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White’s model for wave propagation in partially saturated rocks:
Comparison with poroelastic numerical experiments

José M. Carcione∗, Hans B. Helle‡, and Nam H. Pham∗∗

ABSTRACT

We use a poroelastic modeling algorithm to compute
numerical experiments of wave propagation in White’s
partial saturation model. The results are then compared
to the theoretical predictions. The model consists of a ho-
mogeneous sandstone saturated with brine and spherical
gas pockets. White’s theory predicts a relaxation mecha-
nism, due to pressure equilibration, causing attenuation
and velocity dispersion of the wavefield. We vary gas sat-
uration either by increasing the radius of the gas pocket
or by increasing the density of gas bubbles. Despite that
the modeling is two dimensional and interaction between
the gas pockets is neglected in White’s model, the nu-
merical results show the trends predicted by the theory.
In particular, we observe a similar increase in velocity at
high frequencies (and low permeabilities). Furthermore,
the behavior of the attenuation peaks versus water satu-
ration and frequency is similar to that of White’s model.
The modeling results show more dissipation and higher
velocities than White’s model due to multiple scattering
and local fluid-flow effects. The conversion of fast P-wave
energy into dissipating slow waves at the patches is the
main mechanism of attenuation. Differential motion be-
tween the rock skeleton and the fluids is highly enhanced
by the presence of fluid/fluid interfaces and pressure gra-
dients generated through them.

INTRODUCTION

Microstructural properties of reservoir rocks and their
in-situ rock conditions can be obtained, in principle, from seis-
mic properties, such as traveltimes, amplitude information, and
wave polarization. In particular, although it is known from the
early 1980s that the dominating mechanisms of wave attenu-
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ation are oscillating flow of the viscous pore fluids and grain
boundary friction (e.g., Winkler and Nur, 1982), the use of at-
tenuation to characterize the rock properties is still underex-
ploited.

Regions of nonuniform patchy saturation occur at gas-oil
and gas-water contacts in hydrocarbon reservoirs. Also, during
production, gas may come out of solution and create pock-
ets of free gas. When laboratory measurements and sonic logs
are used to infer the behavior of acoustic properties at seismic
frequencies, the frequency dependence of these properties be-
comes a key factor. As demonstrated by White (1975), wave
velocity and attenuation are substantially affected by the pres-
ence of partial (patchy) saturation, mainly depending on the
size of the gas pockets (saturation), frequency, permeability,
and porosity of rocks.

Patchy saturation effects on acoustic properties were ob-
served by Murphy (1984) and Knight and Nolen-Hoecksema
(1990). Cadoret et al. (1995) observed the phenomenon in the
laboratory at the frequency range 1–500 kHz. Two different
saturation methods result in different fluid distributions and
produce two different values of velocity for the same satura-
tion. Imbibition by depressurization produces a very homoge-
neous saturation, whereas drainage by drying produces hetero-
geneous saturations at high water saturation levels. In the latter
case, the experiments show considerably higher velocities, as
predicted by White’s theory. The experimental results of Yin
et al. (1992) display consistent peaks in resonance attenuation
at high water saturation. A strong dependence on the satura-
tion history is evident, with the attenuation peak located at
90% water saturation in the drainage experiment and at 98%
water saturation for imbibition techniques.

White’s model describes wave velocity and attenuation as a
function of frequency, permeability, and porosity, among other
parameters. Attenuation and velocity dispersion is caused by
fluid flow between the water phase and the gas pockets, which
have different pore pressures. The critical fluid diffusion re-
laxation scale is proportional to the square root of the ratio
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permeability to frequency (e.g., Mavko et al., 1998, 207). At
seismic frequencies, the length scale is very large, and the pres-
sure is nearly uniform throughout the medium, but as fre-
quency increases, pore pressure differences can cause an im-
portant increase in P-wave velocity.

