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Abstract

We obtain the energy velocities and quality factors of anisotropic reservoir rocks as a function of pore pressure, partial saturation

and frequency. The model is based on Biot’s poroelastic theory for anisotropic media. The directional dependence of attenuation is

obtained by generalizing the eigenstiffnesses of the undrained medium to relaxation functions (six at most, depending on the

material symmetry). The frequency dependence of attenuation is described with constant-Q kernels associated with each

eigenstiffness, and viscodynamic functions to model the high-frequency behavior. We apply a uniform gas/fluid mixing law that

satisfies Reuss’s and Voigt’s averages at low and high frequencies, respectively, thus, simulating the unrelaxed state due to non-

uniform—patchy—saturation (segregated fluids). Pressure effects are accounted for by an effective stress law.

r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Seismic measurements of wave velocity and attenua-
tion can be interpreted to give accurate estimations of
pore pressure and fluid saturation. These measurements
can be utilized for a wide range of applications,
including rock mechanics, civil and mining engineering,
and exploration geophysics. Oil production, for in-
stance, changes the pore pressure and the stress state of
the reservoir. This phenomenon is closely related to
anisotropy in the transport properties. Fractures and
cracks have a large influence on the permeability of
reservoirs, since their orientations dictate the directions
of preferential fluid flow. Seismic measurements of wave
velocity and attenuation can be used for reservoir
characterization (provided that the effects of pore-fluid
pressure on those quantities are known). On the other
hand, pore-fluid pressure affects the aperture of fracture
and cracks. The effect of crack aperture on seismic
anisotropy is well understood. Therefore, changes in

seismic anisotropy can be used to determine changes in
pore pressure. Knowledge of pore-fluid pressure is
essential in planning the drilling process to control
potentially dangerous abnormal pressures, and to
characterize the reservoir properties.
In terms of seismic measurements, a reservoir contain-

ing a set of fractures (or cracks) can be described by a
porous medium that is effectively anisotropic. An
originally porous medium containing a set of cracks is
transversely isotropic (with the axis perpendicular to the
plane of the cracks). If the medium has additional
structure (layering, grain orientation, etc.), higher
anisotropy results (orthorhombic, monoclinic) [1].
Moreover, attenuation can be modeled by using the
concept of eigenstrain [2,3], by which a medium can be
described by at most six relaxation functions. The
resulting rock-physics model is an anisotropic, viscoe-
lastic porous medium.
Anisotropic poroelasticity was introduced by Biot

[4,5] and Biot and Willis [6] in terms of bulk parameters
of total stress and strain. To our knowledge, Brown and
Korringa [7] were the first to obtain the material
coefficients in terms of the properties of the grain,
pore-fluid and frame. Later, Carroll [8] and Thompson
and Willis [9] presented further micromechanical

*Corresponding author. Tel.: +39-040-2140345; fax: +39-040-

327521.

E-mail addresses: jcarcione@ogs.trieste.it (J.M. Carcione),

hans.b.helle@nho.hydro.com (H.B. Helle).

1365-1609/03/$ - see front matter r 2003 Elsevier Science Ltd. All rights reserved.

doi:10.1016/S1365-1609(03)00016-9



analysis of the constitutive equations. Recently, Cheng
[10] related the Hookean constants to the engineering
constants (obtained from laboratory measurements),
including explicit relations for the orthorhombic and
transverse isotropy material symmetries. This theory
assumes that the solid constituent is isotropic and that
anisotropy is due to arrangements of the grains (i.e., the
frame is anisotropic). Complete experimental data for
anisotropic media are scarce. Experiments on real rocks
can be found in Lo et al. [11], Aoki et al. [12] and
Rasolofosaon and Zinszner [13]. Wave propagation in
anisotropic poroelastic rocks is investigated by Norris
[14], Ben-Menahem and Gibson [15], Parra [16], and
Gelinsky and Shapiro [17] and Gelinsky et al. [18], who
study layered systems and the effects of anisotropic
permeability. Carcione [19,20] investigates the wave
properties in an anisotropic poroviscoelastic medium,
obtaining the expressions of measurable quantities and
fundamental relations between them.
Hudson [21] and Tod [22] use a micro-structural

theory of cracked rock to study the effects of stress and
fluid pressure on anisotropy. The pressure effects are
included via a mechanism that allows for the closure of
the cracks under applied stress, without considering
hysteresis and damage effects. Moreover, the crack
distribution is isotropic in the unstressed state.
We describe the frequency dependence of attenuation

by using a constant-Q model for the wet-rock stiffness
components [23,24]. This approach is phenomenologi-
cal, since a theory describing all the possible attenuation
mechanisms present in a real sandstone or limestone is
difficult, if not impossible, to develop. The constant-Q
kernel is the most simple model based on only one
parameter. Keller [25] has used this kernel to model
frame anelasticity in Biot’s theory for isotropic saturated
media. He obtained good fits of experimental P-wave
attenuation and velocity of sediments. Here, we assume
that low stiffness is accompanied by a low quality factor
(high attenuation). Moreover, we introduce high-fre-
quency viscodynamic effects, based on an optimal
viscodynamic function proposed by Johnson et al. [26].
Various physical processes cause anomalous pressures

in an underground fluid. The two most common causes
are cracking, i.e., oil-to-gas conversion [27], and non-
equilibrium or disequilibrium compaction [28]. Oil-to-
gas cracking may cause the pore pressure to reach or
exceed the lithostatic pressure [29]. One speaks of
disequilibrium compaction if deposition occurs so fast
that the fluids cannot be expelled from the shrinking
pore space. In this situation, the fluids carry part of the
load that would be held by grain contacts, and abnormal
pore pressures develop in the pore space. A description
of this mechanism is given by Rubey and Hubbert [30].
Pressure effects are introduced by using an effective

