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ABSTRACT

Source rocks are described by a porous transversely
isotropic medium composed of illite and organic matter
(kerogen, oil, and gas). The bulk modulus of the oil/gas mix-
ture is calculated by using a model of patchy saturation.
Then, the moduli of the kerogen/fluid mixture are obtained
with the Kuster and Toksöz model, assuming that oil is the
inclusion in a kerogen matrix. To obtain the seismic veloc-
ities of the shale, we used Backus averaging and Gassmann
equations generalized to the anisotropic case with a solid-
pore infill. In the latter case, the dry-rock elastic constants
are calculated with a generalization of Krief equations to the
anisotropic case. We considered eleven samples of the
Bakken-shale dataset, with a kerogen pore infill. The Backus
model provides lower and upper bounds of the velocities,
whereas the Krief/Gassmann model provides a good match
to the data. Alternatively, we obtain the dry-rock elastic
moduli by using the inverse Gassmann equation, instead
of using Krief equations. Four cases out of eleven yielded
physically unstable results. We also considered samples
of the North Sea Kimmeridge shale. In this case, Backus
performed as well as the Krief/Gassmann model. If there
is gas and oil in the shale, we found that the wave velocities
are relatively constant when the amount of kerogen is kept
constant. Varying kerogen content implies significant veloc-
ity changes versus fluid (oil) saturation.

INTRODUCTION

Hydrocarbons can be extracted from source rocks, particularly
shales, for instance, the black shales of the Bakken formation
(Vernik and Nur, 1992) and the Kimmeridge shale of the North
Sea (Vernik, 1995). The pore space can be filled with kerogen,

oil, and gas. These source rocks are characterized by a remarkable
velocity anisotropy due to the microlaminated distribution of
kerogen and alignment of the clay particles, mainly illite. Therefore,
a suitable model describing the wave velocities is essential to quan-
tify the amount of organic matter from seismic data.
Generally, hydrocarbon source rocks can be approximated by

transversely isotropic media composed of organic matter and illite
layers. Note that this may not be the case for source rocks with low
clay content, which mostly have quartz or carbonate. Moreover,
some source rocks have kerogen in equant cavities and not in thin
layers (Sondergeld et al., 2010). To our knowledge, Vernik and co-
workers and Carcione (2000) proposed the only existing models to
describe the acoustic properties of source rocks, using Backus aver-
aging. Vernik and Nur (1992) obtained the seismic velocities in a
kerogen-rich shale, and Carcione (2000) calculated the excess pore
pressure as a function of the fraction of kerogen converted to oil and
introduced seismic attenuation. Alternative models were proposed
for water-saturated shales. The model of Hornby et al. (1994) is
based on a combination of anisotropic formulations of the self-
consistent and differential effective-medium approximations. They
consider a clay-platelet angular distribution taken from scanning
electron microscope (SEM) images that it is used to obtain more
realistic elastic constants. Sayers (1999) assumes that the stress
dependence of the elastic properties of a shale is due to the defor-
mation of the contact regions between clay platelets. Sarout and
Guéguen (2008) developed a micromechanical model to obtain ef-
fective elastic properties and anisotropy in terms of its microscopic
features, such as intrinsic anisotropy and crack/pore geometry. The
model, based on Eshelby theory, considers oblate spheroidal pores
aligned in the bedding plane of a transversely isotopic elastic back-
ground. Finally, Ciz and Shapiro (2009) proposed a porosity-
deformation approach, based on a piezosensitivity theory, to
describe elastic moduli of anisotropic shales as nonlinear functions
of the effective stress. All these models could, in principle, be mod-
ified to introduce the effects of kerogen as a pore-filling material,
although this extension is not evident.
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Here, we use Gassmann equations for an anisotropic frame and
an isotropic solid-pore infill (kerogen-oil-gas) (Ciz and Shapiro,
2007). The dry-rock elastic constants involved in Gassmann equa-
tions are obtained by a generalization of Krief equations to the
anisotropic case (see the isotropic version in Krief et al., 1990).
By “dry rock,” we mean the rock exclusive of pore fill (kerogen,
oil, and gas), whereas “wet rock” refers to the rock including the
pore fill. Bound water is part of the rock frame and not of the pore
fill. The effect of partial saturation on velocity depends on the fre-
quency range (e.g., Avseth et al., 2005; Carcione, 2007). At low
frequencies, the fluid has enough time to achieve pressure equili-
bration (relaxed regime). In this case, the Wood or Reuss model
(Avseth et al., 2005) for the bulk modulus of the fluid mixture yields
results that agree with the experiments. On the other hand, at high
frequencies, the fluid can not relax, and this state of unrelaxation
induces a stiffening of the pore material, which increases the wave
velocity considerably. Here, we use a modified empirical fluid
mixing law proposed by Brie et al. (1995), which gives the Wood
modulus at low frequencies and the Voigt modulus at high frequen-
cies (Avseth et al., 2005). This model is a good approximaton of the
mesoscopic velocity dispersion based on the White theory (e.g.,
Carcione, 2007).
We consider the Bakken and Kimmeridge shales and calibrate the

Backus and Gassmann models to the experimental data by calculat-
ing the seismic velocities as a function of kerogen. Then, we obtain
the velocities as a function of oil and gas saturation, and frequency.