White’s model considers spherical gas pockets located at the
center of a cubic array saturated with liquid. For simplicity in
the calculations, White considers two concentric spheres, where
the volume of the outer sphere is the same as the volume of the
elementary cube. The theory provides an average of the bulk
modulus for a single gas pocket, without taking into account
the interactions between gas pockets. Dutta and Odé (1979)
rederived White’s model using Biot’s theory. Dutta and Ser-
iff (1979) pointed out some corrections in White’s equation,
regarding the use of the P-wave modulus instead of the bulk
modulus (see also Mavko et al., 1998, 208). Gist (1994) success-
fully used White’s model to fit ultrasonic velocities obtained
from saturations established using drainage techniques. He
used saturation-dependent moduli as input to White’s model
instead of the dry-rock moduli. The predicted velocities, con-
sidering local fluid flow, are higher than the velocities predicted
by White’s model. Recently, Johnson (2001) developed a gen-
eralization of White’s model for patches of arbitrary shape.
This model has two geometrical parameters besides the usual
parameters of Biot’s theory: the specific surface area and the
size of the patches.

Use of numerical simulations, based on the full-wave solu-
tion of the poroelastic equations, can be useful to study the
physics of wave propagation in partially saturated rocks. Al-
though White’s model is an ideal representation of patchy sat-
uration, its predictions are qualitatively correct, and the model
serves as a reference theoretical framework. In this sense, it
is useful to compare the results of White’s model to numer-
ical simulations based on Biot’s theory of poroelasticity. We
should, however, consider that the theory and the modeling
code are based on the same theoretical basis (Biot’s theory,
although White’s model does not take into account the inter-
action between gas pockets). This investigation can be the basis
for more realistic analyses, where an arbitrary (general) pore-
scale fluid distribution is considered. By using computerized
tomography (CT) scans, it is possible to visualize the fluid dis-
tribution in real rocks (Cadoret et al., 1995). Fractal models,
such as the von Kármán autocovariance function, calibrated by
the CT scans, can be used to model realistic fluid distributions.

P-wave and S-wave velocities can be higher in partially satu-
rated rocks than in dry rocks, but in some cases they are lower.
As predicted by White’s model, this behavior depends on fre-
quency, viscosity, and permeability. It is therefore important
to investigate the sensitivity and properties of wave velocity
and attenuation versus pore-fluid distribution. This is the basis
for direct hydrocarbon detection and enhanced oil recovery
and monitoring, since techniques such as “bright spot” and
amplitude variation with offset (AVO) analyses make use of
those physical properties. The modeling methodology used in
the present study constitutes a powerful computational tool to
investigate the physics of wave propagation in porous rocks
and, in some cases, can be used as an alternative method to
laboratory experiments.

We solve the poroelastic equations with an algorithm devel-
oped by Carcione and Helle (1999), which uses a fourth-order
Runge-Kutta time-stepping scheme and the staggered Fourier

method for computing the spatial derivatives. The stiff part of
the differential equations is solved with a time-splitting tech-
nique, which preserves the physics of the slow quasi-static wave
at low frequencies.

PHASE VELOCITY AND ATTENUATION

The concept of complex velocity can be used to obtain the
phase velocity and attenuation factor (e.g., Carcione, 2001, 55).
Let vc be the P-wave complex velocity obtained with White’s
model (see Appendix). Then, the phase velocity and attenua-
tion factor are given by

c =
[

Re
(

1
vc

)]−1

(1)

and

α = −ωIm
(

1
vc

)
, (2)

respectively, where ω is the angular frequency. If we approx-
imate the porous medium by a viscoelastic solid, the quality
factor can be expressed as

Q = Re
(
v2

c

)
Im
(
v2

c

) . (3)

[Otherwise, the Q factor for porous media has a more complex
expression (Carcione, 2001, 289).]. The relation between the
attenuation factor and the quality factor Q can be expressed
as

α = 2π f

c

(√
Q2 + 1− Q

)
≈ π f

cQ
, (4)

where f =ω/(2π) is the frequency (Carcione, 2001, 139). The
second relation in the right side holds for low-loss solid (QÀ 1).

The phase velocity in the numerical experiments is com-
puted from the center of gravity of |v|2 versus propagation time,
where v is the bulk particle-velocity field (Carcione, 1996). A
set of receivers R1 and R3 located on five radial lines are used
for the calculations, and receivers R2 are used for verification.
The numerical phase velocity is estimated by averaging the
velocities obtained at the five receivers R3. More details about
this calculation are given in Carcione et al. (1996) and Carcione
(2001, 145). The determination of phase velocity in terms of the
location of the energy is justified from the fact that for isotropic
media and homogeneous viscoelastic waves, the phase velocity
is equal to the energy velocity (Carcione, 2001, 99).

