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ABSTRACT

Seismic modeling is one of the cornerstones of geo-
physical data processing. We give an overview of the
most common modeling methods in use today: direct
methods, integral-equation methods, and asymptotic
methods. We also discuss numerical implementation as-
pects and present a few representative modeling exam-
ples for the different methods.

INTRODUCTION

Seismic numerical modeling is a technique for simulating
wave propagation in the earth. The objective is to predict the
seismogram that a set of sensors would record, given an as-
sumed structure of the subsurface. This technique is a valuable
tool for seismic interpretation and an essential part of seismic
inversion algorithms. Another important application of seismic
modeling is the evaluation and design of seismic surveys. There
are many approaches to seismic modeling. We classify them
into three main categories: direct methods, integral-equation
methods, and ray-tracing methods.

To solve the wave equation by direct methods, the geological
model is approximated by a numerical mesh, that is, the model
is discretized in a finite numbers of points. These techniques
are also called grid methods and full-wave equation methods,
the latter since the solution implicitly gives the full wavefield.
Direct methods do not have restrictions on the material vari-
ablity and can be very accurate when a sufficiently fine grid is
used. Furthermore, the technique can handle the implementa-
tion of different rheologies and is well suited for the generation
of snapshots which can be an important aid in the interpreta-
tion of the results. A disadvantage of these general methods,
however, is that they can be more expensive than analytical
and ray methods in terms of computer time.
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Integral-equation methods are based on integral represen-
tations of the wavefield in terms of waves, originating from
point sources. These methods are based on Huygens’ princi-
ple, formulated by Huygens in 1690 in a rather heuristic way
(see Figure 1). When examining Huygens’ work closer, we can
see that he states that the wavefield can, in some cases, be con-
sidered as a superposition of wavefields due to volume point
sources and, in other cases, as a superposition of waves due to
point sources located on a boundary. Both forms of Huygens’
principle are still in use today and we have both volume inte-
gral equations and boundary integral equations, each with their
own applications. We briefly review both methods. These meth-
ods are somewhat more restrictive in their application than the
above direct methods. However, for specific geometries, such
as bounded objects in a homogeneous embedding, boreholes,
or geometries containing many small-scale cracks or inclusions,
integral-equation methods have shown to be very efficient and
to give accurate solutions. Due to their somewhat more ana-
lytic character, they have also been useful in the derivation of
imaging methods based on the Born approximation. [For ex-
ample, see Cohen et al. (1986) and Bleistein et al. (2001) for a
description of Born inversion methods.]

Asymptotic methods or ray-tracing methods are very fre-
quently used in seismic modeling and imaging. These methods
are approximative, since they do not take the complete wave-
field into account. On the other hand, they are perhaps the
most efficient of the methods discussed in this review. Espe-
cially for large, three-dimensional models the speedup in com-
puter time can be significant. In these methods, the wavefield
is considered as an ensemble of certain events, each arriving at
a certain time (traveltime) and having a certain amplitude. We
discuss some of these methods, as well as some of their proper-
ties. Asymptotic methods, due to their efficiency, have played
a very important role in seismic imaging based on the Born ap-
proximation for heterogeneous reference velocity models. An-
other important application of these methods is the modeling
and identification of specific events on seismic records.
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Seismic Modeling 1305

In this overview, we discuss the above methods in some de-
tail and give the appropriate references. In order not to get lost
in tedious notations, we discuss only the acoustic formulation
so we can concentrate on the differences between methods.
All methods discussed here have been generalized to the elas-
tic case and, where appropriate, references are given. We also
present a few examples illustrating the applicability of the dif-
ferent methods. Since the applicability regions of the methods
are rather different and, largely, nonoverlapping, the models
are different but typical for each technique. Hopefully, they
will provide the reader with some idea of the types of problems
or geometries to which a particular modeling method is best
suited. The modeling methods discussed here have in common
that they are applicable to various two- and three-dimensional
geometries. This implies that we do not discuss methods espe-
cially suited for plane-layered media, despite the fact that these
methods are certainly at least as important and often used as the
ones we discuss here. For an excellent overview of these plane-
wave summation (or slowness) methods, see Ursin (1983).

