by using sin θ =VP1 kx/ω.

We consider a stiff ocean bottom, whose reflection coeffi-
cient is shown in the top picture of Figure 1. The modeling
parameters are those of the previous simulation, allowing a
maximum incidence angle of approximately 70◦. Beyond this
angle, the traces are tapered by the absorbing boundary. There-
fore, there is no need of tapering to compute the Fourier trans-

Figure 2. Water–stainless steel interface. P-wave reflection co-
efficient and phase versus incidence angle for different values
of the shear-wave quality factor Q(2)

0 . The phase reversal at the
Rayleigh angle occurs when Q(2)

0 < 44. This value corresponds
to a zero reflection coefficient at the Rayleigh angle.

form to the wavenumber domain. Receivers (hydrophones)
are located 1.2739 m above the ocean bottom. The time step
is 0.5 ms, and we store the traces with a sampling rate of 8 ms.
Figure 5 shows the comparison between the elastic (a) and vis-
coelastic (b) reflection coefficients. The symbols correspond
to the numerical evaluation for different frequencies (triangle:
28 Hz; circle: 29 Hz; star: 30 Hz). In general, the use of high fre-
quencies yields a better result (the source central frequency is
20 Hz). This comparison confirms the good performance of the
domain-decomposition method to model fluid-solid interfaces
when there is attenuation, i.e., it provides a test of the boundary
equations related to the memory variables [see equation (23)].
Moreover, as can be seen in Figure 5a, the method works very
well at critical angles.

Let us consider the Rayleigh-window problem. Figure 6
and 7 show the numerical evaluation of the P-wave reflec-
tion coefficient (a) and phase angle (b) for the oceanic crust,
defined by VP2 = 4850 m/s, VS2 = 2800 m/s, ρ= 2600 kg/m3,
Q(1)

0 = 1000, Q(2)
0 = 10 (Figure 6, dotted line in Figure 3), and

Q(2)
0 = 7 (Figure 7) As can be observed, the modeling algorithm

Figure 3. Stiff ocean-crust interface. P-wave reflection coef-
ficient and phase versus incidence angle for different values
of the shear-wave quality factor Q(2)

0 . The phase reversal at the
Rayleigh angle occurs when Q(2)

0 ≤ 10. This value corresponds
to a zero reflection coefficient at the Rayleigh angle.
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correctly simulates the Rayleigh window phenomenon (i.e.,
the magnitude of the reflection coefficient and phase-change
slope). The mismatch between theory and numerical experi-
ments is due to the fact that the receivers are located at h =
1.2739 m above the interface. Also, there is a phase shift be-
tween the incident wave and the reflected wave. At normal
incidence, the correction is arctan(2hω/VP1 ). For a frequency
of f = 20 Hz and VP1 = 1480 m/s, we obtain 12◦, which coincides
with the mismatch observed in Figure 6.

It is difficult to observe the Rayleigh-wave phenomenon in
the space-time domain, since the reflected pulse is masked
by the head wave, because the window is located beyond the
critical angle. The results of Figures 6 and 7 (i.e., the perfect
agreement between analytical and numerical results) consti-
tute a further confirmation of the correctness of the model-
ing method. To our knowledge, this is the first simulation of
this phenomenon by using direct grid methods. Schmidt and
Jensen (1985) simulated the Rayleigh window, but they used a
wavenumber-domain algorithm for plane layers, similar to the
Thomson-Haskell technique (Ewing et al., 1957, p. 124).