To estimate attenuation, we use the classical spectral ratio
approach discussed by Toksöz et al. (1979), implying that the
amplitude ratio A1/A3 at the dominant frequency f satisfies

ln
[

A1( f, r1)
A3( f, r3)

]
= α(r3 − r1)+ ln

(
G1

G3

)
, (5)

where r i denotes the source-receiver radial distances, and Gi

denotes the respective geometrical spreading factors. Using
relation (4), equation (5) can be rewritten as

ln
[

A1( f, r1)
A3( f, r3)

]
= π f (r3 − r1)

Qc
+ ln

(
G1

G3

)
, (6)

The quality factor is determined from the slope of the line fitted
to ln(A1/A3).
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A source of discrepancy between theory and numerical re-
sults can be due to the fact that White’s model is three dimen-
sional and the simulations are two dimensional. The travel time
is not affected by the dimensionality of space (see, for instance,
Carcione and Quiroga-Goode, 1996). Hence, the wave veloc-
ities are not affected. With regard to the amplitudes, equa-
tion (6) implicitly has the correction for geometrical spread-
ing (1/

√
r in 2D space and 1/r in 3D space). Therefore, the

discrepancy could be solely due to the deviation of the 2D
Green’s function from the exponential function. The 2D and
3D Green’s function for poroelastic media contain the kernels
H (2)

0 (x) and exp(i x), respectively, where x=ωr/c, and H (2)
0 is

the Hankel function of the second kind (e.g., Carcione and
Quiroga-Goode, 1996). The Hankel function approaches the
exponential function for larges values of |x|. For instance, for
c= 3000 m/s, r = 0.05 m, and f = 100 kHz, the argument is
x= 10.5 The exact value of the Hankel function is (−0.239,
0.061) and the asymptotic value is (−0.238, 0.064). Even for
x= 2, the differences are not significant [(0.22, −0.51) versus
(0.20, −0.53)]. This fact indicates that the discrepancy due to
the space dimension is not important.

RESULTS

We consider the material properties shown in Table 1, where
the moduli and density of the grain material correspond to a
mixture of 90% quartz and 10% clay [the moduli are calculated
as the upper and lower Hashin-Shtrikman bounds (Mavko
et al., 1998, 106)]. The dry-rock moduli are obtained by a
relation introduced by Krief et al. (1990) (see Goldberg and
Gurevich, 1998; and Carcione et al., 2000). Note that White’s
(1975) theory does not consider tortuosity [the value of tortuos-
ity given in Table 1 is typical of a sandstone (e.g., Johnson et al.,
1987)]. If a and b are the outer and inner radii of the gas pock-
ets (see Appendix) and we denote the space dimension by n,
water saturation can be expressed by Sw = 1− (a/b)n. A source
of discrepancy between theoretical and numerical results may
arise from the fact that White’s theory does not consider the in-
teraction between gas pockets, while this interaction is present
in the numerical simulations.

The transition frequency separating the relaxed and unre-
laxed states (that is, the location of the relaxation peak) is

Table 1. Material properties of the rock.

Grain
Bulk modulus (Ks) 34.3 GPa
Shear modulus (µs) 35.3 GPa
Density (ρs) 2585 kg/m3

Matrix
Bulk modulus (Km) 8.67 GPa
Shear modulus (µm) 6.61 GPa
Porosity (φ) 0.3
Permeability (κ) 0.55 d
Tortuosity (T ) 2.5

Gas
Bulk modulus (Kg) 0.01 GPa
Density (ρg) 100 kg/m3

Viscosity (ηg) 0.000 02 Pa s
Brine

Bulk modulus (Kw) 2.4 GPa
Density (ρw) 1040 kg/m3

Viscosity (ηw) 0.001 8 Pa s

approximately given by

fc = κKE2

πη2(b− a)2
, (7)

where κ is the permeability, KE2 is given in equation (A-6), and
η2 is the viscosity of water. Dutta and Seriff (1979) consider
b2, instead of (b−a)2, in the denominator. However, the rel-
evant relaxation distance should be the thickness of the outer
shell (i.e., b−a). White considers a harmonic displacement ap-
plied to the outer spherical surface, which creates two different
pressures in the outer shell and the inner sphere. Therefore,
the relaxation distance should be the difference between the
two radii (Gist, 1994). Relaxation frequencies of essentially the
same physical nature, but for plane-layered rocks, have been
given by White et al. (1975), Norris (1993), and Gurevich and
Lopatnikov (1995).