DIRECT METHODS

We consider finite-difference (FD), pseudospectral (PS), and
finite-element (FE) methods. These methods require the dis-
cretization of the space and time variables. Let us denote
them by (x, t)= ( jdx, n dt), where dx and dt are the grid spac-
ing and time step, respectively. We first introduce the appro-
priate mathematical formulations of the equation of motion,
and then consider the main aspects of the modeling as fol-
lows: (1) time integration, (2) calculation of spatial derivatives,
(3) source implementation, (4) boundary conditions, and (5)
absorbing boundaries. All these aspects are discussed by using
the acoustic- and SH-wave equations.

Mathematical formulations

For simplicity, we consider the acoustic- and SH-wave
equations which describe propagation of compressional and
pure shear waves, respectively.

FIG. 1. Illustration by Huygens of Huygens’ principle, stating,
in French, that “each element of a light source, like the Sun, a
candle or a glowing charcoal, causes waves, with the element
as centre” [taken from the 1690 Traité de la lumière (Huygens,
1990)].

Pressure formulation

The pressure formulation for heterogeneous media can be
written as (Aki and Richards, 1980, 775)

−L2 p+ f = ∂2 p

∂t2
, −L2 = ρc2∇ ·

(
1
ρ
∇
)
, (1)

where ∇ is the gradient operator, p is the pressure, c is the
compressional-wave velocity, ρ is the density, and f is the body
force. This is a second-order partial differential equation in the
time variable.

Velocity-stress formulation

Instead of using the wave equation, wave propagation can also
be formulated in terms of a system of first-order differential
equations in the time and space variables. Consider, for in-
stance, propagation of SH-waves. This is a two-dimensional
phenomenon, with the particle velocity, say v2, perpendicular
to the plane of propagation. Newton’s second law and Hooke’s
law yield the velocity-stress formulation of the SH-wave
equation (Aki and Richards, 1980, 780):

∂v
∂t
= Hv+ F, (2)

where

v = [v2, σ32, σ12]>, F = [ f, 0, 0]>, (3)

Hv = A
∂v
∂x1
+ B

∂v
∂x3

, (4)

A =

 0 0 ρ−1

0 0 0

µ 0 0

 , B =

 0 ρ−1 0

µ 0 0

0 0 0

 , (5)

and σ denotes stress and µ is the shear modulus.
The solution to equation (2) subject to the initial condition

v(0)= v0 is formally given by

v(t) = exp(tH)v0 +
∫ t

0
exp(τH) F(t − τ ) dτ, (6)

where exp(tH) is called the evolution operator, because ap-
plication of this operator to the initial condition vector (or to
the source vector) yields the solution at time t . We refer to H
as the propagation matrix. The SH and acoustic differential
equations are hyperbolic (Jain, 1984, 251; Smith, 1985, 4) be-
cause the field has a finite velocity.

Variational formulation

The most standard finite-element method uses the wave
equation (1) as a starting point. We consider a volume V
bounded by a surface S. The surface Sis divided into Sp, where
pressure boundary conditions are defined, and Sdp, the part on
which normal accelerations (or pressure fluxes) are given. As-
sume a small pressure variation δp which is consistent with the
boundary conditions. If we multiply equation (1) by δp, inte-
grate over the volume V and by parts (using the divergence
theorem), we obtain∫

V

1
ρ
∇δp · ∇ p dV = −

∫
V

δp

ρc2

∂2 p

∂t2
dV +

∫
V

f δp

ρc2
dV

+
∫

Sdp

δp

ρ
n · ∇ p dS, (7)
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1306 Carcione et al.

where n is the normal to the surface S. This variational for-
mulation derived from the wave equation is equivalent to a
Galerkin procedure (Zienkiewicz, 1977, 70; Hughes, 1987, 7).

Time integration

The numerical solution of the wave equation requires the dis-
cretization of the time variable by using finite differences (an
exception to this is formed by the spectral methods; see below).
The basic idea underlying FD methods is to replace the partial
derivatives by approximations based on Taylor series expan-
sions of functions near the point of interest. Forward and back-
ward difference approximations of the time derivatives (Smith,
1985, 7) lead to explicit and implicit FD schemes, respectively.
Explicit means that the wavefield at present time is computed
from the wavefield at past times. On the other hand, in implicit
methods, the present values depend on past and future values.
Unlike explicit methods, implicit methods are unconditionally
stable but lead to a great amount of computation arising from
the need to carry out large matrix inversions. In general, the
differential formulation of the wave equation is solved with ex-
plicit algorithms, since the time step is determined by accuracy
criteria rather than by stability criteria (Emerman et al., 1982).