stress law. At constant effective pressure the acoustic (or
transport) properties of the rock remain constant. The

effective pressure depends on the difference between the
confining and pore pressures, the latter multiplied by the
effective stress coefficient. In general, this coefficient is
not equal to unity and therefore, Terzaghi’s effective
pressure law (that is, the effective pressure is the
differential pressure) is not appropriate to describe the
acoustic properties of the rock versus varying pore
pressure. However, a proper determination of the
effective stress coefficients requires measurements of
wave velocity as a function of confining and pore
pressure. To our knowledge, a complete data set has not
been published for anisotropic rocks. As Zimmerman
shows [31], the dry-rock effective stress coefficient is
equal to 1, provided the rock is composed of a linear
elastic grain material and the properties do not depend
on the length scale of the pore structure; at least this is
rigorously true for isotropic materials.
The effect of partial saturation on velocity and

attenuation depends on the frequency range. At low
frequencies, the fluid has enough time to achieve
pressure equilibration (relaxed regime). In this case,
Reuss’s model for the bulk modulus of the fluid mixture
yields results that agree with the experiments. At high
frequencies the fluid cannot relax and this state of
unrelaxation induces a stiffening of the pore material,
which increases the wave velocity considerably [32]. This
effect implies an uneven distribution of fluids in the pore
space, which is normally called patchy saturation. In this
case Reuss’s model is not appropriate and, in general,
Hill’s average is used to model the wave velocities at
ultrasonic (laboratory) frequencies [33]. No microstruc-
tural theory is able to predict the behavior at
intermediate frequencies. In the present model, we use
a modified empirical fluid mixing law proposed by Brie
et al. [34], which gives Reuss’s modulus at low
frequencies and Voigt’s modulus at high frequencies.
In the following, the spatial variables x; y and z are

replaced by xi; where the subscripts i; j take the value 1,
2, 3, respectively, a partial derivative with respect to a
variable xi is denoted with @i; and the upper case indices
I ; J ¼ 1;y; 6 indicate the shortened matrix notation
where pairs of subscripts ði; jÞ are replaced by a single
number (I or J) according to the correspondence (11)-
1, (22) - 2, (33) - 3, (23) = (32) - 4, (13) = (31) -
5, (12) = (21) - 6. Matrix transposition is denoted by
the superscript ‘‘?’’ and complex conjugation by the
superscript ‘‘* ’’.

2. Stress–strain relations

The constitutive equations for anisotropic poroelasti-
city were introduced by Biot [4,5]. They can be expressed
in terms of the microstructural properties as [10]

T ¼ Cu � S; ð1Þ
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where

T? ¼ ðt1; t2; t3; t4; t5; t6;�pÞ; ð2Þ

is the stress array, with tI the components of the total
stress and p the fluid pressure

S? ¼ ðe1; e2; e3; e4; e5; e6;�zÞ; ð3Þ

is the strain array, with eJ ðeJ ¼ 2eij ; iajÞ the strain
components of the porous frame and z the variation of
fluid content. The undrained stiffness matrix is given by

Cu ¼

cu11 cu12 cu13 cu14 cu15 cu16 Ma1
cu12 cu22 cu23 cu24 cu25 cu26 Ma2
cu13 cu23 cu33 cu34 cu35 cu36 Ma3
cu14 cu24 cu34 cu44 cu45 cu46 Ma4
cu15 cu25 cu35 cu45 cu55 cu56 Ma5
cu16 cu26 cu36 cu46 cu56 cu66 Ma6

Ma1 Ma2 Ma3 Ma4 Ma5 Ma6 M

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;

ð4Þ

where

cuIJ ¼ cIJ þ MaIaJ ð5Þ

(the superscript ‘u’ denotes undrained), cIJ are the dry-
rock stiffness components, M is the fluid/solid coupling
modulus and aI are the effective stress coefficients. The
components of the matrix given in Eq. (4) can be
expressed in terms of the properties of the frame and of
the single constituents (see the appendix).
The variation of fluid content is given by z ¼

�div½fðuf � uÞ�; where f is the porosity and uf and u

are the average fluid and solid displacements vectors,
respectively. The time rate of the strain array can be
written as

@tS ¼ r? � V; ð6Þ

where

V 
 ðv1; v2; v3; q1; q2; q3Þ
? ð7Þ

with v and q denoting the solid and fluid (relative to the
solid) particle velocities, respectively [q ¼ f@tðuf � uÞ
and v ¼ @tu], and

r ¼

@1 0 0 0 @3 @2 0

0 @2 0 @3 0 @1 0

0 0 @3 @2 @1 0 0

0 0 0 0 0 0 @1

0 0 0 0 0 0 @2

0 0 0 0 0 0 @3

0
BBBBBBBBB@

1
CCCCCCCCCA
: ð8Þ

Form (6) relating the particle velocities to the strain
components, and the differential operator (8) are
generalizations of those used by Auld [35].
Biot [5] developed a generalization of the constitutive

equations to the viscoelastic case by invoking the
correspondence principle and using relaxation functions

based on mechanical models of viscoelastic behavior.
Viscoelasticity is due to a variety of dissipation
mechanisms. One of these mechanisms is the squirt-flow
[5,36] by which a force applied to the area of contact
between two grains produces a displacement of the
surrounding fluid in and out of this area. Since the fluid
is viscous, the motion is not instantaneous and energy
dissipation occurs. Other important attenuation me-
chanisms are discussed by Biot [37]. Using the corre-
spondence principle [38], we generalize to relaxation
functions the elements of matrix Cu and Eq. (1) becomes

T ¼ W*@tS; ð9Þ

where W is the relaxation matrix, and ‘‘* ’’ denotes time
convolution and matrix product. Matrix Cu is obtained
from W when t-0 if we consider that the elastic Biot’s
poroelastic theory corresponds to the unrelaxed state.