EFFECTIVE-MEDIA MODELS
OF SEISMIC VELOCITY

We consider two models to obtain the velocities of the composite
rock, namely, Backus averaging (Schoenberg and Muir, 1989) and

Gassmann equations for a solid-pore infill (Ciz and Shapiro, 2007).
The rock geometry corresponding to these models is shown sche-
matically in Figure 1, where Figure 1a depicts the model used by
Backus to represent a system of plane layers whose thicknesses are
much smaller compared to the wavelength of the signal, Figure 1b
shows a modification of the Backus model taking into account the
discontinuity of the illite layers in the shale fabric, and Figure 1c is a
representation of the shale based on Gassmann’s assumptions to
represent a porous medium. Regarding the model in Figure 1b,
SEM observations have shown that the illite fabric has a lenticular
pattern along the bedding plane rather a continuous-layer structure
(Vernik and Nur, 1992). A reasonable way to model this effect is to
substitute the bedding-plane elastic stiffnesses by a weighted aver-
age that takes into account the local proportion of illite and kerogen
(see equation 15 below). On the other hand, Gassmann assumptions
are that the wavelength is large compared with the dimensions of a
macroscopic elementary volume. This volume has well-defined
properties, such as porosity, permeability, and elastic moduli,
which are representative of the medium. Scattering effects are thus
neglected. Moreover, the liquid phase is continuous, and the matrix
and pore space can have any shape, as shown in Figure 1c. The
assumption of an anisotropic solid skeleton results from the align-
ment of the illite platelets (Sayers, 1999; Hornby et al., 1994)
We assume that the kerogen/oil/gas mixture consists of oil/gas

bubbles embedded in a kerogen matrix and that the clay mineral
is transversely isotropic. Calculation of the Gassmann moduli
requires knowing the dry-rock elastic constants. These are obtained
by a simple generalization of the Krief model (Krief at al., 1990). In
the following, K and μ, and ρ indicate bulk and shear moduli, and
density, and the indices m, s, o, g, f , k, and if denote dry matrix
(skeleton), solid grain (clay), oil, gas, fluid (oil-gas mixture),
kerogen and pore infill (oil-gas-kerogen mixture), respectively.
Moreover, cIJ is the two-indices notation for stiffnesses (Helbig,
1994) and ϕ denotes porosity or proportion of a given material.

Effective fluid model for partial gas saturation

The mixture oil/gas behaves as a composite fluid with properties
depending on the constants of the constituents and their relative
concentrations. The simplest solution is to assume Wood’s average:

Kf ¼
�
Sg
Kg

þ So
Ko

�
−1

ð1Þ

and

ρf ¼ Sgρg þ Soρo; (2)

where S denotes saturation. Equation 1 corresponds to the low-
frequency range. When the fluids are not mixed in the pore volume,
but distributed in patches, the effective bulk modulus of the fluid at
high frequencies is higher than that predicted by equation 1. We use
an empirical mixing law introduced by Brie et al. (1995). The
effective fluid bulk modulus is given by

Kf ¼ ðKo − KgÞSeo þ Kg; (3)

where e ¼ ðf 0∕f Þ0.163 is an empirical parameter, with f the fre-
quency and f 0 ¼ 1 MHz being a reference frequency. Equation 3
gives Voigt’s mixing law for e ¼ 1 (f ¼ f 0) and Wood’s law for
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b)
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Figure 1. (a) Schematic fabric topology of transversely isotropic
kerogen-rich shales, according to Backus model, (b) modified
Backus model, and (c) Gassmann model. The z-direction corre-
sponds to the symmetry axis.
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f ¼ 25 Hz. Equation 3 is consistent with White’s mesoscopic
model (White, 1975).
The gas density and bulk modulus as a function of pressure and

temperature are calculated by using the van der Waals equation.