SCHOLTE AND LEAKY RAYLEIGH WAVES

Interface waves at liquid-solid boundaries have been inves-
tigated with some detail in the field of nondestructive testing
of materials, where the experiments are performed in the ul-

Figure 4. Numerical and analytical solutions (dots and solid
line, respectively) of the vx-component (a) and vz-component
(b) corresponding to the water–stainless steel interface. The
first event is the direct wave and the second event is the re-
flected wave.

trasonic range. The research performed in this field is relevant
for seismic exploration and geotechnical applications. We con-
sider the two interfaces given in Table 1. The velocities of the
Scholte wave (VSCH) and leaky Rayleigh wave (VRL) are indi-
cated. The first wave correspond to the choice (+,+,+) for
the signs of

√
1−q,

√
1−aq, and

√
1− bq; the second surface

wave corresponds to a lower sheet with the choice (+,−,+).
Roots in lower sheets, such as (1878, −24) m/s and (2097,97)
m/s are physically impermissible steady-state waves, but the
result of superposition in the time domain may be physically
reasonable (Phinney, 1961).

Table 1. Properties of fluid, solid and surface waves.

VP1 ρ1 VP2 VS2 ρ2 VSCH VLR
Interface (m/s) (kg/m3) (m/s) (m/s) (kg/m3) (m/s) (m/s)

Water-Plexiglas1 1480 1000 2745 1390 1180 1058 1363
Water-glass2 1500 1000 5712 3356 2500 1496 3091

1 Padilla et al. (1999).
2 Glorieux et al. (2002).

Figure 5. Stiff ocean-crust interface. Elastic (a) and viscoelas-
tic (b) P-wave reflection coefficients versus incidence angle for
case (a) of Figure 1. The symbols correspond to the numeri-
cal evaluation for different frequencies (triangle: 28 Hz; circle:
29 Hz; star: 30 Hz).
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As shown by Glorieux et al. (2002) from laboratory ex-
periments and by our simulations (see below), the real so-
lution VSCH= 1363 m/s is not a physical solution, which has
been identified by Padilla et al. (1999) as an unleaky Rayleigh
wave. On the other hand, the corresponding solution for the
water-glass interface is a complex physical solution with value
(3091,−109) m/s.

Numerical simulations

Let us consider the simulation of wave propagation. Each
grid has 405× 81 points with a horizontal grid spacing of 0.5 mm
and a vertical size of 30 mm. The source is a dilatational force
applied to the surface of the solid, with a dominant frequency
of 500 kHz. Forty grid points are used as absorbing boundary
at the sides, top, and bottom of the grids. The time step is 40 ns
for water-Plexiglas and 20 ns for water-glass.

Figure 8 shows a snapshot at 40 µs (a) and synthetic traces
of the vertical particle-velocity component at the interface
(b), corresponding to the water-Plexiglas interface. The Scholte

Figure 6. The Rayleigh window at a stiff ocean-crust interface
[Q(2)

0 = 10 (dotted line in Figure 3)]. P-wave reflection coeffi-
cient (a) and phase angle (b) versus incidence angle. The sym-
bols correspond to the numerical evaluation of the AVO re-
sponse at different frequencies (triangle: 18 Hz; circle: 19 Hz;
star: 20 Hz).

wave is the dominant event (this wave has been clipped in
the snapshot). The P wave in the liquid (1480 m/s) and the
shear wave in the solid (1390 m/s) can also be appreciated. We
have not seen the surface Rayleigh wave (1363 m/s) observed
by Padilla et al. (1999) in their ultrasonic experiments. The
Scholte-wave energy is localized closer to the interface [see
plots of the displacement in Figure 5 of Glorieux et al. (2002)].

The results of the water-glass interface are shown in Figure 9.
The two head waves connect the P wavefront in the liquid with
the S and P wavefronts in the solid. The Scholte and leaky
Rayleigh waves show their characteristic elliptical wave mo-
tion. The leaky Rayleigh wave and the shear body wave can
hardly be separated in the synthetic traces. Evidence of the
leaky wave is given by Luke and Stokoe (1998), who performed
laboratory experiments on a slab of concrete. (They also show
a field test in the Gulf of Mexico, where the Scholte wave is the
dominant event.) Plots of the normal displacement by Glorieux
et al. (2002) indicate that most of the Scholte wave energy is
localized in the liquid and that this wave behaves as a plane
bulk wave traveling in the liquid along the interface. This be-
havior is called weak localization and occurs when the solid is