There are two cases giving the same gas saturation. They are
illustrated in Figure 1 for a 2D porous medium. Figure 1a shows
four gas pockets, where the gas saturation is Sg= 4πa2 [the size
of the square is `= 1/2, and b= `/√π (see Appendix)]. We may
increase the saturation to Sg= 16πa2 in two different ways. In
Figures 1b, a is constant, whereas in Figure 1c, b is constant.

When b is constant, we can deduce a critical water satura-
tion, Swc, for which the attenuation is maximum. For a given fre-
quency, and using Sw = 1−(a/b)3, we obtain from equation (7):

Swc = 1−
(

1−
√

κKE2

πη2 f b2

)3

. (8)

If a is constant, the critical saturation is given by

Swc = 1−
(

1+
√

κKE2

πη2 f a2

)−3

. (9)

As stated in the Appendix, the size of the gas pockets, a,
should be much smaller than the wavelength. Let us consider
a reference velocity cr = 3000 m/s, a maximum outer radius
b= 7 mm, and Sg= 0.52 [the upper-limit gas saturation for
which White’s model holds (see Appendix)]. Since a= bS1/3

g ,
the condition a¿ cr / f implies f ¿ 536 kHz. With these limi-
tations in mind, we proceed in the following to analyze White’s
results and compare these results with numerical simulations.

The modeling algorithm uses a numerical mesh with rect-
angular cells (here we consider square cells). Let us assume
that b is constant. Since the size of the elementary square
`=√πb=m1x, where m is a natural number and1x is the grid
spacing, 1x=√πb/m. If M is the number of cells of the gas
pocket, then M1x2=πa2, and Sg=M/m2. On the other hand,
if a is constant, the grid size is computed as 1x=a

√
π/M . An

example of White’s partial saturation model represented on a
2D numerical grid is shown in Figure 2, where water and gas are
indicated by black and white colors, respectively. The model
is an example for a= 2 mm and a source central frequency
of 100 kHz. The grid size is 208× 208, and the grid spacing
is 1x= 0.886 mm (30 grid points are used for the absorbing
boundaries at the sides of the mesh). A gas pocket is modeled
with M = 16 cells, m= 14, `= 12.41 mm, and b= 7 mm. Water
saturation is then Sw = 0.918. The simulation corresponding to
the model shown in Figure 2 uses a time step of 0.12 µs. The
source in all the simulations is a Ricker wavelet applied to
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the solid skeleton and the fluid phase (a bulk source without
shear components). A region with a radius of 30 grid points
and 100% water saturation surrounds the source location in
order to obtain a uniform initial wavefront.

FIG. 1. Two different sizes for the gas pockets give the same gas
saturation, depending on the values of the outer and inner radii
a and b. In (a) the saturation is Sg= 4πa2, whereas in (b) and (c)
the saturation is the same and equal to four times the saturation
in (a). Gas saturation can then change by varying a and keeping
constant b, or vice versa. (Note that White considers an outer
sphere of radius b instead of a cube of size `. In 2D space,
b= `/√π .)

Let us first consider that the radius of the outer sphere, b, is
constant and equal to 4 mm. Figure 3 shows the P-wave velocity
(a) and attenuation factor (b) versus water saturation for dif-
ferent frequencies and a permeability of 550 md. The analytical
and numerical (black dots) evaluation of Gassmann’s velocity
has been performed on a homogeneous porous medium by
averaging the fluid bulk modulus with Wood’s equation (e.g.,
Mavko et al., 1998, 112). Gassmann’s velocity (e.g. Carcione,
2001, 257) is also shown as a dotted curve. The critical water sat-
urations, Swc, for 50, 100, 250, and 500 kHz are 99%, 9%, 72%,
and 56%, respectively (plus symbols). The differences in veloc-
ity can be important for increasing frequency. For instance, the
difference between the seismic velocity (Gassmann’s curve)
and the ultrasonic velocity (100 kHz) predicted by White’s
model is 120 m/s at 90% water saturation [the respective wave-
lengths are approximately 150 m (seismic frequencies) and 3 cm
(100 kHz)]. The simulations predict higher velocities compared
to White’s model, and the relaxation peaks are shifted towards
lower water saturations. However, the physics revealed by the
numerical results is similar to that predicted by White’s model.