3. Biot–Euler equation

The dynamic equations describing wave propagation
in heterogeneous porous media were obtained by Biot
[37]. They are

@1t1 þ @2t6 þ @3t5 ¼ r@tv1 þ rf@tq1 þ f1; ð10Þ

@1t6 þ @2t2 þ @3t4 ¼ r@tv2 þ rf@tq2 þ f2; ð11Þ

@1t5 þ @2t4 þ @3t3 ¼ r@tv3 þ rf@tq3 þ f3; ð12Þ

where f denotes body force and r ¼ ð1� fÞrs þ frf is
the composite density, with rs and rf the solid and fluid
densities. On the other hand, the dynamic version of
Darcy’s law, generalized to the anisotropic case, can be
expressed as

�@1p ¼ rf@tv1 þ c1 *@tq1; ð13Þ

�@2p ¼ rf@tv2 þ c2 *@tq2; ð14Þ

�@3p ¼ rf@tv3 þ c3 *@tq3; ð15Þ

where cl ; l ¼ 1;y; 3 are time-dependent functions
related to Biot’s viscodynamic effects [37]. In matrix
form Eqs. (10)–(15) can be written as

r � T ¼ R � @tVþ F; ð16Þ

where

F 
 ðf1; f2; f3; 0; 0; 0; 0Þ
? ð17Þ

and

R ¼

r 0 0 rf 0 0

0 r 0 0 rf 0

0 0 r 0 0 rf
rf 0 0 c1 * 0 0

0 rf 0 0 c2 * 0

0 0 rf 0 0 c3 *

0
BBBBBBBBB@

1
CCCCCCCCCA

ð18Þ
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is the density matrix operator. We refer to (16) as the
Biot–Euler equation.

3.1. Time-harmonic fields

Let us consider a time-harmonic field with a time
dependence expðiotÞ; where o is the angular frequency,
and i ¼

ffiffiffiffiffiffiffi
�1

p
: The stress–strain relation (9) becomes

T ¼ C � S; C ¼ F½@tW�; ð19Þ

where C is the complex and frequency-dependent
stiffness matrix, and the operator F denotes time
Fourier transform. Eq. (6) becomes

ioS ¼ r? � V: ð20Þ

Substituting Eq. (20) into Eq. (19) gives

ioT ¼ C � ðr? � VÞ; ð21Þ

On the other hand, the Biot–Euler equation (16)
becomes

r � T ¼ ioR � Vþ F; ð22Þ

where

R ¼

r 0 0 rf 0 0

0 r 0 0 rf 0

0 0 r 0 0 rf
rf 0 0 Y1=ðioÞ 0 0

0 rf 0 0 Y2=ðioÞ 0

0 0 rf 0 0 Y3=ðioÞ

0
BBBBBBBBB@

1
CCCCCCCCCA

ð23Þ

is the density matrix, and

YlðoÞ ¼ F½@tcl �; ð24Þ

are Biot’s viscodynamic operators for the x; y; and z

directions. Their explicit form is given in Section 3.3.

3.2. Pore-fluid pressure effects

Let us assume a rock—a sandstone or a limestone—at
depth z: The lithostatic pressure pc for an average
sediment density %r is equal to pc ¼ %rgz; where g is the
acceleration of gravity. On the other hand, the hydro-
static pore pressure is approximately pH ¼ %rwgz; where
rw is the density of water.

3.2.1. Stiffness and porosity versus pressure

A proper analysis of the dependence of wave proper-
ties on pore pressure and confining stress in anisotropic
media requires a complete experimental data set, i.e.
dry-rock velocity measurements versus confining stress,
and wet-rock velocity measurements versus pore pres-
sure and confining stress. These data are necessary to
calculate the effective stress coefficients [39]. A complete
data set for anisotropic media is, to our knowledge, not
yet available in the literature.

Hooke’s law (1) for anisotropic poroelastic media can
be rewritten as [10]

tI ¼ cIJeJ � aI p; I ; J ¼ 1;y; 6: ð25Þ

In this context, the effective stress is given by teI ¼ cIJeJ ;
such as

teI ¼ tI þ aI p: ð26Þ

The total stress is decomposed into an effective stress,
which acts on the frame, and into a hydrostatic stress,
which acts on the fluid. The effective-stress concept
means that the response of the saturated porous medium
is described by the response of the dry porous medium
with the applied stress replaced by the effective stress.
The problem to establish an effective stress law for the

anisotropic case is that an hydrostatic loading does not
compensate the variations in pore pressure to keep the
dry-rock moduli unchanged. For instance, two different
confining pressure should be associated with c11 and c33:
The problem resides in determining the ratio between
these two confining pressures and, in general, the
pressures associated with the other elastic moduli.
Experiments are required to establish the proper
effective stress law. In the isotropic case, the dry-rock
bulk modulus can be shown to depend only on the
differential pressure pd ¼ pc � pH [31,20]. An approx-
imation is to use a single pressure for all moduli, and
interpret this pressure as a mean pressure. We assume
the same dependence for the dry-rock elastic constants
and density. We consider the following functional form
for these constants and the density as a function of
confining pressure:

cIJ ¼ c0 þ c1pc þ c2 expð�c3pcÞ; ð27Þ

r ¼ r0 þ r1pc þ r2 expð�r3pcÞ; ð28Þ

where ck and rk; k ¼ 1;y; 3; are coefficients obtained by
fitting the experimental data. Then, the elastic constants
and density of the frame versus pore and confining
pressures are obtained from Eqs. (27) and (28) by
substituting pc with pd; and the wet-rock complex
stiffness constants are obtained from the stress–strain
relation (19).
Changes in porosity are not as important as changes

in stiffness. In this sense, porosity-based methods can be
highly unreliable. In fact, for changes of the confining
pressure from 0 to 100 MPa; the changes in the porosity
of Navajo sandstone, Weber sandstone and Berea
sandstone are only 1.7%, 7% and 4.5%, respectively,
[40]. High pore pressure implies opening of microcracks
(compliant pores), and this has a greater influence on the
stiffnesses than on the porosity. We assume that the
effective stress coefficient for porosity is equal to 1
[31,40].
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3.2.2. Permeability and viscosity versus pressure