Figure 7. The Rayleigh window at a stiff ocean-crust interface
(Q(2)

0 = 7). P-wave reflection coefficient (a) and phase angle
(b) versus incidence angle. The symbols correspond to the nu-
merical evaluation of the AVO response at different frequen-
cies (triangle: 18 Hz; circle: 19 Hz; star: 20 Hz).
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much harder than the liquid. In these cases, the inversion of the
shear-wave velocity is not possible because the Scholte wave is
not sensitive to the properties of the solid. The inversion is fea-
sible for soft materials. The energy of the leaky Rayleigh wave
is radiated into the liquid as a P-wave, under the Rayleigh angle
[64◦ with respect to the interface; see the strong head wave in
Figure 9a, the attenuation with increasing distance in Figure 9b,
and Figure 3 of Glorieux et al. (2002)].

Figure 10 shows comparisons of the numerical and analytical
solutions, corresponding to the water-Plexiglas interface (a and
b) and water-glass interface (c and d). The source-receiver con-
figuration is the same as for the previous numerical experiment.

Figure 8. Snapshot at 40 µs (a) and synthetic traces of the
vertical particle-velocity component recorded at the interface
(b), corresponding to the water-Plexiglas interface. The Scholte
wave is the dominant event (this wave has been clipped in the
snapshot).

The agreement between solutions is very good. These com-
parisons confirm the accuracy of the modeling algorithm and
verify the previous physical interpretations. We have not seen
the Rayleigh wave observed by Padilla et al. (1999) in the ana-
lytical solution corresponding to the water-Plexiglas interface.
There are two waves with approximately the same traveltime
of the hypothetical leaky Rayleigh wave. These waves travel
with the velocity of the P-wave in the liquid and the velocity
of the S-wave in the solid. Since the receiver is located in the
solid at 38.4 µm from the interface, the first wave could be
the head wave described by Brekhovskikh (1960) as a P1 P2S2

event, and simulated by Stephen and Bolmer (1985) (see their
Figure 4).

Acoustic properties: Velocity and attenuation.

Figure 11 shows the Scholte-wave phase velocity and quality
factor versus P-wave velocity, S-wave velocity, and density of
the solid phase. Panels (a)–(c) corresponds to a stiff bottom
and panels (d)–(f) to a soft bottom (see Figure 1). Phase ve-
locity and quality factor are calculated by using equations (18)
and (20), respectively, where v is the Scholte-wave complex
velocity. The quality factor associated with the P-wave is given
by QP = 5ZP = 5ρ[g/cm3]VP[km/s] [this equation is based on

Figure 9. Snapshot at 20 µs (a) and synthetic traces of the
vertical particle-velocity component recorded at the interface
(b), corresponding to the water-glass interface. The Scholte
wave is weaker than in the previous case (see Figure 8).
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Figure 10. Numerical and analytical solutions (dots and solid
line, respectively) of the vx-component (a and c) and vz-
component (b and d), corresponding to the water-Plexiglas
interface (a and b) and water-glass interface (c and d). The
source is a compressional wave applied to the solid at 38.4 µm
from the interface. The receiver is located at the same posi-
tion and at 100 mm from the source. The different waves are
indicated.

data published by Prasad (1998)], and the quality factor associ-
ated with the S-wave is given by QS= 2QP(VS/VP)2 (Hamilton,
1976).

The velocities are derived from the empirical results pub-
lished by Hamilton (1972, 1976, 1979) and Hamilton and
Bachman (1982). The velocity of the Scholte wave tends to
the fluid velocity for increasing shear-wave velocity (stiff sedi-
ments). At high values of VS, it is practically constant, preclud-
ing the inversion of the shear-wave parameters. Also, for soft
sediments, the phase velocity is sensitive to variations of VP,
but shows a strong dependence on VS, which offers an oppor-
tunity of inverting for S-wave variations along the seabed as
shown by Stoll et al. (1994). The quality factor for the Scholte
wave is generally higher than the shear-wave quality factor. For
soft sediments, the quality factors are significantly lower than
for stiff sediments.