Properties of the kerogen/fluid mixture

The stiffnesses of the mixture can be calculated by using the
model developed by Kuster and Toksöz (1974). If S is the fluid
saturation, S ¼ ϕf ∕ðϕf þ ϕkÞ, and the stiffnesses are

cif13 þ 2
3
cif55

Kk
¼ 1þ ½4μkðKf − KkÞ∕ð3Kf þ 4μkÞKk�S

1 − ½3ðKf − KkÞ∕ð3Kf þ 4μkÞ�S
ð4Þ

and

cif55
μk

¼ ð1 − SÞð9Kf þ 8μkÞ
9Kk þ 8μk þ Sð6Kk þ 12μkÞ

; (5)

then the density of the mixture is simply ρif ¼ ðϕkρk þ ϕf ρf Þ∕
ðϕk þ ϕf Þ.

Dry-rock elastic constants

Gassmann’s equation require the knowledge of the dry-rock
elastic constants. Krief et al. (1990) proposed a simple heuristic
equation:

Km ¼ Ksð1 − ϕÞA∕ð1−ϕÞ and μm ¼ Kmμs∕Ks; (6)

where A is a constant which depends on the type of rock (the second
expression in equation 6 is assumed here). The porosity dependence
is consistent with the concept of critical porosity because the moduli
should be small above a certain value of the porosity (usually
between 0.4 and 0.6) (Mavko and Mukerji, 1998).
The properties of the skeleton can be described by an anisotropic

version of the Krief model:

cm11 ¼ cs11ð1 − ϕÞA∕ð1−ϕÞ;
cm66 ¼ cs66ð1 − ϕÞA∕ð1−ϕÞ;
cm13 ¼ cs13ð1 − ϕÞB∕ð1−ϕÞ;
cm33 ¼ cs33ð1 − ϕÞB∕ð1−ϕÞ;
cm55 ¼ cs55ð1 − ϕÞB∕ð1−ϕÞ; (7)

where A and B are constants. The use of two constants is somehow
equivalent to varying the Krief exponent as a function of the pro-
pagation (phase) angle because cm11 and cm66 describe the velocities
along the stratification, and cm33 and cm55 along the perpendicular di-
rection. As we shall see in the example, A < B, indicating that the
critical porosity value is larger for the elastic constants describing
the properties along the layering, i.e., the skeleton is mainly defined
by these constants at high porosity. Equations 7 reduce to equation 6
for A ¼ B in the isotropic case.
Another possibility is to obtain the dry-rock elastic constants

from wet-rock data by using the inverse Gassmann relation
(see below).

Wet-rock Backus velocities

Following Vernik and Nur (1992) and Carcione (2000), we
assume that the rock is a multilayer composite made of illite and
kerogen (see Figure 1a and 1b). The Backus averaging gives a trans-
versely isotropic equivalent medium described by five stiffnesses
c̄IJ , where

c̄11 ¼ hc11 − c213c
−1
33 i þ hc−133 i−1hc−133 c̄13i2

c̄33 ¼ hc−133 i−1
c̄13 ¼ hc−133 i−1hc−133 c13i
c̄55 ¼ hc−155 i−1
c̄66 ¼ hc66i (8)

(Schoenberg and Muir, 1989; Carcione, 2007), with cIJ the
complex stifnesses corresponding to the single constituents, and h·i
indicating the weighted average. The proportion of the kerogen/oil/
gas mixture is ϕ ¼ ϕk þ ϕf and the proportion of illite is 1 − ϕ.
The velocites are

v33 ¼ vPð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
c̄33∕ρ

p
;

v11 ¼ vPð90Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
c̄11∕ρ

p
;

v55 ¼ vSð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
c̄55∕ρ

p
;

v66 ¼ vSð90Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
c̄66∕ρ

p
: (9)

where subscripts P and S denote P- and S-waves, respectively, and
0 and 90 correspond to propagation perpendicular to and along the
layering.
The bulk density is given by

ρ ¼ ð1 − ϕÞρs þ ϕρif : (10)

Wet-rock Gassmann velocities

Ciz and Shapiro (2007) obtained the undrained compliance ten-
sor when the pore infill and solid grains are anisotropic materials,

s̄ijkl ¼ smijkl − ðsmijmn − ssijmnÞ½ϕðsif − sϕÞ þ sm − ss�−1mnqp
× ðsmqpkl − ssqpklÞ; (11)

where the s’s are the components of the compliance tensor, and the
Einstein summation is assumed over 1, 2, and 3. Tensor and
matrices are denoted with a bold font. The compliance tensor sϕ