Figure 4 shows the P-wave velocity (a) and attenuation fac-
tor (b) versus water saturation for different permeabilities and
a frequency of 100 kHz. The dotted line is Gassmann’s velocity,
obtained by mixing the fluid moduli with Wood’s average. The
critical water saturations, Swc, for 0, 10, 100, 550, and 5000 md
are 2%, 20%, 55%, 91% and 100%, respectively, in fairly good
agreement with the location of the relaxation peaks predicted
by White’s model. The numerical phase velocities coincide with
White’s velocities for low permeabilities. For 550 and 5000 md,
the simulations predict higher velocities. This means more
velocity dispersion (see also the higher attenuation levels in

FIG. 2. White’s model on a 2D numerical mesh used for wave
simulation with a 100-kHz source. Water and gas are indicated
by black and white colors, respectively. Source (S) and receivers
(Ri ) are indicated. A circular region surrounding the source is
fully water saturated to assure a uniform initial wavefront. Gas
pocket radius is a= 2 mm, and water saturation is Sw = 0.918
(b= 7 mm).
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Figure 4b) caused by additional dissipation mechanisms which
are not predicted by White’s model.

Figure 5 shows the P-wave velocity (a) and attenuation factor
(b) versus frequency for different water saturations. The per-
meability is 550 md. The critical frequencies, fc, are indicated
by plus symbols in Figure 5b. As before, higher velocities and
attenuation levels, compared to White’s model, are observed
in the numerical simulations. The shift of the peaks towards
lower frequencies can be an indication of the presence of local
fluid flow mechanisms.

Let us assume now that the radius of the gas pockets, a,
is constant and equal to 2 mm. The results, corresponding to
Figures 3, 4, and 5, are respectively shown in Figures 6, 7, and
8. We observe the same physical behavior as for constant b,
indicating that the physics is substantially dependent on the
difference b−a.

FIG. 3. P-wave velocity (a) and attenuation factor (b) versus
water saturation for different frequencies and a permeability
of 550 md. The continuous line corresponds to White’s theory
and the symbols to the numerical simulations. The dotted line is
Gassmann’s (low-frequency) velocity, obtained by mixing the
fluid moduli with Wood’s average. The size of the outer sphere
is b= 4 mm.

Snapshots of the fluid particle velocity relative to the solid
(a), fluid pressure (b), and particle velocity of the solid (c) are
shown in Figure 9. They correspond to the model shown in
Figure 2, with 92% water saturation but a central frequency of
500 kHz and a corresponding smaller grid spacing1x= 0.1 mm
in a 660× 660 grid to highlight the details (54 grid points are
used for the absorbing boundaries at the sides of the mesh).
The two main wavefronts are the fast P-wave and the slow P-
wave. The conversion of fast P-wave to slow P-wave at each
gas pocket can clearly be appreciated. At 500 kHz, slow waves
have a phase velocity of 841 m/s in the brine saturated region
and 200 m/s in the gas pockets (the fast P-wave velocity is 3210
and 3094 m/s, respectively). The primary fast wave P+ generates
slow waves P+P− at the gas pockets. In addition, significant slow
waves are generated by the scattered P+ inside the gas pocket

FIG. 4. P-wave velocity (a) and attenuation factor (b) versus
water saturation for different permeabilities and a frequency
of 100 kHz. The continuous line corresponds to White’s theory
and the symbols to the numerical simulations. The dotted line is
Gassmann’s (low-frequency) velocity, obtained by mixing the
fluid moduli with Wood’s average. The size of the outer sphere
is b= 4 mm.
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(P+P+P−). These are the two main events generated in the fluid
phase during passage of the primary P+, and thus represent
the most significant loss components, removing energy from
the front of the pulse and adding to its tail. The fluid particle
velocity of the slow waves (Figure 9a) is high within the gas
pocket and less pronounced in the brine, whereas for the fluid
pressure (Figure 9b), the situation is the opposite. In the solid
(Figure 9c), P+ dominates the wavefield, while the slow waves
are less clearly identified.