Figure 12 shows the phase velocity and quality factor of the
leaky Rayleigh wave versus P-wave velocity, S-wave velocity,

Figure 11. Scholte-wave phase velocity and quality factor ver-
sus P-wave velocity, S-wave velocity, and density of the ocean
bottom. Panels (a)–(c) corresponds to a stiff bottom and pan-
els (d)–(f) to a soft bottom (see Figure 1). Units are in the SI
system. (Continued).
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and density of the solid for the same model discussed in
Figure 11a (stiff bottom, i.e., VP1 <VS). In contrast to the free
Rayleigh wave, the leaky Rayleigh wave does not exist for
all liquid-solid interfaces. With increasing P-wave velocity, the
leaky Rayleigh wave velocity and quality factor tend to those of
the S-wave. The dependence with the S-wave velocity is prac-
tically linear, whereas a decrease in velocity versus density is
evident, tending towards the velocity of the Rayleigh wave for
the vacuum-solid interface as the density ratio ρ1/ρ2 decreases.
The quality factor is, in general, lower than the shear-wave qual-
ity factor.

SIMULATION OF A REAL SEISMOGRAM:
DISPERSIVE INTERFACE WAVES

The modeling algorithm allows us to investigate cases of
complex geology, which apply to the propagation of earthquake
surface waves across the ocean and to geophysical prospecting
offshore. The physics is characterized by the propagation of
infinite modes, showing velocity dispersion (e.g., Biot, 1952;
Ewing et al., 1957, p. 156, 178, 224). We consider a shear-wave

Figure 11. (Continued).

velocity profile of North Sea ocean-bottom sediments obtained
by Allnor et al. (1997) by analyzing Scholte waves (see also
Muyzert, 2000). The data corresponds to the Tommeliten field
(Granli et al., 1999), where a sensor array was planted at the sea
floor. The profile is shown in Table 2, where the other parame-
ters are obtained from empirical results published by Hamilton
(1972, 1976, 1979) and Hamilton and Bachman (1982). The
resulting values of the shear-wave quality factor agree with
those reported by Dorman et al. (1991), Bromirski et al. (1992),
and Nolet and Dorman (1996). The meshes have 405× 17 and
405× 81 grid points (water and sediments, respectively). The
horizontal grid spacing is 5 m and the vertical size is 70 m for
the upper mesh (water depth), and 510 m for the lower mesh
(sediments). The source is located at 13 m below the sea sur-
face and has a dominant frequency of 15 Hz. The upper mesh
satisfies the free-surface boundary conditions (24) at the first
row of grid points, while 40 grid points are used as absorbing
boundary at the sides of both meshes and bottom of the lower
mesh [in addition to the nonreflecting conditions (25)]. The
time step of the Runge-Kutta method is 1 ms.

Figure 12. Phase velocity and quality factor of the leaky
Rayleigh wave versus P-wave velocity, S-wave velocity, and
density of the ocean bottom. Units are in the SI system.
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Figure 13 shows synthetic seismograms of the horizontal
particle-velocity component recorded at the ocean bottom for
the lossless (Figure 13a) and lossy (Figure 13b) cases. Three
modes can be seen: the fundamental mode M0, the first higher
mode M1, and second higher mode M2, using the notation of
Muyzert (2000). A quadratic gain versus time has been applied
to the seismogram (in Figure 13b). The fundamental mode is
highly affected by anelasticity. This is the case in the real seis-
mogram, where mode M0 is weaker than modes M1 and M2.
Another feature is that the slope of M0 in Figure 13b agrees
with that of the real seismogram, while arrival times of this
event in the lossless seismogram are quite different from the
real ones. A proper analysis of the physics of dispersive modes
requires energy considerations because the kinematic concept
of group velocity loses its physical meaning in anelastic media
(e.g., Carcione, 1992b).