is explicitly defined in Ciz and Shapiro (2007). In the case that
the skeleton is made of a homogeneous material, sϕ ¼ ss. Because
the solid is transversely isotropic, we use the following relations
between the Voigt stiffnesses and compliances: c11 þ c12 ¼
s33∕s, c11 − c12 ¼ 1∕ðs11 − s12Þ, c13 ¼ −s13∕s, c33 ¼ ðs11þ
s12Þ∕s, c55 ¼ 1∕s55, where s ¼ s33ðs11 þ s12Þ − 2s213. The equations
for the inversion are obtained by interchanging all the c and s val-
ues. Note the following relations: s66 ¼ 4s1212 and s55 ¼
4s1313, valid for all the compliance tensors, whereas c66 ¼ c1212
and c55 ¼ c1313. The components of the corresponding undrained
matrices transform in the same way. Moreover, the usual symmetry
relations by interchanging the indices hold (e.g., Carcione, 2007).
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In the limit of high porosities, say beyond 50%, the dry-rock
elastic constants in equation 7 are zero in practice. In this limit,
equation 11 becomes

s̄ijkl ¼ ð1 − ϕÞssijkl þ ϕsifijkl; (12)

i.e., a generalization of the Reuss average.
Equation 11 can be inverted to obtain the dry-rock compliance

tensor as a function of the undrained compliance tensor. We have

smijkl ¼ ssijkl þ ϕðs̄ijmn − ssijmnÞ½ϕðsif − sϕÞ − s̄þ ss�−1mnqp
× ðsifqpkl − sϕqpklÞ: (13)

This equation can be used to obtain the drained compliance tensor
by using calibration data (seismic, well or laboratory data). Note
that the Backus c̄55 and c̄66 in 8 are Reuss and Voigt averages,
respectively. Hence, according to equation 12, the first stiffness
is obtained from Gassmann’s relations by assuming zero dry-rock
stiffnesses. This means that an inversion of Backus generated stiff-
nesses by using equation 13 gives cm55 ¼ 0 because Backus’s equa-
tion for c̄55 is a Reuss average as equation 12, that is satisfied when
the dry-rock stiffness is zero.

EXAMPLES

Let us consider the data provided by Vernik and Nur (1992) in
their Tables 1, 2 and 3 for the black shales of the Bakken formation,
fully saturated with kerogen. We consider only the samples that
have the P-wave velocity at 45° because this value is necessary
to obtain c13, and assume that the shales are transvesely isotropic.
The wet-rock elastic constants are obtained as

c̄33 ¼ ρv2Pð0Þ; c̄11 ¼ ρv2Pð90Þ; c̄55 ¼ ρv2Sð0Þ; c̄66 ¼ ρv2Sð90Þ;
c̄12 ¼ 2c̄66 − c̄11; c̄13 ¼ −c̄55

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ρ2v4Pð45Þ − 2ρv2Pð45Þðc̄11 þ c̄33 þ 2c̄55Þ þ ðc̄11 þ c̄55Þðc̄33 þ c̄55Þ

q
; (14)

(e.g., Carcione, 2007). Table 1 represents the data, together with
the inverted dry-rock elastic constants (see below), the density

and the kerogen content K. This is the volume fraction of kerogen
in the rock and does not include the gas and oil bubbles. The
material properties of the single media are given in Table 2, where
vIJ are the elastic velocities. The porosity of the Bakken shales is
less than 1% and therefore we may assume that the rocks are made
of illite and kerogen with no significant water saturation. The prop-
erties of illite and kerogen are those used by Vernik and Nur (1992),
with the exception of the density of illite. We have assumed
2.6 g∕cm3 instead of 2.7 g∕cm3, which provides a better fit to
the bulk density of the samples listed in Table 1 (see Figure 2).
Figure 3 shows the Backus velocities (solid lines) as a function
of kerogen content compared to the experimental data. The plots
indicate that Backus averaging underestimates (at 0°) and over-
estimates (at 90°) the experimental velocities. This comparison
suggests that the Backus velocities are suitable upper an lower lim-
its. To obtain a better fit with the data, Vernik and Nur (1992) mod-
ify the elastic constants of illite, which has a lenticular textural
pattern. They assume that only the stiffnesses “parallel to bedding”
are affected:

cs11 → hc11i and cs66 → hc66i; (15)

which incorporate the respective local constants of both illite and
kerogen. The dashed curve in Figure 3 correspond to this modifica-
tion of Backus averaging. The fit of the velocities parallel to layer-
ing has improved, but only for vSð90Þ is the match is acceptable.
On the other hand, Figure 4 shows the velocities versus kerogen

content using Krief equations 7 with ϕ ¼ K to calculate the dry-
rock moduli (kerogen constitutes the pore-filling material), and
Gassmann equation 11 to obtain the wet-rock moduli. We have used
A ¼ 1.5 and B ¼ 4 in equation 7, as result of a visual best fit of the
experimental data. The fit with the data is satisfactory.
The most realistic solution is to use equation 13, i.e., calculate the

dry-rock moduli from the data. Table 1 shows the inversion using
the properties given in Table 2 for illite and kerogen. The stability
conditions for a transversely isotropic medium are

c11 > jc12j; ðc11 þ c12Þc33 > 2c213; c55 > 0 ð16Þ
(e.g., Carcione, 2007). The wet media are all stable, while four out
of eleven of the dry media are unstable, those at depths of 2630,

Table 1. Properties of the Bakken shales.