The permeability considered in the viscodynamic
dissipation (see next section) is the global permeability,
i.e., that related to the connected pores and cracks.
Pressure effects are more pronounced in rocks where
permeability is due to fractures. The effects are small for
stiff pores between spherical grains. The porosity at
grain contacts in sandstones can be viewed as a fracture
porosity. Thus, the effects can be large or small
depending on whether these contacts maintain inter-
connectivity of the pore network [41].
The permeability can be obtained from the classical

Kozeny–Carman relation. For a packing of spheres and
cylindrical pores, the eigenvalues of the permeability
tensor in its natural coordinate system can be expressed
by [41,42]

kl ¼
Blðf� fpÞ

3

ð1� fþ fpÞ
2
; l ¼ 1;y; 3; ð29Þ

where the coefficients Bl and f depend on pore and
confining pressure. Following Mavko and Nur [43], we
have introduced a percolation porosity, fp:
Gangi [44] obtained an empirical relation between

permeability and confining pressure:

BlðpcÞ ¼ Bl0 1�
pc

p1

	 
m� �3
; ð30Þ

where m; Bl0 and p1 are constants. We define the
effective stress as the confining pressure that would give
the same value of kl : klðpe; p ¼ 0Þ ¼ kðpc; pÞ: In the case
of transverse isotropy, discussed in the previous section,
we use the effective stress coefficient [40]

nk ¼ 1�
fð1� aÞ

6ða� fÞ þ f
; ð31Þ

where a ¼ ð2a1 þ a3Þ=3: Using the effective pressure
pe ¼ pc � nkp; we substitute pc by pe in Eq. (30) to
obtain

BlðpcÞ ¼ Bl0 1�
pe

p1

	 
m� �3
: ð32Þ

We assume that the viscosity of water is independent
of pressure. For the gas viscosity Zg we assume the
equation proposed by Luo and Vasseur [29]. It depends
on pore pressure and temperature T :

Zg½Pa s� ¼ 10�5 þ 1:5� 10�8
p

%rg

� 2:2� 10�7ðT � T0Þ; ð33Þ

where T0 is the surface temperature.

3.3. Viscodynamic and stiffness attenuation

Attenuation can be related to the strain energy
(stiffness dissipation) and the kinetic energy (viscody-
namic dissipation). In natural porous media such as

sandstones, wave dissipation is due to complex pore
shapes and to the presence of clay. This complexity gives
rise to a variety of relaxation mechanisms. Stoll and
Bryan [45] show that attenuation is controlled by both
the anelasticity of the skeleton (friction at grain
contacts) and by viscodynamic causes. Stiffness dissipa-
tion is described in the stress–strain relation, and
viscodynamic dissipation is a dynamic permeability
effect due to the frequency-dependent interaction
between the pore fluid and the solid matrix [26].
In the low-frequency range [37,46], i.e., for frequen-

cies lower than oc ¼ minðolÞ; where ol ¼ Z=ðmlklÞ; one
has

clðtÞ ¼ mldðtÞ þ
Z
kl

HðtÞ; ð34Þ

where ml ¼ Tlrf=f; with Tl the tortuosity, Z is the
dynamic viscosity, kl ðl ¼ 1; 2; 3Þ are the principal
components of the permeability tensor, dðtÞ is Dirac’s
function, and HðtÞ is the Heaviside function. From
Eq. (24),

YlðoÞ ¼ ioml þ
Z
kl

: ð35Þ

In terms of mechanical models, Eq. (35) represents a
Kelvin–Voigt element [38].
In the high-frequency range ðoXocÞ; the viscody-

namic operator is strongly influenced by the pore
geometry, and a precise evaluation of its frequency
dependence requires an experimental determination [46].
Johnson et al. [26] obtained an expression for the
viscodynamic function, which provides a good descrip-
tion of both the magnitude and phase of the exact
dynamic tortuosity of large networks formed from a
distribution of random radii. The viscodynamic function
are

FlðoÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

4iT2
l kl

xlL2
l f

s
; xl ¼

Zf
oklrf

; l ¼ 1;y; 3;

ð36Þ
where Ll is a geometrical, and Ll is a geometrical
parameter, with 2=Ll being the surface-to-pore volume
ratio of the pore–solid interface. The following relation
between Tl ; kl ; and Ll can be used: xlTlki=fL2

l ¼ 1;
where xl describes the shape of the pore network xl ¼ 12
for a set of oblique slabs of fluid, and xl ¼ 8 for a set of
non-intersecting oblique tubes. The new viscodynamic
components are

YlðoÞ ¼ ioml þ
ZFlðoÞ
kl

: ð37Þ

Tortuosity is assumed to be independent of confining
and pore pressures.
The description of viscoelastic dissipation is phenom-

enological. Constant-Q models provide a simple para-
meterization of seismic attenuation in rocks. By
reducing the number of parameters they allow an
improvement of seismic inversion. Moreover, there is
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physical evidence that attenuation is almost linear with
frequency (therefore Q is constant) over many octaves.
Bland [47] and Kjartansson [23] discuss a linear
attenuation model with the required characteristics,
but the idea is much older (see, e.g. [48]).
The attenuation kernels corresponding to a Q

independent of frequency are

Mlðo;QlÞ ¼
io
o0

	 
2gl

;

gl ¼
1

p
tan�1

1

Ql

	 

; l ¼ 1;y6; ð38Þ

where Ql is the quality factor and o0 is a reference
frequency. Attenuation is modeled by making complex
and frequency dependent the eigenstiffnesses of the
elasticity matrix (4), according to the theory developed
by Carcione and Cavallini [49]. The method is illustrated
in Section 5.

