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In 1821, Fresnel obtained the wave surface of an optically biaxial crystal, assuming that light waves
are vibrations of the ether in which longitudinal vibrations �P waves� do not propagate. An
anisotropic elastic medium mathematically analogous to Fresnel’s crystal exists. The medium has
four elastic constants: a P-wave modulus, associated with a spherical P wave surface, and three
elastic constants, c44, c55, and c66, associated with the shear waves, which are mathematically
equivalent to the three dielectric permittivity constants �11, �22, and �33 as follows: �0�11⇔� /c44,
�0�22⇔� /c55, �0�33⇔� /c66, where �0 is the magnetic permeability of vacuum and � is the mass
density. These relations also represent the equivalence between the elastic and electromagnetic wave
velocities along the principal axes of the medium. A complete mathematical equivalence can be
obtained by setting the P-wave modulus equal to zero, but this yields an unstable elastic medium
�the hypothetical ether�. To obtain stability the P-wave velocity has to be assumed infinite
�incompressibility�. Another equivalent Fresnel’s wave surface corresponds to a medium with
anomalous polarization. This medium is physically unstable even for a nonzero P-wave modulus.
© 2008 Acoustical Society of America. �DOI: 10.1121/1.2968705�
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I. INTRODUCTION

Scientists of the 19th century have made extensive use
of the analogy between light and elastic waves to study the
behavior of light in matter. In particular, they have exploited
the mathematical equivalence between the electromagnetic
constitutive equations and the elastic rheological equations.
In many cases, this practice led to important discoveries. For
instance, Fresnel’s formulas and Maxwell’s equations were
obtained from mathematical analogies—and physical analo-
gies to a lesser degree—with shear wave propagation and
Hooke’s law, respectively.

As early as the 17th century it was known that light
waves and elastic waves are of a similar nature. Hooke be-
lieved light to be a vibratory displacement of a medium �the
ether�, through which it propagates at finite speed. Later, in
the 19th century, Maxwell and Lord Kelvin made extensive
use of physical and mathematical analogies to study wave
phenomena in elastodynamics and electromagnetism. In
many cases, this formal analogy becomes a complete math-
ematical equivalence such that the problems in both fields
can be solved by using the same analytical �or numerical�
methodology.

Green1 made the analogy between elastic waves in an
incompressible solid �the ether� and light waves. One of the
most remarkable analogies in science is the equivalence be-
tween electric and elastic displacements used by Maxwell to
obtain his famous electromagnetic equations. Fresnel showed
that if light were a transverse wave, then it would be possible
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to develop a theory accommodating the polarization of light.
Therefore, the study of acoustic wave propagation and light
propagation are intimately related, and this fact is reflected in
the course of scientific research. With the advent of the
theory of relativity, the concept of the ether was abandoned.
However, the fact that electromagnetic waves are transverse
waves is very useful.

Carcione and Cavallini2 showed that the two-
dimensional Maxwell equations describing propagation of
the transverse-magnetic mode in anisotropic media are math-
ematically equivalent to the SH wave equation in an
anisotropic-viscoelastic solid where attenuation is described
with the Maxwell model. The problem of energy definition in
the time domain, particularly for lossy media, has been dis-
cussed by Carcione3 using mathematical analogies. Later,
Carcione and Robinson4 established the analogy for the
reflection-transmission problem, showing that contrasts in
compressibility yield the reflection coefficient for light polar-
ized perpendicular to the plane of incidence �Fresnel’s sine
law—the electric vector perpendicular to the plane of inci-
dence�, and density contrasts yield the reflection coefficient
for light polarized in the plane of incidence �Fresnel’s tan-
gent law�.

Fresnel5 read a summary of a memoir to the Academy of
Sciences in Paris on 26 November 1821. He presented the
wave surface of an optically biaxial purely dielectric
medium—a crystal such as calcite or iceland spar. Referring
to his equation he writes: “If in the construction that Huy-
gens made to determine the direction of the refracted rays by
Iceland spar, and which can be applied to any waveform, one
substitutes the sphere and the ellipsoid of revolution by the

surface composed of the two terms represented by this last
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equation, and operating elsewhere in the same way, one will
have two tangent planes at the points of contact, joined at the
center of the wave, which will give the direction of the or-
dinary ray and that of the extraordinary ray.” It constitutes,
therefore, a generalization of the isotropic equations to the
anisotropic case, where double refraction occurs. In this
work, we obtain Fresnel’s double-refraction equivalent an-
isotropic elastic medium, starting from the Newton–Euler
equations and the stress–strain relations of an orthorhombic
elastic medium. The examples illustrate the different cases
where the Fresnel wave surface can be obtained.