Depth
(m) c̄11(GPa) c̄33(GPa) c̄13(GPa) c̄55(GPa) c̄66(GPa) cm11(GPa) cm33(GPa) cm13(GPa) cm55(GPa) cm66(GPa) K ρðg∕cm−3Þ
2630 30.7 21.9 12.0 9.6 10.6 21.9 9.3 12.5 6.3 7.2 0.44 1.99

2631 35.3 18.8 6.5 6.4 12.9 26.1 −5.3 0.6 −1.1 9.8 0.36 2.06

2996 38.2 25.7 9.6 9.5 11.8 27.5 2.4 7.2 1.8 5.7 0.25 2.21

3098 38.9 25.4 5.9 10.0 14.7 28.2 1.8 −2.1 4.0 11.5 0.27 2.22

3271 51.6 39.5 14.6 15.2 17.8 47.3 32.5 17.7 12.4 15.2 0.17 2.43

3271 46.9 27.9 11.4 9.2 16.0 42.9 11.7 12.1 1.8 13.6 0.26 2.33

3272 45.7 28.8 14.5 9.5 17.7 40.3 12.9 18.5 2.1 16.0 0.25 2.34

3332 51.2 25.4 15.8 8.1 17.6 47.5 −0.5 22.1 −2.8 15.8 0.24 2.35

3423 62.9 45.2 13.4 16.3 21.6 61.2 42.0 13.3 13.2 20.6 0.12 2.55

3428 45.2 32.9 9.9 12 16.0 38.8 20.0 8.7 6.7 12.7 0.21 2.38

3438 56.2 36.7 12.8 14.5 19.3 52.8 18.1 16.4 8.5 16.8 0.12 2.48
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2631, 3272, and 3332 m. This may be due to several reasons: ex-
perimental errors, the shales are not exactly transversely isotropic,
the properties of the kerogen and illite may vary from sample to
sample and there may be free water saturation. In fact, some of
the samples do not satisfy vSVð0Þ ¼ vSVð90Þ and some have a po-
rosity between 1 and 2%. Actually, illite represents an assembly of
more or less aligned clay particles that constitute a representative
volume element of the clay component of the
shale (in which case the hydration state can
change) (see also the next section). Obviously,
using these dry-rock moduli gives an “exact”
match of the wet-rock data shown in Table 1,
as there is a one-to-one mathematical correspon-
dence between input and output values.
Three dynamic Poisson’s ratios, correspond-

ing to different directions can be obtained (e.
g., Carcione and Cavallini, 2002): ν1 ¼ ϵyy∕
ϵxx ¼ ðc12c33 − c213Þ∕ðc11c33 − c213Þ and ν2 ¼
ϵzz∕ϵxx ¼ c13ðc11 − c12Þ∕ðc11c33 − c213Þ, if the
sample is compressed along the x-direction,
and ν3 ¼ ϵxx∕ϵzz ¼ c13∕ðc11 þ c12Þ, if the sam-
ple is compressed along the symmetry axis. Most
of the dry-rock Poisson’s ratio are positive, while
ν1 ¼ −0.9 (sample at 2996 m), ν2 ¼ −1 and
ν3 ¼ −0.06 (sample at 3098 m), and
ν2 ¼ −1.4 (sample at 3332 m). Negative values
have been reported by Mondol et al. (2007).
Let us consider the sample corresponding to a