3.4. Partial saturation effects

The composite properties of the mixture hydrocar-
bon/water depend on the relative concentrations and on
the properties of the constituents. They are

Kf ¼ ðSgK
�1
g þ SwK�1

w Þ�1 ð39Þ

(Reuss’s model) and

rf ¼ Sgrg þ Swrw; ð40Þ

where Kg and Kw are the bulk moduli of the
hydrocarbon and water, respectively, and rg is the
density of the hydrocarbon. We assume that the fluid
viscosity is given by [50]

Z ¼ Zg
Zw
Zg

 !Sw

; ð41Þ

where Zg and Zw are the viscosities of the hydrocarbon
and water, respectively. Eq. (41) is a good approxima-
tion for most values of the saturations.
Eq. (39) corresponds to the low-frequency range.

When the fluids are not mixed in the pore volume, but
distributed in patches, the effective bulk modulus of the
fluid at high frequencies is higher than that predicted by
Eq. (39). We use an empirical mixing equation intro-
duced by Brie et al. [34]. The effective fluid bulk
modulus is given by

Kf ¼ ðKw � KgÞðSwÞ
b þ Kg; ð42Þ

where b ¼ ðf0=f Þ0:34 is an empirical parameter, with f0
being a reference frequency (f0 ¼ 1 MHz in the exam-
ple). The exponent 0.34 fits data from the seismic to the
ultrasonic band, particularly the sonic-band values
provided by Brie et al. [34]. Eq. (42) gives Voigt’s
mixing law for b ¼ 1 and a good approximation of
Reuss’s model for b ¼ 40:

The gas density and bulk modulus as a function of
pressure and temperature are calculated using the van
der Waals equation [51]. We assume a constant sediment
burial rate, b; and a constant geothermal gradient, G:
Hence, the temperature variation of a particular
sediment volume is

T ¼ T0 þ Gz; z ¼ bt ð43Þ

with t is deposition time. Typical values of G range from
10 to 30�C=km; while b may range between 0.05 and
3 km=m:y: ðm:y: ¼ million yearsÞ [52].
For an anisotropic porous medium, each of the

permeability components kl may have a different
functional relationship to Sw: Hence, use of the relative
permeability concept is not permitted [53,54]. Because
there are no experimental data (Bear, personal commu-
nication), we assume an ad hoc relation between those
components, based on the following qualitative obser-
vation in rocks saturated with water and gas. Let us
assume transverse isotropy and k1 > k3 at full water
saturation, due to pore cross sections which are larger in
the x direction. As water saturation is reduced, and the
larger pores drained first, a saturation is reached at
which k1 ¼ k3: Then, as saturation is further reduced,
k1ok3: At the other end (full gas saturation), we again
have k1 > k3: This behavior can be modeled with the
following relations between permeability and saturation:

B10 ¼ b1½1� ð1� 0:3aÞ sinðpSwÞ� ð44Þ

and

B30 ¼ ab1½1� 0:5 sinðpSwÞ� ð45Þ

(see Eq. (32)), where b1 is a constant and a is a
permeability-anisotropy parameter. Note that for Sw ¼
0 or 1, B30=B10 ¼ a: Eqs. (44) and (45) are purely
hypothetical and serve for the example illustrated in
Section 5 to model the qualitative behavior mentioned
above. Those equations model the rotation of the
ellipses of directional permeability versus saturation
obtained by Bear et al. [54] by means of numerical
experiments.

4. Expression of measurable quantities

For homogeneous waves, the propagation and
attenuation directions coincide, and the complex wave-
vector can be written as

k ¼ ðk� iaÞ #j 
 k #j; ð46Þ

where k is the complex wavenumber, k is the real
wavenumber, a is the attenuation factor, and

#j ¼ ðl1; l2; l3Þ ð47Þ

defines the propagation direction through the directions
cosines l1; l2 and l3:
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The Christoffel equation is [20]

ðR�1 � C � V2I6Þ � V ¼ 0; ð48Þ

where

C ¼ L � C � L? ð49Þ

is the Christoffel matrix,

V ¼ o=k ð50Þ

is the complex velocity,

L ¼

l1 0 0 0 l3 l2 0

0 l2 0 l3 0 l1 0

0 0 l3 l2 l1 0 0

0 0 0 0 0 0 l1

0 0 0 0 0 0 l2

0 0 0 0 0 0 l3

0
BBBBBBBBB@

1
CCCCCCCCCA
; ð51Þ

and I6 denotes the six-dimensional unit matrix.
Making the determinant zero, Eq. (48) gives the

following dispersion relation:

detðR�1 � C � V2I6Þ ¼ 0: ð52Þ

The eigensystem formed by Eqs. (48) and (52) gives six
eigenvalues and their corresponding eigenvectors. Four
of them correspond to the wave modes, and the others
equal zero. These modes correspond to the fast and slow
quasi-compressional waves, and the two quasi-shear
waves. Matrix C has therefore rank four, despite its 6�
6 dimension. Three of the rows are linearly dependent,
and this is somehow related to the space dimension.
The slowness and attenuation vectors for homoge-

neous waves can be expressed in terms of the complex
velocity as

s ¼ Re
1

V

	 