A final numerical experiment to illustrate the phenomenon
is shown in Figure 10. Figure 10a shows a gas pocket of radius
a= 5 mm with a circular source located at a distance b= 23 mm
from its center. The rock and the pore fill are the same as
in the previous experiment (Table 1). We use a fine mesh of
1x= 0.1 mm and a source frequency of 500 kHz. The seis-
mograms of the particle velocity (Figure 10b) are recorded at
receivers located 1 mm away from the fluid/gas boundary in the
water-saturated and gas-saturated rocks. In the solid, it shows

FIG. 5. P-wave velocity (a) and attenuation factor (b) versus
frequency for different water saturations. The continuous line
corresponds to White’s theory and the symbols to the numer-
ical simulations. The permeability is 550 md. The size of the
outer sphere is b= 4 mm. The location of critical frequencies
is indicated for different saturations.

the P+ arrival and its scattering PCP+ with opposite phase after
focusing in the center of the gas pocket. In the fluid wavefield,
we observe the corresponding slow waves PBP− and PCP−, gen-
erated at the the fluid/gas boundary. These are equivalent to
the two consecutive slow waves apparent from the experiment
in Figure 9. The tail of arrivals recorded within the gas zone,
following the main events, are slow waves due to P+ ringing
within the gas pocket, whereas the late P− events at the end of
the record are the direct (in the brine) and transmitted (in the
gas) slow wave generated at the source.

More details of these experiments can be appreciated in
Figure 11, which shows the seismograms of the fluid (relative)
(a) and solid (b) particle velocities along the receiver line. The
fast- and slow-wave events are clearly distinguishable by their
different dips [i.e., low angles (high velocity) for P+ and high
angles (low velocity) for P−]. The focusing of the direct P+ is
well expressed in both fluid and solid particle velocities, and
a similar focusing of P+ is evident in the lower section of (b),
originating from P− to P+ conversion at the water/gas interface.
The latter, however, has less relevance for the problem at hand

FIG. 6. As in Figure 3 but, in this case, the radius of the gas
pockets is a= 2 mm.
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since this event is confined to the tail of the recorded pulse. On
the other hand, the first event is important since it interferes
with the primary pulse and, moreover, continues to bounce
around within the gas pocket (b) generating multiples of slow
waves propagating inwards in the gas zone as well as outwards
in the fluid zone (a). The two most significant slow-wave events,
as shown in Figure 10a (PBP− and PCP−) are clearly separated
in both seismograms.

CONCLUSIONS

Fast P-wave conversion into slow P-waves (mostly) and
S-waves is the main mechanism of wave dissipation and veloc-
ity dispersion in partially saturated rocks. This phenomenon
is observed in our numerical simulations, and is partially pre-
dicted by White’s (1975) model, regarding the slow P-wave
motion. Norris (1993) and Gurevich and Lopatnikov (1995),
using alternating poroelastic layers, have shown that attenua-
tion and velocity dispersion measurements can be explained by
the combined effect of layering and energy transfer between
wave modes. If the fluid compressibility varies significantly

FIG. 7. As in Figure 4 but, in this case, the radius of the gas
pockets is a= 2 mm.

from point to point, diffusion of pore fluid between different re-
gions constitutes a mechanism that can be important at seismic
frequencies. Carcione (1998) observed this strong dissipation
in numerical simulations of wave propagation in alternating
plane layers saturated with water and gas. This phenomenon
may explain the low signal-to-noise P-wave sections observed
in some ocean-bottom seismic data (Kommedal et al., 1997).
In fact, the presence of gas, leaked from the reservoir to the
overburden, has the effect of both lowering seismic velocities
and increasing seismic attenuation, producing low signal-to-
noise ratio P-wave sections (this effect is not present in S-wave
sections).