depth of 2631 m in Table 1, i.e., the symbols hav-
ing K ¼ 0.36 in Figure 4. Without any attempt to
fit the velocities of this particular
sample, we represent the energy velocity of the
different modes in Figure 5, where the symbols
correspond to the stiffnesses given in Table 1
for that sample and the solid lines to the Krief/
Gassmann model shown in Figure 4. Because of
the symmetry of the medium, only one-quarter of
the polar plot is shown. (See the expression of
the energy or group velocity in Carcione
[2007], equations 1.148, 1.157, and 1.158.) The energy velocity
of the SV wave has the characteristics of layered effective media.
The wavefront is the energy velocity multiplied by 1 s. We have
obtained the L2 -error of the stiffness ρv2Pð45Þ, summing up over
all the samples in Table 1. The result is 10% and 5%, corresponding
to the Backus and Gassmann models, respectively. As expected, a
perfect fit for every sample at a given angle is not possible because
the procedure is based on an average fit at two perpendicular direc-
tions, i.e., along the bedding plane and along the symmetry axis.
Even at these two directions, the fit cannot be perfect due to experi-
mental errors and possible deviations of the shale elastic symmetry
from transverse isotropy.
A typical source rock in the North Sea source rocks is represented

by the Kimmeridge shale from the Draupne Formation, with a max-
imum thickness of nearly 200 m, overlain by high-velocity chalk.
The observed velocity contrast and thickness make the Kimmeridge
an easily identified seismic unit. We report the elastic constants and
properties of the single constituents in Tables 3 and 4, respectively.
The samples considered here are those of Vernik (1995) at a con-
fining pressure of 70 MPa. These samples have a porosity ranging

from 5% to 20%, i.e., some parts of the shale are hydrated. The low
velocities for illite in Table 4 take into account a fluid-softening
effect by hydration of the smectite. Figure 6 shows the Backus vel-
ocities (solid lines) as a function of kerogen content compared to the
experimental data. Part of the data, mainly vPð0Þ are outside the
Backus bounds, but the trend is to satisfy Backus theoretical curves.
The velocities versus kerogen content using the Krief/Gassmann

Table 2. Material properties of Bakken shales.

Medium v11 (km/s) v33 (km/s) v55 (km/s) v66 (km/s) v13 (km/s) ρðg∕cm−3Þ

Illite 5 4.5 2.9 3.15 1.96 2.6

Kerogen 2.7 2.7 1.5 1.5 1.7 1.4

Oila 0.73 0.73 0 0 0.73 0.9

Gasb 0.32 0.32 0 0 0.32 0.1

aOil/bitumen (McCain, 1984).
bGas at 3-km depth.

Table 3. Properties of the Kimmeridge shales.

Depth (m) c̄11(GPa) c̄33(GPa) c̄13(GPa) c̄55(GPa) c̄66(GPa) K ρðg∕cm−3Þ

2749 29.9 17.0 9.9 4.0 9.5 0.27 2.06

2768 31.9 18.9 6.0 5.5 9.1 0.4 2.22

2779 34.5 16.9 10.5 4.2 10.8 0.39 2.43

2818 40.9 28.1 15.4 7.9 14.1 0.16 2.33

2819 43.1 25.3 10.8 6.8 11.9 0.14 2.34

3574 37.8 23.6 13.7 6.6 12.1 0.24 2.35

3583 40.2 30.3 18.2 8.9 13.5 0.19 2.55

4449 48.4 34.5 14.9 9.8 14.7 0.13 2.38

Figure 2. Bulk density as a function of kerogen content. The
symbols correspond to the experimental data (Bakken shales)
(Vernik and Nur, 1992).
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equations are shown in Figure 7. We have used A ¼ 1.8 and B ¼ 8,
with A assigned to c13 in equation 7. The fit with the data is satis-
factory. The Gassmann inversion of the dry-rock moduli has not
been successful for the Kimmeridge shale because seven samples
do not satisfy the stability conditions. Because the inversion is
based on average values of the properties of illite and kerogen
(Table 4), a positive result is not guaranteed. Actually, each sample
has different properties. In particular, the inverted cm33 and cm55 are
very close to zero or are negative. Note that the Backus coefficients
c̄33 and c̄55 in equation 8 are Reuss averages, respectively. Accord-
ing to equation 12, they can be obtained from Gassmann’s relations
by assuming zero dry-rock stiffnesses. This means that an inversion
of Backus generated stiffnesses by using equation 13 gives
cm33 ¼ cm55 ¼ 0.
Figure 8 shows the Krief/Gassmann wave velocities versus oil