#j ð53Þ

and

a ¼ �o Im
1

V

	 

#j; ð54Þ

respectively [ð1=V Þ is the reciprocal of the phase
velocity].
Following Carcione [20], the time-average kinetic

energy density is

/KS ¼
1

4
ReðV*

?
� R � VÞ ð55Þ

and the time-average strain energy density is

/SS ¼
1

4
jV j�2ReðV 2V? � R � VnÞ; ð56Þ

where V are the eigenvectors of R�1 � C: Eq. (56) is
formally similar to the strain energy density in single-
phase anisotropic-viscoelastic media, where /SS ¼
1
4rsjV j�2V 2jVj2 [2]. In the single-phase medium, every
particle velocity component is equally weighted by the
density. Note that, when the medium is lossless, V is real

and the strain energy density equals the kinetic energy
density.
The stored energy density is then

/ES ¼
1

4
Re 1þ

V 2

jV j2

	 

V? � R � Vn

� �
: ð57Þ

When the medium is lossless, V and R are real, and
/ES is equal to twice the average kinetic energy (55).
The average power flow can be written as

/PS ¼
1

2
Re½V�1V? � L � C � ð#eiU

i? Þ � Vn�; ð58Þ

where #ei is the unit Cartesian vector and the Einstein
convention for repeated indices is used; Ui are 6� 7
matrices with most of their elements equal to zero,
except U1

11; U1
26; U1

35; U1
47; U2

16; U2
22; U2

34; U2
57; U3

15; U3
24;

U3
33 and U3

67; which are equal to 1.
The wave surface is the locus of all endpoints of the

energy velocity vectors (it is a surface in velocity space).
The wavefront generated by a point source (a surface in
location space) at time t is the locus of the endpoints of
all location vectors obtained by multiplying all energy
velocity vectors with t: The energy velocity is defined as
the ratio of the average power flow density /PS to the
total energy density /ES: Since this is equal to the sum
of the average kinetic and strain energy densities /KS
and /SS; the energy velocity is

Ve ¼
/PS

/K þ SS
: ð59Þ

The dissipated energy can be expressed as

/DS ¼
1

2
Im �1þ

V 2

jV j2

	 

V? � R � Vn

� �
: ð60Þ

The quality factor for homogeneous waves is

Q ¼
2/SS
/DS

¼
ReðV 2V? � R � VnÞ

2 ImðV ÞReðVV? �R � VnÞ
: ð61Þ

If there are no losses due to viscosity effects (R is real),
V? � R � Vn is real and

Q ¼
ReðV 2Þ
ImðV 2Þ

; ð62Þ

as in the single-phase case [2].

5. Example

We consider the dry-rock measurements in transver-
sely isotropic Berea sandstone obtained by Lo et al. [11].
(Dry-rock stiffnesses can also be obtained from aniso-
tropic models of cracked rocks [55–57].) Although Lo
et al.’s data do not reflect the situation at depth, since
the experiments are ultrasonic measurements, we
assume that at seismic frequencies their sample corre-
sponds to a fractured formation, and that the effective
medium assumption is valid from the seismic range to
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the ultrasonic frequency range. As long as the aniso-
tropy of elasticity and that of permeability have the
same cause, they must have some symmetry elements in
common. Since the permeability tensor is of rank two
and the elasticity tensor is of rank four, the symmetry of
permeability must be a subset of the symmetry of
elasticity. In the case of anisotropy caused by fractures,
the principal directions of the permeability tensor
coincide with the corresponding axes of the elasticity
tensor, but this may not be the case in other rocks [13].
Note that the forms (18) and (23) of the density matrix
imply that the permeability tensor is expressed in its
principal coordinate system, but the elasticity matrix (4)
has not such restriction.
Fig. 1 shows the best-fit curves to the dry-rock elastic

constants (a), density (b), and porosity (c) versus
confining pressure pc: We get

c11 ¼ 32:74þ 0:043pc � 9:97 expð�0:06pcÞ;

c33 ¼ 31:87þ 0:035pc � 14:59 expð�0:056pcÞ;

c44 ¼ 14:93þ 0:011pc � 5:58 expð�0:053pcÞ;

c12 ¼ 3:06þ 0:01pc � 0:26 expð�0:25pcÞ;

c13 ¼ 4:68� 0:015pc � 1:7 expð�0:036pcÞ;

r ¼ 2:1441þ 0:00038pc � 0:045 expð�0:0226pcÞ;

f ¼ 1� r=rs; ð63Þ

where the elastic constants are given in GPa, the density
in g=cm3 and the confining pressure in MPa. Note that,
knowing the grain density rs; we can estimate porosity
versus confining pressure, because r ¼ ð1� fÞrs for the
dry rock (assuming that rs is pressure independent). For
quartz, rs ¼ 2:65 g=cm3; and f ¼ 17% at 5 MPa and
f ¼ 15% at 100 MPa: Hence, changes in porosity are
not very significant.
Polar representations of the dry-rock energy velocities

are shown in Figs. 2a and b for pc ¼ 0 MPa and
100 MPa; respectively. The curves correspond to a
plane perpendicular to the plane of isotropy. Only one
quarter of the curves are displayed, because of
symmetry. The tick marks indicate the polarization
directions, with the points uniformly sampled as a
function of the phase angle. Note that, as expected, the
deviations from isotropy is stronger at zero confining
pressure.
Let us consider the presence of fluid, and obtain the