II. ELECTROMAGNETISM

A. Maxwell’s equations

Maxwell’s equations, for a purely dielectric �lossless�
medium, in the absence of electric and magnetic sources,
are6

� Ã E = − �tB ,

� Ã H = �tD , �1�

where E, H, D, and B are the electric vector, the magnetic
vector, the electric displacement, and the magnetic induction,
respectively, the multiplication sign denotes vector product
and �t represents the time derivative. Constitutive equations
are needed to relate D and B to the field vectors. For a
dielectrically anisotropic medium we have

D = � · E ,

B = �0H , �2�

where � is the dielectric-permittivity matrix, �0 is the mag-
netic permeability of vacuum, and the dot indicates matrix
product.

For optically biaxial media, the dielectric-permittivity
matrix is given by2

� = ��11 0 0

0 �22 0

0 0 �33
� . �3�

B. Kelvin–Christoffel matrix and slowness
surface

Assume harmonic plane waves with a phase factor

exp�i��t − s · x�� , �4�

where i=�−1, � is the angular frequency, s is the slowness
vector, and x is the position vector. We use the following
correspondence between space–time and slowness–
frequency domains:

� Ã → − i�s Ã , �t → i� . �5�

Substituting the plane wave �4� into Maxwell’s equa-
tions �1� and using Eqs. �2� and �5� gives
s Ã E = B = �0H , �6a�
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s Ã H = − D = − � · E . �6b�

The vector product of Eq. �6b� with s and use of Eq. �6a�
yields

s Ã ����−1 · s Ã H� + �0H = 0. �7�

In terms of components we have

��ijksj��kl�−1�lpqsp + �0�iq�Hq = 0, i = 1, . . . ,3, �8�

where �ijk are the components of the Levi-Civita tensor. Con-
sider the case given by Eq. �3�. Then, the equivalent of the
elastic Kelvin–Christoffel equation �e.g., Refs. 7 and 8� for
the magnetic vector is

� · H = 0 , �9�

where the Kelvin–Christoffel matrix is

� =�
1 − � s2

2

�3
+

s3
2

�2
	 s1s2

�3

s1s3

�2

s1s2

�3
1 − � s1

2

�3
+

s3
2

�1
	 s2s3

�1

s1s3

�2

s2s3

�1
1 − � s1

2

�2
+

s2
2

�1
	� ,

�10�

where

�i = �0��i�i. �11�

Equation �9� has two solutions, which represent light waves
transversally polarized.6,7,9

The dispersion relation �i.e., the vanishing of the deter-
minant of the Kelvin–Christoffel matrix� is the slowness sur-
face:

��1s1
2 + �2s2

2 + �3s3
2��s1

2 + s2
2 + s3

2�

− ��1�1s1
2 + �2�2s2

2 + �3�3s3
2� + �1�2�3 = 0, �12�

where

�i = � j + �k, j � k � i , �13�

There are only quartic and quadratic terms of the slowness
components in the dispersion relation of an anisotropic me-
dium.

C. Fresnel’s wave surface

Now, we use the following property:

s · v = 1, �14�

where v is the group or energy velocity.7,8 Equation �14�
states that the slowness and wave-velocity surfaces are polar
reciprocal, i.e.,

xs1 + ys2 + zs3 = 1, �15�

where we have assumed x= �x ,y ,z�=vt, with t=1; x, y, and z
define a point in the wave surface. The wave surface can be
obtained by standard methods, from the group and energy
velocities,10,7 or using the duality principle.6 Using these two
different methods, it is shown in the Appendix that the wave

surface is given by
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+
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+

1
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1
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1
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= 0, �16�

This is Fresnel’s wave surface,5

�a2x2 + b2y2 + c2z2��x2 + y2 + z2� − �a2x2�b2 + c2�

+ b2y2�a2 + c2� + c2z2�a2 + b2�� + a2b2c2 = 0, �17�

where

a =
1

��1

, b =
1

��2

, c =
1

��3

�18�

are wave �light� velocities along the principal axes of the
crystal �“axes optiques,” according to Fresnel�. Quoting
Fresnel: “The three semi-axes a ,b ,c, represent here the
propagation velocities of the parallel vibrations.”