Eigenvalues and stability

Wave equations used in seismic exploration and seismology
can be expressed as v̇=Hv, where H is the propagation matrix
containing the material properties and spatial derivatives (the
dot denotes time differentiation) [e.g., equation (2)]. We now
address the stability aspects of finite-difference schemes and
therefore consider the eigenvalue problem of wave propaga-
tion. Assume constant material properties and a plane-wave
kernel of the form exp(i k · x− iωt), where k is the wavenum-
ber vector, x is the position vector, and ω is the angular
frequency (which can be complex valued in the case of attenu-
ation). Substitution of the plane-wave kernel into the wave
equation yields an eigenvalue equation for the eigenvalues
λ=−iω. For the acoustic- and SH-wave equations, these eigen-
values lie on the imaginary axis of the λ-plane. For instance, in
1-D space, the eigenvalues corresponding to equations (1) and
(2) are λ=±ikc, where c is either the compressional- or the
shear-wave velocity. There are other equations of interest in
seismic modeling in which eigenvalues might lie in the left-hand
λ-plane. Some of these are discussed below.

Consider an anelastic medium described by a viscoelastic
stress-strain relation. Wave attenuation is governed by mate-
rial relaxation times, which quantify the response time of the
medium to a perturbation (lossless solid materials respond in-
stantaneously, i.e., the relaxation time is zero). For a viscoelas-
tic medium with moderate attenuation, the eigenvalues have a
small negative real part causing the waves to be attenuated. In
addition, when solving the equations in the time domain, there
are eigenvalues with a large negative part and close to the
real axis that are approximately given by the reciprocal of
the relaxation times corresponding to each attenuation mech-
anism. Then, the domain of the eigenvalues has a T shape
(see Tal-Ezer et al., 1990). If the central frequency of these
relaxation peaks is close to the source frequency band,
or equivalently, if the related eigenvalues are close to the
imaginary axis of the λ-plane, an explicit scheme performs very
efficiently.

The situation is critical for porous media, where the eigen-
value corresponding to the slow compressional wave at seismic
frequencies (a quasi-static mode) has a very large negative part,
which is related to the location of Biot relaxation peaks, usu-
ally beyond the sonic band for pore fluids like water and oil
(Carcione and Quiroga-Goode, 1996). When the modulus of
the eigenvalues is very large compared to the inverse of the
maximum propagation time, the differential equation is said to
be stiff (Jain, 1984, 72; Smith, 1985, 198). Due to the presence
of the quasi-static slow wave, the low-frequency Biot differ-
ential equations are hyperbolic/parabolic. Although the best
algorithm would be an implicit method, the problem can still
be solved with explicit methods (see below).

Time and space discretization of the wave equation with
an explicit scheme (forward time difference only) leads to
an equation of the form vn+1=Gvn, where G is called the
amplification matrix. The von Neumann condition for stabil-
ity requires max |gj | ≤ 1, where gj are the eigenvalues of G
(Jain, 1984, 418). It can be shown that this condition does not
hold for all dt when explicit schemes are used, and that im-
plicit schemes do not have any restriction. For instance, ex-
plicit fourth-order Taylor and Runge-Kutta methods require
dt|λmax|< 2.78 (Jain, 1984, 71), implying very small time steps
for very large eigenvalues. Implicit methods are A-stable (Jain,
1984, 118), meaning that the domain of convergence is the left
open-half λ-plane.

Classical finite differences

Evaluating the second time derivative in equation (1) at
(n+ 1) dt and (n− 1) dt by a Taylor expansion, and summing
both expressions, yields

∂2 pn

∂t2
= 1

dt2

[
pn+1+ pn−1− 2pn− 2

L∑
`=2

dt2`

(2`)!
∂2`pn

∂t2`

]
.

(8)
The wave equation (1) provides the higher order time deriva-
tives, using the following recursion relation:

∂2`pn

∂t2`
= −L2 ∂

2`−2 pn

∂t2`−2
+ ∂

2`−2 f n

∂t2`−2
. (9)

This algorithm, where high-order time derivatives are re-
placed by spatial derivatives, is often referred to as the Lax-
Wendroff scheme (Jain, 1984, 415; Smith, 1985, 181; Dablain,
1986; Blanch and Robertsson, 1997). A Taylor expansion of the
evolution operator exp(dtH) is equivalent to a Lax-Wendroff-
scheme.