In general, our simulations predict higher attenuation (al-
though narrower relaxation peaks) and higher velocities than
White’s model. This is due to additional wave dissipation due
to multiple scattering and wave conversion. Moreover, White’s
model does not take into account local fluid flow effects (Gist,
1994), whereas they are present in the numerical simulations
(these effects increase the velocity). Another source of dis-
crepancy between model and numerical experiments can be
attributed to the fact that the grid representations of the gas
pockets are not exactly circles because the mesh is composed
of rectangular cells. We obtain expressions of the relaxation

FIG. 8. As in Figure 5 but, in this case, the radius of the gas
pockets is a= 2 mm.
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critical frequency and critical saturation for which attenuation
has a maximum value. Our simulations reproduce the trends
regarding the location of the relaxation peaks as a function
of frequency and saturation. That is, the peaks move towards

FIG. 9. Snapshot of the fluid particle velocity relative to the
solid (a), fluid pressure field (b), and particle velocity of the
solid (c), corresponding to the model shown in Figure 2 with
92% water saturation but with finer mesh (0.1 mm) and a cen-
tral frequency of 500 kHz. Propagation time is 18 µs. The pri-
mary fast P+ wave generates slow waves (P+P−) at the gas
pockets. Fast waves scattered from the inner boundary, in turn,
generate new slow waves (P+P+P−).

higher water saturations for lower frequencies and higher per-
meabilities.

The final example shows an analysis of the wavefield for a
single gas pocket, modeling the conditions for which White
(1975) has developed the theory. The physical phenomena in-
volved in the problem are illustrated by this simulation. The
conversion from fast to slow compressional wave and the mul-
tiple events generated at the gas bubble are clearly the main
loss mechanisms of the primary pulse.
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The complex P-wave velocity is given by

vc =
√

K + 4µm/3
ρ

, (A-1)

where K is the complex bulk modulus (given below), µm is the
dry-rock shear modulus, and ρ is the effective density.

The dry-rock moduli Km and µm can be obtained, for in-
stance, from laboratory measurements in dry samples. If cP

and cS are the experimental dry-rock compressional and shear
velocities, the moduli are approximately given by

Km = (1− φ)ρs

(
c2

P −
4
3

c2
S

)
, µm = (1− φ)ρsc

2
S,

(A-2)

where ρs is the grain density and φ is the porosity.
The effective density is given by

ρ = (1− φ)ρs + φφ f , (A-3)

where

ρ f = S1ρ f 1 + (1− S1)ρ f 2, (A-4)

and ρ f 1 and ρ f 2 are the densities of fluid 1 and fluid 2 (gas and
water in White’s theory).

Assuming that the dry-rock and grain moduli, and perme-
ability, κ , of the different regions are the same, the complex
bulk modulus as a function of frequency is given by

K = K∞
1− K∞W

, (A-5)

where

W = 3iaκ(R1 − R2)
b3ω(η1 Z1 − η2 Z2)

(
K A1

K1
− K A2

K2

)
,

R1 = (K1 − Km)(3K2 + 4µm)
K2(3K1 + 4µm)+ 4µm(K1 − K2)S1

,

R2 = (K2 − Km)(3K1 + 4µm)
K2(3K1 + 4µm)+ 4µm(K1 − K2)S1

,

Z1 = 1− exp(−2γ1a)
(γ1a− 1)+ (γ1a+ 1) exp(−2γ1a)

,

Z2 =
(γ2b+ 1)+ (γ2b− 1) exp[2γ2(b− a)]

(γ2b+ 1)(γ2a− 1)− (γ2b− 1)(γ2a+ 1) exp[2γ2(b−a)]
,

(A-6)

γ j =
√

iωη j /(κKE j ),

KE j =
[

1− αK f j (1− K j /Ks)
φK j (1− K f j /Ks)

]
K Aj ,

K Aj =
[
φ

K f j
+ 1

Ks
(α − φ)

]−1

,

α = 1− Km

Ks
.

K∞ = K2(3K1 + 4µm)+ 4µm(K1 − K2)S1

(3K1 + 4µm)− 3(K1 − K2)S1
(A-7)

is the (high-frequency) bulk modulus when there is no fluid flow
between the gas pockets. K1 and K2 are the (low-frequency)
Gassmann moduli, which are given by

K j =
Ks − Km + φKm

(
Ks/K f j − 1

)
1− φ − Km/Ks + φKs/K f j

, j = 1, 2.

(A-8)