It can easily be shown that at the coordinate planes the
wave surface is factorable into two factors, and each factor is
an ellipse. Also, the intersection of the slowness surface with
the Cartesian planes are ellipses, since the polar reciprocal of
an ellipse is another ellipse.

The extension of the theory to the lossy case is given in
Born and Wolf,6 and for instance, in Carcione and
Schoenberg,9 and Carcione.7

III. ELASTODYNAMICS

In the following, we obtain the elastic medium equiva-
lent to Fresnel’s double-refraction crystal. Fresnel chose his
medium to be orthorhombic, thus it is reasonable to look for
the mechanical equivalent in a similar medium. Moreover,
the electromagnetic field is governed by a tensor of rank two,
thus the slowness and wave surfaces are closed surfaces of
order 2, i.e., they are ellipsoids �and thus have three mutually
perpendicular symmetry planes�. Elastic wave fields are gov-
erned by tensors of rank 4, thus slowness surfaces are of
order 6 and wave surfaces of order n with n an even number
with 6�n�150. Thus, geometrically similar slowness and
wave surfaces in an elastic medium can exist only if the
medium has at least orthorhombic symmetry �to guarantee
three symmetry planes�, and if given conditions are satisfied
to force the surfaces to be �three-axial� ellipsoids �see Eq.
�32��.

A. Newton–Euler equation

In the absence of body forces, the Newton–Euler equa-
tion governing the dynamic of continuum media is

� · � = ��tt
2u , �19�

where � is the density,

� = �	1,	2,	3,	4,	5,	6�T �20�
is the stress vector,
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u = �u1,u2,u3�T �21�

is the displacement vector, and

�̄ = ��1 0 0 0 �3 �2

0 �2 0 �3 0 �1

0 0 �3 �2 �1 0
� �22�

is the gradient operator.10,7

The strain–displacement relation can be written as

e = �̄T · u , �23�

where

e = �e1,e2,e3,e4,e5,e6�T �24�

is the strain vector
The stress–strain relation reads

� = �C · e , �25�

with the elasticity matrix for orthorhombic media—
normalized by the density—given by

C =�
C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

� , �26�

where CIJ=cIJ /� and cIJ are the elastic constants.

B. Kelvin–Christoffel matrix and slowness surface

Combining Eqs. �19�, �23�, and �25�yields

�̄ · C · �̄T · u = �tt
2u . �27�

Substituting the plane wave �4� into Eq. �27� and using
�t→ i� and

�̄ → − i��s1 0 0 0 s3 s2

0 s2 0 s3 0 s1

0 0 s3 s2 s1 0
� � − i�S , �28�

we obtain

� · u = 0 �29�

where

� = I − S · C · ST, �30�

is a symmetric Kelvin–Christoffel matrix, and I is the 3
3
identity matrix.
Equation �29� is analogous to Eq. �9�, with
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� = �1 − �C11s1
2 + C66s2

2 + C55s3
2� − �C12 + C66�s1s2 − �C13 + C55�s1s3

− �C12 + C66�s1s2 1 − �C66s1
2 + C22s2

2 + C44s3
2� − �C23 + C44�s2s3

− �C13 + C55�s1s3 − �C23 + C44�s2s3 1 − �C55s1
2 + C44s2

2 + C33s3
2�
� . �31�
The vanishing of the determinant of the Kelvin–Christoffel
matrix � yields the slowness surface. The three solutions of
Eq. �29� in normally polarized media7 correspond to the qP
wave and two qS waves.

C. Elastic medium equivalent to an optically biaxial
crystal

We know from the acoustic-electromagnetic analogy2

that light waves are mathematically analogous to shear
waves. Then, in order to find the elastic medium mathemati-
medium would be unstable since the compression modulus is
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cally equivalent to an optically biaxial medium correspond-
ing to Fresnel’s equation �17�, we have to decouple the P
wave from the S waves. These relations are necessary and
sufficient:11

C11 = C22 = C33 = C12 + 2C66 = C13 + 2C55 = C23 + 2C44

� E , �32�

where E is a P wave modulus �normalized by the density�.
Substituting these relations into Eq. �31� gives
� = �1 − �C66s2
2 + C55s3