The dispersion relation connects the frequency with the
wavenumber and allows the calculation of the phase velocity
corresponding to each Fourier component. Time discretization
implies an approximation of the dispersion relation, which in
the continuous case isω= ck, withω the angular frequency. As-
suming constant material properties and a 1-D wave solution
of the form exp(ikx− i ω̄n dt), where k is the wavenumber and
ω̄ is the FD angular frequency, yields the following dispersion
relation:

2
dt

sin
(
ω̄ dt

2

)
= ck

√√√√1− 2
L∑
`=2

(−1)`
(ck dt)2`−2

(2`)!
. (10)
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Seismic Modeling 1307

The FD approximation to the phase velocity is c̄= ω̄/k. Us-
ing equation (10) with second-order accuracy [neglect O(dt2)
terms], the FD phase velocity is

c̄ = c

|sinc(θ)| , θ = f̄ dt, (11)

where ω̄= 2π f̄ and sinc(θ)= sin(πθ)/(πθ). Equation (11) in-
dicates that the FD velocity is greater than the true phase ve-
locity. Since ω̄ should be a real quantity, thus avoiding expo-
nentially growing solutions, the value of the sine function in
equation (10) must be between −1 and 1. This constitutes the
stability criterion. For instance, for second-order time integra-
tion this means ck dt/2≤ 1. The maximum phase velocity, cmax,
and the maximum wavenumber (i.e. the Nyquist wavenumber,
π/dxmin) must be considered. Then, the condition is

dt ≤ s

(
dxmin

cmax

)
, s= 2

π
. (12)

A rigorous demonstration, based on the amplification factor,
is given by Smith (1985, 70; see also Celia and Gray, 1992, 232).
In n-D space, s= 2/(π

√
n) and, for a fourth-order approxima-

tion (L= 2) in 1-D space, s= 2
√

3/π . Equation (12) indicates
that stability is governed by the minimum grid spacing and the
higher velocities.

Let us now consider the presence of attenuation. Time-
domain modeling in lossy media can be described by vis-
coelastic stress-strain relations. This requires the use of the so-
called memory variables, one for each relaxation mechanism
(Carcione et al., 1988). The introduction of additional differ-
ential equations for these field variables avoids the numerical
computation of the viscoelastic convolution integrals. The dif-
ferential equation for a memory variable e has the form

∂e

∂t
= aε − be, b > 0, (13)

where ε is a field variable (e.g., the dilatation) and a and b are
material properties (b is approximately the central frequency
of the relaxation peak). Equation (13) can be discretized by
using the central differences operator for the time deriva-
tive [dt(∂e/∂t)n= en+1− en−1] and mean value operator for the
memory variable (2en= en+1+ en−1). These approximations are
used in the Crank-Nicolson scheme (Smith, 1985, 19). This ap-
proach leads to an explicit algorithm

en+1/2 = 2 dta

2+ b dt
εn +

(
2− b dt

2+ b dt

)
en−1/2 (14)

(Emmerich and Korn, 1987). This method is robust in terms
of stability, because the coefficient of en−1/2, related to the vis-
coelastic eigenvalue of the amplification matrix, is less than 1
for any value of the time step dt. The same method performs
equally well for wave propagation in porous media (Carcione
and Quiroga-Goode, 1996).

Splitting methods

Time integration can also be performed with the method of
dimensional splitting, also called Strang’s scheme (Jain, 1984,
444; Mufti, 1985; Bayliss et al., 1986; Vafidis et al., 1992). Con-
sider equation (2) and denote a derivative with respect to a vari-
able φ by the subscript “,φ”. The 1-D equations v,t =Av,x1 and
v,t =Bv,x3 are solved by means of one-dimensional difference
operators Lx1 and Lx3 , respectively. For instance, Bayliss et al.

(1986) use a fourth-order accurate predictor-corrector scheme
and the splitting algorithm vn+2=Lx1 Lx3 Lx3 Lx1 vn, where each
operator advances the solution by a half time step. The max-
imum allowed time step is larger than for unsplit schemes,
because the stability properties are determined by the 1-D
schemes. Splitting is also useful when the system of dif-
ferential equations is stiff. For instance, Biot’s poroelastic
equations can be partitioned into a stiff part and a nons-
tiff part, so that the evolution operator can be expressed as
exp(Hr +Hs)t , where r indicates the regular matrix and s
the stiff matrix. The product formulas exp(Hr t) exp(Hst) and
exp( 1

2 Hst) exp(Hr t) exp( 1
2 Hst) are first- and second-order ac-

curate, respectively. The stiff part can be solved analytically and
the nonstiff part with an standard explicit method (Carcione
and Quiroga-Goode, 1996). Strang’s scheme can be shown to
be equivalent to the splitting of the evolution operator for
solving the poroelastic equations.