saturation for a Bakken shale with a porosity of 40%. The infill

is a mixture of oil and kerogen. The P-wave velocity normal to
the layering at 100% oil saturation is smaller than the S-wave
velocity along the layering. (The medium satisfies the stability con-
ditions 16 at all saturations.) The Gassmann velocities as a function
of gas saturation at 25 Hz and 1 MHz are shown in Figure 9a and b,
respectively. The porosity is 40% and the rock is saturated with 25%
kerogen (a fixed amount) and 15% of an oil/gas mixture. With these
proportions and the properties of gas at 3-km depth, there is no sig-
nificant variation of the velocities as a function of gas saturation. In
general, the velocities increase versus gas saturation due to the den-
sity effect, i.e., the density decreases with increasing gas saturation
more rapidly than the elastic constants. The effect of frequency is
also not very important for this particular case. In particular the
S-wave velocities (along the pure-mode directions) do not depend
on frequency, as expected for a Gassmann-type theory because the
variations of Kf with frequency in equation 3 do not affect the shear
stiffnesses. To see the dispersion effects, we plot in Figure 10 the
percentage variation of the velocity between 1 MHz and 25 Hz
versus gas saturation. The dispersion has a maximum at approxi-
mately 30% saturation and it is higher along the symmetry axis.
Finally, we represent the vPð0Þ∕vSð0Þ ratio as a function of gas

saturation at 25 Hz (Figure 11). At Sg ¼ 0 the shale is fully satu-
rated with 40% kerogen, and gas, when present, forms bubbles in
the kerogen material. The ratio is within the range expected for
the Bakken shales (Ye, 2010) and decreases with increasing gas
saturation.

Figure 3. Backus velocities as a function of kerogen content. The
symbols correspond to the experimental data (Bakken shales) (Vernik
and Nur, 1992). The dashed line is the result of modifying the elastic
constants of illite by assuming a lenticular textural pattern.

Figure 5. Polar representation of the energy velocity corresponding
to the second sample in Table 1. The symbols correspond to the
experimental data and the solid lines to Krief/Gassmann theory
(Figure 4).

Table 4. Material properties of Kimmeridge shales.

Medium
v11

(km/s)
v33

(km/s)
v55

(km/s)
v66

(km/s)
v13

(km/s) ρðg∕cm3Þ
Illite 4.7 4.36 2.53 2.77 2.29 2.6

Kerogen 2.6 2.6 1.2 1.2 1.97 1.4

Figure 4. Gassmann velocities as a function of kerogen, where the
dry-rock moduli have been obtained by a generalization of Krief
equations to the anisotropic case. The symbols correspond to the
experimental data (Bakken shales) (Vernik and Nur, 1992).
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DISCUSSION

The methodology used here is based on models derived from
physical principles (Kuster and Toksöz, Backus and Gassmann the-
ories), and also on empirical relationships (Brie and Krief models).
The limits of validity of the various laws and empirical models is
discussed in the following.
The Kuster and Toksöz model does not account for inclusions

(bubbles) interaction. The approximation is therefore valid only
for dilute concentrations of inclusions. This limitation can be solved
by adding the inclusions in small steps, such that the dilution
criterion is satisfied. Despite this theoretical limitation, Nakagawa
et al. (1995) have shown that in practice, the model with spherical
inclusions match data reasonably well until at least 50%
concentrations.

Figure 6. Backus velocities as a function of kerogen content. The
symbols correspond to the experimental data (Kimmeridge shales)
(Vernik, 1995). The dashed line is the result of modifying the elastic
constants of illite by assuming a lenticular textural pattern.

Figure 7. Gassmann velocities as a function of kerogen, where the
dry-rock moduli have been obtained by a generalization of Krief
equations to the anisotropic case. The symbols correspond to the
experimental data (Kimmeridge shales) (Vernik, 1995).

Figure 8. Gassmann velocities as a function of oil saturation. The
porosity is 40% and the rock is saturated with kerogen and oil.

a)

b)

Figure 9. Gassmann velocities as a function of gas saturation
at 25 Hz (a) and 1 MHz (b). The porosity is 40% and the rock
is saturated with 25% kerogen and 15% of an oil/gas mixture.

Source-rock acoustics: Gassmann versus Backus 7



Backus’s theory is valid at low frequencies, i.e., when the domi-
nant wavelength of the signal is much larger than the thickness of
the layers composing the medium. Carcione et al. (1991) evaluated
the long-wavelength approximation by using numerical modeling
experiments. An acceptable rule of thumb is that the wavelength
must be larger than eight times the layer thickness. Moreover,
the theory holds for stationarity layering; that is, in a given length
of the medium much smaller than the wavelength, the proportion of
each material is constant (periodicity is not required).
The Krief model to obtain the dry-rock elastic constants is purely

empirical and is equivalent to a critical-porosity model (Mavko
and Mukerji, 1998). The anisotropic version (7) has two empirical
parameters, A and B. The value used in the isotropic case is A ¼ 3