2� C66s1s2 C55s1s3

C66s1s2 1 − �C66s1
2 + C44s3

2� C44s2s3

C55s1s3 C44s2s3 1 − �C55s1
2 + C44s2

2�
� − E� s1

2 s1s2 s1s3

s1s2 s2
2 s2s3

s1s3 s2s3 s3
2 � . �33�
It can easily be shown that the dispersion relation obtained
from Eq. �33� gives two coupled S waves and a decoupled
isotropic compressional wave, with a spherical wave surface
and velocity �E. Anisotropic elastic materials having spheri-
cal wave surfaces are discussed by Ting.12 Other anisotropic
media propagating pure longitudinal waves are studied by
Rychlewski13 and Ostrosablin.14 Note that for E=0, S waves
propagate only. In isotropic media �E=�+2�, where � and
� are the Lamé constants. If E=0, the compression modulus
k=�+ �2 /3��=−�4 /3���0. Such a medium would be un-
stable �see the following�.

The mathematical analogies between elastic and light
waves were known to scientists of the 19th century. In fact,
Fresnel, Green, MacCullagh, and Cauchy, among others, ob-
tained expressions of wave surfaces and reflection coeffi-
cients in crystals by using the elastodynamic equations, as-
suming that light waves are the vibrations of a medium
called ether. Fresnel5 states “I consider a medium endowed
with the double refraction having different elasticities along
the various directions.”

MacCullagh,15 �see also Ref. 16, p. 141�, in a conference
held at the Royal Irish Academy in 1839, presented an iso-
tropic medium, whose potential energy is only based on ro-
tation of the volume elements, thus ignoring pure dilatations
from the beginning. The result is a rotationally elastic ether
and the wave equation for shear waves. The corresponding
reflection and refraction coefficients coincide with Fresnel’s
formulae.6 Green1 assumed the P-wave velocity to be infinite
and dismissed a zero P-wave velocity on the basis that the
negative �from the previous discussion, please note that the
potential energy must be positive�. Cauchy,17 �see also Ref.
16� neglecting this fact considered that P waves have zero
velocity �E=0�, and obtained the sine law and tangent law of
Fresnel. He assumed the shear modulus to be the same for
both media. Cauchy’s ether is known as the contractile or
labile aether. It corresponds to an elastic medium of negative
compressibility, as shown earlier.

Fresnel5 states “The light vibrations perform only by
following the directions parallel to the wave surface. In the
note already cited I have presented this hypothesis with some
development, I showed that it is enough to admit that the
ether has a resistance so high to compression to conceive the
absence of longitudinal vibrations.”

Rudzki11 investigated the condition for the separate
propagation of “dilatational” �rot u=0� and “torsional”
�div u=0� waves. The second condition leads immediately to

s1u1 + s2u2 + s3u3 = 0. �34�

In this way, he obtains the dispersion relation for the shear
waves. In fact, Eq. �29� results in

�1 − �Es1
2 + C66s2

2 + C55s3
2��u1 + �C66 − E�s1s2u2

+ �C55 − E�s1s3u3 = 0,

�C66 − E�s1s2u1 + �1 − �C66s1
2 + Es2

2 + C44s3
2��u2
+ �C44 − E�s2s3u3 = 0,
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�C55 − E�s1s3u1 + �C44 − E�s2s3u2 + �1 − �C55s1
2 + C44s2

2

+ Es3
2��u3 = 0, �35�

or, in view of Eq. �34�,

�1 − �C66s2
2 + C55s3

2��u1 + C66s1s2u2 + C55s1s3u3 = 0,

C66s1s2u1 + �1 − �C66s1
2 + C44s3

2��u2 + C44s2s3u3 = 0,

C55s1s3u1 + C44s2s3u2 + �1 − �C55s1
2 + C44s2

2��u3 = 0, �36�

which correspond to the first matrix of the right-hand side in
Eq. �33�, describing the behavior of the coupled S waves
only.

D. Equivalence and Fresnel’s slowness and wave
surfaces

Like Cauchy, we set E=0 in Eq. �33� and use the fol-
lowing mathematical analogies:

C44 =
c44

�
⇔

1

�1
=

1

�0�11
,

C55 =
c55

�
⇔

1

�2
=

1

�0�22
,

C66 =
c66

�
⇔

1

�3
=

1

�0�33
. �37�

Substituting these relations into Eq. �33�, we obtain Fresnel’s
slowness surface �12�, associated with Fresnel’s wave sur-
face �17�, where �C , �C , and �C are the wave veloci-
44 55 66

polarized medium. Comparing the two matrices we obtain
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ties of the shear waves along the principal axes of the me-
dium. Strictly, it is not necessary to set E=0, leading to an
unstable medium, to obtain Fresnel’s wave surface, because
the P wave is decoupled from the S waves. However, the
mathematical equivalence is not complete. Physically, the
hypothetical medium �the ether�, supporting only transverse
vibrations, is an elastically unstable medium.