Predictor-corrector schemes

Predictor-corrector schemes of different order find wide ap-
plication in seismic modeling (Mufti, 1985; Bayliss et al., 1986;
Vafidis et al., 1992; Dai et al., 1995). Consider equation (2) and
the first-order approximation

v̄n+1 = vn + dt Hvn, (15)

known as the forward Euler scheme. This solution is given
by the intersection point between the tangent of v at t = n dt
and the line t = (n+ 1) dt. A second-order approximation can
be obtained by averaging this tangent with the predicted one.
Then, the corrector is

vn+1 = vn + dt

2
(Hvn +Hv̄n+1). (16)

This algorithm is the most simple predictor-corrector scheme
(Celia and Gray, 1992, 64). A predictor-corrector MacCormack
scheme, second-order in time and fourth-order in space, is used
by Vafidis et al. (1992) to solve the elastodynamic equations.

Spectral methods

As mentioned before, a Taylor expansion of the evolution
operator exp(dtH) is equivalent to a Lax-Wendroff-scheme.
When the number of terms in equation (8) is increased, a larger
time step can be used while retaining high accuracy. Taylor ex-
pansions and Runge-Kutta methods, however, are not the best
in terms of accuracy. The evolution operator in equation (6)
can be expanded in terms of Chebyshev polynomials as

v(t) =
M∑

k=0

Ck Jk(t R)Qk

(
H
R

)
v0, (17)

where C0= 1 and Ck= 2 for k 6= 0, Jk is the Bessel function of
order k, and Qk are modified Chebyshev polynomials. Rshould
be chosen larger than the absolute value of the eigenvalues of
H (Tal-Ezer et al., 1987). This technique allows the calcula-
tion of the wavefield with large time steps. Chebyshev expan-
sions are optimal since they require the minimum number of
terms. The most time-consuming part of a modeling algorithm
is the evaluation of the terms −L2 p in equation (1) or Hv in
equation (2) due to the computation of the spatial derivatives.
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1308 Carcione et al.

A Taylor-expansion algorithm needs N= tmax/dt of such evalu-
ations to compute the solution at time tmax. On the other hand,
the number of evaluations using equation (17) is equal to the
number of terms in the Chebyshev expansion. Numerical tests
indicate that M is comparable to N for second-order finite dif-
ferencing, but the error of the Chebyshev operator is prac-
tically negligible for single-precision programming (Tal-Ezer
et al., 1987). This means that there is no numerical dispersion
due to the time integration.

When the wave equation is used, which is second order in
time [see equation (1)], the rapid-expansion method (REM
method) is twice as efficient since the expansion then contains
only even-order Chebyshev functions (Kosloff et al., 1989). A
similar algorithm for the viscoelastic wave equation is devel-
oped by Tal-Ezer et al. (1990). These methods are said to have
spectral accuracy, in the sense that the error of the approx-
imation tends exponentially to zero when the degree of the
approximating polynomial increases.

Algorithms for finite-element methods

In the FE method, which can be derived from the variational
formulation (7), the field variables are evaluated by interpola-
tion from nodal (grid) values. For a second-order isoparametric
method (Zienkiewicz, 1977, 178; Hughes, 1987, 118), the inter-
polation can be written as

p(xi ) = Φ>P, (18)

where P is a column vector of the values p(xi ) at the nodes,
and Φ> is a row vector of spatial interpolation functions, also
referred to as shape and basis functions. The approximation to
equation (7) is obtained by considering variations δp according
to the interpolation (18). Since δp=Φ>δP, and δP is arbitrary,
the result is a set of ordinary differential equations at the nodal
pressures P (Zienkiewicz, 1977, 531; Hughes, 1987, 506):

KP+M
∂2P
∂t2
+ S = 0, (19)

where K is the stiffness matrix, M is the mass matrix, and S is the
generalized source matrix. These matrices contain volume in-
tegrals that are evaluated numerically (see also the “The finite-
element method” section). The matrix M is often replaced by
a diagonal lumped mass matrix M̂ such that each entry equals
the sum of all entries in the same row of M (Zienkiewicz, 1977,
535). In this way, the solution can be obtained with an explicit
time-integration method, such as the central difference method
(Serón et al., 1990). This technique can be used with low-
order interpolation functions, for which the error introduced by
the algorithm is relatively low. When high-order polynomials
(including Chebyshev polynomials) are used as interpolation
functions, the system of equations (19) is generally solved with
implicit algorithms. In this case, the most popular algorithm
is the Newmark method (Hughes, 1987, 490; Padovani et al.,
1994; Serón et al., 1996).