acoustic properties as a function of pore pressures and
saturation. We assume 3 km depth. If the average
sediment density is 2:4 g=cm3; the confining pressure is
pc ¼ 70:6 MPa and the hydrostatic pressure is pH ¼
30:6 MPa (assuming rw ¼ 1040 kg=m3). With a surface
temperature of 25�C and a geothermal gradient G ¼
25�C=km; T ¼ 100�C. We assume that the rock is
saturated with water and gas. The properties of water
are assumed pressure independent. Water properties are
Kw ¼ 2:5 GPa; rw ¼ 1040 kg=m3 and Zw ¼ 1 cP; while

gas properties at hydrostatic pressure are Kg ¼
0:059 GPa; rg ¼ 116 kg=m3 and Zg ¼ 0:013 cP: The
grain bulk modulus is Ks ¼ 39 GPa; the grain density
is rs ¼ 2650 kg=m3; and the tortuosites are T1 ¼ T2 ¼
2 and T3 ¼ 5: The parameters involved in the perme-
ability expressions are fp ¼ 0:04;m ¼ 0:26; p1 ¼
10 GPa; b1 ¼ 6� 10�11 m2; and a ¼ 0:2: Fig. 3 shows
the permeability components versus confining pressure
(a) (at full water saturation), and saturation (b) (at
hydrostatic pressure).

Fig. 1. Best-fit curves to the dry-rock elastic constants (a), density (b)

and porosity (c) of Berea sandstone versus confining pressure pc: The
experimental data are from Lo et al. [11].
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To introduce viscoelastic attenuation, we use a
constitutive equation based on the fact that each
eigenvector (called eigenstrain) of the stiffness matrix
defines a fundamental deformation state of the medium.
The six eigenvalues (called eigenstiffnesses) represent the
intrinsic elastic parameters. In the elastic case the strain
energy is uniquely parameterized by the six eigenstiff-
nesses. These ideas date back to the middle of the 19th
century when Lord Kelvin introduced the concept of
‘‘principal strain’’ (eigenstrain in modern terminology)
to describe the deformation state of a medium [58].
From this fact and the correspondence principle,
Carcione and Cavallini [49] inferred that in a real

medium the rheological properties depend essentially on
six relaxation functions, which are the generalization of
the eigenstiffnesses to the viscoelastic case. The existence
of six or fewer complex moduli depends on the
symmetry class of the medium.
Let us illustrate the method to model stiffness

(or viscoelastic) attenuation for a pore pressure of
68 MPa; full water saturation and f ¼ 25 Hz: Ac-
cording to Eqs. (63), the stiffness matrix of the
drained porous medium (cIJ ; see the Appendix A) in
Voigt notation is

31:8 3:34 4:28 0 0 0

3:34 31:8 4:28 0 0 0

4:28 4:28 29:4 0 0 0

0 0 0 13:8 0 0

0 0 0 0 13:8 0

0 0 0 0 0 14:2

0
BBBBBBBBB@

1
CCCCCCCCCA
;

in GPA. They are used to calculate the elements of
matrix Cu; which correspond to the high-frequency

Fig. 2. Polar representations of the dry-rock energy velocities for pc ¼
0 MPa (a) and pc ¼ 100 MPa (b). qP is the quasi-compressional wave,

qS is the quasi-shear wave and S is the cross-plane shear wave. The

curves correspond to a plane perpendicular to the plane of isotropy.

Only one-quarter of the curves are displayed because of symmetry. The

tick marks indicate the polarization directions.

Fig. 3. Permeability components versus pressure, at full water satura-

tion (a), and versus water saturation, at hydrostatic pressure (b). The

solid and dashed lines correspond to k1 and k3; respectively.
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(unrelaxed) limit. It gives

Cu ¼

36:9 8:43 9:46 0 0 0 7:67

8:43 36:9 9:46 0 0 0 7:67

9:46 9:46 34:7 0 0 0 7:81

0 0 0 13:8 0 0 0

0 0 0 0 13:8 0 0

0 0 0 0 0 14:2 0

7:67 7:67 7:81 0 0 0 11:6

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;

in GPa. In order to apply Kelvin’s formulation, Hooke’s
law has to be written in tensorial form. This implies
multiplying the Eqs. (44), (55) and (66) elements of
matrix Cu by a factor 2 [49] and taking the leading
principal submatrix of order 6 (the upper-left 6 � 6
matrix). This can be done for the undrained porous
medium, for which the variation of fluid content z is
equal to zero (closed system). Let us call this new 6� 6
matrix (tensor) %Cu: This matrix can be diagonalized to

obtain

%Cu ¼ A � K � A?; ð64Þ

where K ¼ diagðl1; l2; l3; l4; l5; l6Þ
? is the eigenvalue

matrix, and A is the matrix formed with the eigenvectors
of %Cu; or more precisely, with the columns of the right
(orthonormal) eigenvectors (note that the symmetry of
%Cu implies A�1 ¼ A?). The eigenstiffnesses are L1 ¼
54:4 GPa; L2 ¼ L3 ¼ 28:4 GPa; L4 ¼ L5 ¼ 27:6 GPa;
and L6 ¼ 25:6 GPa:
In virtue of the correspondence principle and its

application to Eq. (64) we introduce the viscoelastic
stiffness tensor

%C ¼ A � KðvÞ � A?; ð65Þ

where KðvÞ is a diagonal matrix with entries

lðvÞI ðoÞ ¼ lI MI ðoÞ; I ¼ 1;y; 6: ð66Þ

The quantities MI are complex and frequency-depen-
dent dimensionless moduli, given by Eq. (38). A quality