Another way to get rid of the P wave is to assume in-
compressibility. This problem was of the utmost importance
to the proponents of the elastic ether. Green,1 for instance,
chose infinite velocity for the outer wave front. With infinite
stiffness, there is an immediate signal �infinite velocity� with
vanishing displacement amplitude �infinite impedance�,
while with vanishing stiffness the signal arrives after infinite
time with vanishing pressure amplitude �zero impedance�.

E. Anomalously polarized medium

There are media with the same slowness and wave sur-
faces but drastically different polarization behavior. Such
media are kinematically identical but dynamically different.
Examples of anomalous polarization have been discussed for
transverse isotropy by Helbig and Schoenberg,18 and for
orthorhombic symmetry by Carcione and Helbig.19

We do not repeat the details of the theory here,7 but give
a specific example. Let us consider the following Kelvin–
Christoffel matrix:
� = �1 − �C11s1
2 + C66s2

2 + C55s3
2� �C12

* + C66�s1s2 − �C13 + C55�s1s3

�C12
* + C66�s1s2 1 − �C66s1

2 + C22s2
2 + C44s3

2� �C23
* + C44�s2s3

− �C13 + C55�s1s3 �C23
* + C44�s2s3 1 − �C55s1

2 + C44s2
2 + C33s3

2�
� . �38�
It is clear that the dispersion equation associated with this
matrix is the same as that corresponding to Eq. �31�, where
C

12
* and C

23
* are the elastic constants of the anomalously po-

larized medium, which differ from those of the normally
the following relations, instead of Eq. �32�:

C11 = C22 = C33 = − C12
* = C13 + 2C55 = − C23

* � E . �39�
Then, we have
� = �1 − �C66s2
2 + C55s3

2� − C66s1s2 C55s1s3

− C66s1s2 1 − �C66s1
2 + C44s3

2� − C44s2s3

C55s1s3 − C44s2s3 1 − �C55s1
2 + C44s2

2�
� − E� s1

2 − s1s2 s1s3

− s1s2 s2
2 − s2s3

s1s3 − s2s3 s3
2 � , �40�
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instead of Eq. �33�. Such a medium is anomalously polar-
ized, because the polarization vectors are not perpendicular
and tangent to the P- and S-wave slowness surfaces, respec-
tively, as it is for a normally polarized medium correspond-
ing to the elastic constants given in Eq. �32�. An example is
shown in Sec. IV.

Although the S waves of this medium are described by
the Fresnel wave surface, the medium is physically unstable
since the stability conditions8 are not satisfied; for instance,
C11C22−C12

2 
0 implies 0
0, etc.

IV. EXAMPLES

Here, the theoretical results are verified by means of
full-wave three-dimensional numerical simulations. The
modeling code is based on the Fourier pseudospectral
method for computing the spatial derivatives and a Cheby-
shev expansion of the evolution operator as time-integration
technique. This algorithm possesses spectral accuracy for
band-limited signals and is not affected by temporal or spa-
tial numerical dispersion. The details can be found in Car-
cione et al.20 The source is an additional term on the right-
hand side of Eq. �19�, i.e., ��tt

2u+ f, where f= �f1 , f2 , f3�, for
directional forces, f=��, where �=��x ,y ,z� for a pressure
source, and f=�
A, where A= �A1 ,A2 ,A3�, Ai

=ai��x ,y ,z�, for a shear source; � is a Gaussian function.
We consider a medium with E=10, C44=3, C55=2, and

C66=1 �C12=8, C13=6 and C23=4�, where these elastic con-
stants are normalized by �
MPa, with � given in kg /m3.
Figure 1 shows sections of the slowness and wave �energy or
group-velocity� surfaces on the symmetry planes. The polar-
ization is indicated in the velocity sections. The outer curve
�dashed line� represents the P-wave spherical front, and the
inner curves �solid lines� correspond to the shear waves,
equivalent to Fresnel’s electromagnetic waves. The conical
point is located in the plane defined by the maximum and
minimum principal axes, i.e., the �x ,z� plane.