CONCLUSIONS

We have investigated the physics of wave propagation at the
ocean bottom, mainly the phenomena related to the anelas-
tic effects. The analysis has required the improvement of the
pseudospectral method to model the interface boundary con-
dition between the ocean and the sea-bottom sediments (or
ocean crust). The new features of the modeling method in-
volve the inclusion of viscoelastic dissipation and the use of
a domain decomposition technique. The high accuracy of the
modeling has been verified by using the analytical solution for
a fluid-elastic solid plane boundary, and the theory of reflec-
tion of plane waves at a fluid-viscoelastic solid interface. The
modeling allows for the presence of the sea surface and general
material variability along the vertical and horizontal directions.

The following phenomena regarding the physics have been
analyzed:

1) Reflection and transmission coefficients and comparison
with the lossy case. The various cases go from a stiff ocean
floor, characterized by critical angles, to a soft ocean floor,
characterized by a Brewster angle (this angle disappears
when the impedance of the sediment is lower than the
impedance of water). In the lossy case, critical and Brew-
ster angles are the exception.

2) The anelastic effects on the reflection coefficients (ampli-
tude and phase), verified by using an AVO analysis that
can be used to process ocean-bottom cable data. Tests on
synthetic data serve to verify the modeling of the anelas-
tic effects and shows the accuracy of the AVO analysis.

Table 2. Properties of the ocean bottom (North Sea
sediments).

Depth VP VS ρ

Layer (m) (m/s) (m/s) (kg/m3) QP QS(Q(2)
0 ) Q(1)

0

1 0–12 1530 200 1467 34 14 35
2 12–22 1575 300 1551 37 33 37
3 22–33 1590 340 1578 38 43 37
4 33–39 1650 375 1684 42 54 41
5 39–71 1700 390 1768 45 59 44
6 71–98 1750 450 1847 48 80 47
7 98–132 1810 475 1938 53 91 50
8 132–160 1840 500 1981 55 101 52
9 160–∞ 1930 560 2102 61 128 57

3) The first simulation of the Rayleigh-window phe-
nomenon with a direct grid method. This phenomenon
can be used to obtain information about the shear-wave
velocity and quality factor of the ocean bottom.

4) Simulation of Scholte and leaky Rayleigh waves. Con-
firmation that the first type of event is dominant in soft
sediments and the second event is comparable in ampli-
tude to the first in stiff ocean bottoms. The simulations

Figure 13. Synthetic seismograms of the horizontal particle-
velocity component at the ocean bottom for the lossless (a) and
lossy (b) cases. Three modes can be seen: the fundamental
mode M0, the first higher mode M1, and second higher mode
M2. A quadratic gain versus time has been applied to seismo-
gram (b).
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verify the absence of a free Rayleigh mode when the value
of the shear-wave velocity is less than the sound velocity
of the fluid.

5) The modeling has been used to compute synthetic seismo-
grams at a North Sea site, showing the different dispersive
modes recorded at the ocean bottom in the lossless and
lossy cases. The fundamental mode is highly affected by
anelasticity.

Use of this type of modeling to estimate the anelastic prop-
erties of the sea floor requires a theoretical analysis of the
influence of attenuation on the phase and energy velocities
and the quality factors of the different modes (group velocity
loses its physical meaning in anelastic media, and the analysis
should be based on the energy densities and Umov-Poynting
vector). Ongoing research includes the analysis of the physics
(scattering coefficients, Rayleigh window, interface waves) for
a heterogeneous anelastic ocean bottom and the extension of
the modeling algorithm to the 3D case and anisotropic media
to model fine-layering and compaction effects.
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