(Mavko and Mukerji, 1998) and corresponds to the bulk and shear
moduli. Here we have used values in the range [1,8] and this dis-
persion is due to the fact that the critical porosity value is larger for
the elastic constants describing the properties along the layering,

i.e., the rock matrix-stiffness is mainly described by these constants
at high porosity.
Gassmann’s relations are strictly valid at low frequencies, when

the fluid has enough time to achieve pressure equilibration (relaxed
regime). At high frequencies, the fluid cannot relax and this state
of unrelaxation induces pore pressure gradients. Consequently,
the rock is stiffer and the wet-rock moduli are higher than at low
frequencies. This behavior can be described by the so-called
mesoscopic-loss models, such as the one developed by White
(1975). To overcome the low-frequency limitation, we use the Brie
model to obtain an effective fluid bulk modulus at all frequencies.
Equation (3) fits data from the seismic to the ultrasonic band, par-
ticularly, the sonic-band values provided by Brie et al. (1995). It
gives Voigt’s mixing law for e ¼ 1 and an approximation to Wood’s
model for large e. The frequency dependence of this exponent
describes the mentioned stiffening effect. The exponent e can be
quantified on physical grounds by using White’s model of patchy
saturation (White, 1975). In this case, it can be assumed that the
medium has patches of gas in an oil saturated background. An
example is illustrated in Carcione et al. (2006).
Shale minerology may include kaolinite, montmorillonite-

smectite, illite, and chlorite, so the term illite as used in this study
may be representative for a mixture of clay minerals (Mondol et al.,
2008). In the Kimmeridge clay, there is also some percentage of
silty quartz (Williams et al., 2001). Moreover, as mentioned in
the previous section, the illite layers represent an assembly of plate-
lets, subject to internal hydration, so its mechanical properties such
as the stiffnesses can vary depending on the source rock. The use of
lower stiffnesses and 2.6 g∕cm3 as mineral density (as opposed to
2.7 g∕cm3 by Vernik and Nur, 1992) giving better fit to the data,
may also indicate some intrinsic porosity in the illite layers. When
modeling the effects of gas and oil generated from source rocks, we
use effective porosity for the fluid substitution (see the difference
between total and intrinsic porosity in Dvorkin et al., 2007).
A critical assumption when obtaining the properties of the pore-

filing material could be that the oil and gas are present in spherical
bubbles in the kerogen. Vernik (1994) has shown that there are
microcracks within the kerogen or at kerogen-illite interfaces when
the pore pressure exceeds the bedding-normal total stress by a few
MPa. The conclusion that oil/gas saturation makes almost no dif-
ference at constant kerogen content could only be valid for spherical
inclusions. The presence of gas from oil to gas conversion can open
microcraks and change significantly the stiffness of the rock. Hence,
an extension of this model to consider pore pressure and the pre-
sence of microcracks is needed.
An alternative model to Gassmann theory can be to consider

kerogen part of the solid. A three-phase porous medium theory
could be used, similar to that used by Carcione et al. (2000) and
Gei and Carcione (2003) to obtain the acoustic properties of shaley
sandstones and sediments saturated with clathrates, respectively. In
this case, a generalization to the anisotropic case is required. A sim-
pler model is to obtain the effective moduli of the solid component
as the arithmetic average of the upper and lower Hashin-Shtrikman
bounds and then use Brown and Korringa equations (e.g., Avseth
et al., 2005).

CONCLUSIONS

Source rocks are described by using the Backus and the Krief/
Gassmann models, assuming a transversely isotropic material

Figure 10. P-wave velocity dispersion along the symmetry axis (so-
lid line) and along the layering plane (dashed line) as a function of
gas saturation. The quantity represented is ½vPð1 MHzÞ−
vPð25 HzÞ�∕vPð25 HzÞ.

Figure 11. The ratio vPð0Þ∕vSð0Þ ratio as a function of gas satura-
tion at 25 Hz. The porosity is 40% (kerogen content in the absence
of gas).
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symmetry. Comparing the two models for Bakken shales indicates
that the Backus model provides lower and upper bounds for the
wave velocities, and that a suitable choice of parameters in the Krief
model of the dry-rock elastic constants yields a good fit of the data
by using Gassmann equations. The inverse Gassmann equations
give exactly the dry-rock elastic constants for each sample. It is
found that the dry medium is physically unstable in a few cases,
i.e., the strain energy is not positive definite. This may due to several
reasons, but mainly to the fact that the transversely isotropic sym-
metry can be a rough assumption for those cases. On the other hand,
the velocities of the Kimmeridge shale are in agreement with
Backus curves, and the Krief/Gassmann model also fits the data
successfully. In the presence of fluids, such as oil and gas, the
velocities vary considerably if the kerogen content varies, but they
are relatively constant if the kerogen content is constant and the
amount of gas and oil change.
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