Fig. 4. Polar representations of the wet-rock energy velocities and quality factors for p ¼ pH (a and c) and p ¼ 68 MPa (b and d), with Sw ¼ 15% and

f ¼ 25 Hz:
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factor QI is assigned to each modulus MI : To recover
Voigt’s notation, we should divide Eqs. (44), (55) and
(66) elements of matrix %C by a factor 2. This gives the
complex matrix C:
In transversely isotropic porous media there are five

distinct eigenvalues, and therefore five complex moduli
(see Carcione and Cavallini [49] for the single-phase
case). We assume that the dimensionless quality factors
are defined as QI ¼ ðlI=l1ÞQ1; I ¼ 1;y; 6; where Q1

corresponds to the quasi-dilatational mode. Let us
consider Q1 ¼ Q0 ¼ 30 (for all cases) and o0 ¼
1 MHz; such that

Q1 ¼
L1ðz; pÞ
L1ðz; pHÞ

� �
Q0: ð67Þ

This choice implies that the higher the stiffness, the
higher the quality factor (i.e., the harder the medium,
the lower the attenuation), and that attenuation
increases with increasing pore pressure. Then, matrix

C is given by

26:6þ i1:26 8:11þ i0:008 9:06þ i0:1

8:11þ i0:008 26:6þ i1:26 9:06þ i0:1

9:06þ i0:1 9:06þ i0:1 24:6þ i1:22

0 0 0

0 0 0

0 0 0

7:67 7:67 7:81

0
BBBBBBBBBBB@

0 0 0 7:67

0 0 0 7:67

0 0 0 7:81

8:86þ i0:58 0 0 0

0 8:86þ i0:58 0 0

0 0 9:24þ i0:59 0

0 0 0 11:6

1
CCCCCCCCCCCA
;

in GPa.

Fig. 5. Polar representations of the wet-rock energy velocities and quality factors for Sw ¼ 0 (a and c) and Sw ¼ 100% (b and d), with p ¼ 68 MPa

and f ¼ 25 Hz:
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We consider three cases: (i) p ¼ pH and p ¼ 68 MPa;
with Sw ¼ 15% and f ¼ 25 Hz (Figs. 4 and 7); (ii) Sw ¼
0 and Sw ¼ 100%; with p ¼ 68 MPa and f ¼ 25 Hz
(Fig. 5); and (iii) f ¼ 25 Hz and f ¼ 1 MHz; with p ¼
68 MPa and Sw ¼ 15% (Fig. 6). The figures show polar
representations of the energy velocities and quality
factors for a vertical plane containing the symmetry
axis. Only one-quarter of the curves are displayed
because of symmetry. The compressional waves are
denoted by qP and qP2 and the shear wave by qS. The
shear wave, denoted by S, is the pure cross-plane mode.
At high pore pressure (microcracks open) the

velocities decrease and the medium shows a higher
degree of anisotropy and shear-wave splitting than at
low pore pressure. Moreover, attenuation increases for
increasing pore pressure (Fig. 4).
Substitution of gas by water implies higher qP-wave

velocities and lower shear-wave velocities—the latter
behavior is due to the well-known density effect.
Moreover, attenuation is lower for full gas saturation
than for full water saturation (Fig. 5).
At constant fluid saturation (in particular for

Sw ¼ 15%) and high pore pressure (Fig. 6), the velocity

dispersion is important when going from the seismic
band to the ultrasonic band (approximately 600 m=s for
the qP wave and 400 m=s for the shear waves). This in
part due to viscoelasticity and in part due to patchy-
saturation effects (see Eq. (42)). The slow qP wave has a
velocity of hundred of m/s at 1 MHz: Moreover, qS and
S attenuation increases more than qP attenuation.

6. Conclusions

We have obtained the phase velocity, attenuation
factor, energy velocity and quality factor of an
anisotropic porous rock as a function of pore pressure
and water saturation. For homogeneous plane waves,
they can be explicitly written in terms of the complex
velocity, eigenvectors of the Christoffel matrix, stiffness
and density matrices, and direction cosines defining the
propagation direction. The expressions are easily
programmed, and can be used to analyze the acoustic
properties of reservoir rocks as a function of confining
and pore pressures, saturation and frequency. The
theory can be used to predict pore pressure and
saturation from seismic data.

Fig. 6. Polar representations of the wet-rock energy velocities and quality factors for f ¼ 25 Hz (a and c) and f ¼ 1 MHz (b and d), with p ¼
68 MPa and Sw ¼ 15%:
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Appendix A. Stiffness components of anisotropic poroe-

lasticity

Cheng [10] gives the stiffness matrix Cu in terms of
properties of the grain, porefluid and skeleton:

cIJ stiffness components of the drained skeleton:

Ks bulk modulus of the grain:

Kf bulk modulus of the porefluid:

f porosity:

Then, under the assumptions of micro-homogeneity
and micro-isotropy, we have

cuIJ ¼ cIJ þ MaIaJ ; ðA:1Þ

M ¼
Ks

ð1� %K=KsÞ � fð1� Ks=Kf Þ
; ðA:2Þ

%K ¼
1

9
½c11 þ c22 þ c33 þ 2ðc12 þ c13 þ c23Þ�; ðA:3Þ

a1 ¼ 1� ðc11 þ c12 þ c13Þ=ð3KsÞ;

a2 ¼ 1� ðc12 þ c22 þ c23Þ=ð3KsÞ;

a3 ¼ 1� ðc13 þ c23 þ c33Þ=ð3KsÞ;

a4 ¼ �ðc14 þ c24 þ c34Þ=ð3KsÞ;

a5 ¼ �ðc15 þ c25 þ c35Þ=ð3KsÞ;

a6 ¼ �ðc16 þ c26 þ c36Þ=ð3KsÞ: ðA:4Þ

The effective stress coefficients aI are a property of the
solid skeleton only. The fact that these components
constitute a 6-D vector implies that pore pressure
induces not only dilatational deformations, but also
shear deformations. This is not the case in an isotropic
medium [10].
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