The size of the numerical mesh to perform the simula-
tions is 165
165 grid points, and the motion is initiated by
a directional force making an angle � /4 with the principal
axes. A Ricker pulse is used.7 Figure 2 shows the snapshots
of the components of the displacement vector on the three
symmetry planes of the medium.

The anomalously polarized medium has the same elastic
constants, except C

12
* =C

23
* =−10. The wave surface and

snapshots are shown in Figs. 3 and 4, respectively. The shape
of the slowness and wave surfaces are the same as those of
Fig. 1. Figure 5 represents the wave field in terms of the
polarization vector u. As can be seen, the polarization pre-
sents anomalous behavior, changing from perpendicular to
tangent to the wave front in the same mode. The medium has
anomalous polarization in the �x ,y� and �y ,z� planes, while
the polarizations in the �x ,z� plane are unaltered.
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APPENDIX: CALCULATION OF THE WAVE SURFACE

We obtain Fresnel’s wave surface by using two different
methods.

�1� Let us consider the s1 and x components, and Eq.
�12� for s2=s3=0. Then,

s1
4 − ��2 + �3�s1

2 + �2�3 = 0. �A1�

Slowness

(a)

Velocity

(b)

FIG. 1. Normalized sections of the slowness �a� and wave �velocity� �b�
surfaces of an elastic anisotropic medium equivalent to an optically biaxial
dielectric medium. One octant is shown because of symmetries. The spheri-
cal sections �dashed line� correspond to the P wave. The polarization is
indicated for each wave mode.
Using Eq. �15�, we obtain
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x4 − � 1

�2
+

1

�3
	x2 +

1

�2�3
= 0. �A2�

Dividing this equation by �1 and performing a similar pro-
cedure for the other components, we have

x4

�1
− 
 1

�1
� 1

�2
+

1

�3
	�x2 +

1

�1�2�3
= 0,

y4

�2
− 
 1

�2
� 1

�1
+

1

�3
	�y2 +

1

�1�2�3
= 0,

Ux Uy Uz

XY

XZ

YZ

FIG. 2. Snapshots of the displacement vector corresponding to the case
shown in Fig. 1. The displacement fields ux, uy, and uz are shown for the
three symmetry planes of the medium.

Velocity

FIG. 3. Wave �velocity� surface corresponding to the anomalously polarized

medium.
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z4

�3
− 
 1

�3
� 1

�1
+

1

�2
	�z2 +

1

�1�2�3
= 0. �A3�

Since the slowness surface is a quadratic surface21 and the
slowness and velocity vectors are reciprocal, this implies that
the wave surface has the same functional form as the slow-
ness surface �12�. Then

�a1x2 + a2y2 + a3z2��x2 + y2 + z2�

− �b1x2 + b2y2 + b3z2� + d = 0. �A4�

Comparing Eqs. �A3� and �A4�, we have a1=�1
−1, a2=�2

−1,
a3=�3

−1, b1=�1
−1��2

−1+�3
−1�, b2=�2

−1��1
−1+�3

−1�, b3=�3
−1��1

−1

+�2
−1� and d= ��1�2�3�−1. Hence, Eq. �16� is obtained.
�2� A more rigorous method is the so-called principle of

duality.6 It is known that in lossless—pure dielectrics—
anisotropic media, E and H are tangent to the slowness sur-
face and that the group-velocity vector v is perpendicular to
that surface. Therefore

v · E = 0, v · H = 0.

Let us consider the property v
 �s
A�=−�v ·s�A+ �v ·A�s
=−A, where A is E or H and Eq. �14� has been used. Taking
the vector product of Eq. �6� with v and using that property
gives

v Ã D = �0
−1B ,

v Ã B = − �−1 · D . �A5�

Equations �6� and �A5� are dual equations. This means that
the dispersion relation for v �the wave surface� can be ob-
tained from the slowness surface by the following substitu-
tions:

s → v, �0 → �0
−1, � → �−1.

Ux Uy Uz

XY

XZ

YZ

FIG. 4. Anomalous polarization. Snapshots of the displacement vector cor-
responding to the case shown in Fig. 3. The displacement fields ux, uy, and
uz are shown for the three symmetry planes of the medium.
The duality property also implies
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anomalously �b� polarized media.
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s · E = 0, s · H = 0,

and that D and B are tangent to the wave surface.
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