Finally, numerical modeling can be performed in the fre-
quency domain. The method is very accurate but generally
expensive when using differential formulations, because it in-
volves the solution of many Helmholtz equations (Jo et al.,
1996). It is used more in FE algorithms (Marfurt, 1984; Santos
et al., 1988; Kelly and Marfurt, 1990).

Calculation of spatial derivatives

The name of a particular modeling method is usually derived
from the algorithm for computing the spatial derivatives. The
following sections briefly review these algorithms.

Finite differences

FD methods use either homogeneous or heterogeneous for-
mulations to solve the equation of motion. In the first case,
the motion in each homogeneous region is described by the
equation of motion with constant acoustic parameters. For this
method, boundary conditions across all interfaces must be sat-
isfied explicitly. The heterogeneous formulation incorporates
the boundary conditions implicitly by constructing FD repre-
sentations using the equation of motion for heterogeneous me-
dia. The homogeneous formulation is of limited use because
it can only be used efficiently for simple, piecewise homo-
geneous geometries. The heterogeneous formulation, on the
other hand, makes it possible to assign different acoustic prop-
erties to every grid point, providing the flexibility to simulate
a variety of complex subsurface models (e.g., random media
or velocity gradients). Heterogeneous formulations generally
make use of staggered grids to obtain stable schemes for large
variations of Poisson’s ratio (Virieux, 1986). In staggered grids,
groups of field variables and material properties are defined on
different meshes separated by half the grid spacing (Fornberg,
1996, 91). The newly computed variables are centered between
the old variables. Staggering effectively halves the grid spacing,
increasing the accuracy of the approximation.

Seismic modeling in heterogeneous media requires the cal-
culation of first derivatives. Consider the following approxi-
mation with an even number of points, suitable for staggered
grids:

∂p0

∂x
= w0(p1

2
− p− 1

2
)+ · · · + w`(p

`+ 1
2
− p−`− 1

2
), (20)

with `weighting coefficientsw`. The antisymmetric form guar-
antees that the derivative is zero for even powers of x. Let us
test the spatial derivative approximation for p= x and p= x3.
Requiring that equation (20) be accurate for all polynomials
up to order 2 yields the approximation (p1

2
− p− 1

2
)/dx, while

for fourth accuracy [the leading error term is O(dx4)]
the weights are obtained from w0+ 3w1= 1/dx and w0+
27w1= 0, givingw0= 9/(8 dx), andw1=−1/(24 dx) (Fornberg,
1996, 91). To obtain the value of the derivative at x= jdx, sub-
stitute subscript 0 with j, `+ 1

2 with j + `+ 1
2 and −`− 1

2 with
j − `− 1

2 . Fornberg (1996, 15) provides an algorithm for com-
puting the weights of first and second spatial derivatives for
the general case, i.e., approximations which need not be evalu-
ated at a gridpoint such as centered and one-sided derivatives.
He also shows that the FD coefficients w` in equation (20)
are equivalent to those of the Fourier PS method when ` ap-
proaches the number of grid points (Fornberg, 1996, 34).

Let us now study the accuracy of the approximation
by considering the dispersion relation. Assuming constant
material properties and a 1-D wave solution of the form
exp(i k̄ j dx− iωt), the second-order approximation gives the
following FD dispersion relation and phase velocity:

ω2 = c2k̄2sinc2(ψ), c̄ = c|sinc(ψ)|, (21)
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Seismic Modeling 1309

where ψ = K̄ dx, with k̄= 2π K̄ [equation (21) can be derived
in the same manner as equation (11)]. The spatial dispersion
acts in the opposite sense of temporal dispersion [see equa-
tion (11)]. Thus, the FD velocity is smaller than the true phase
velocity.

Staggered grids improve accuracy and stability, and elim-
inate noncausal artifacts (Virieux, 1986; Levander, 1988;
Özdenvar and McMechan, 1997; Carcione and Helle, 1999).
Staggered grid operators are more accurate than centered dif-
ferences operators in the vicinity of the Nyquist wavenumber
(e.g., Kneib and Kerner, 1993). The velocity-stress formulation
in staggered grids constitutes a flexible modeling technique
because it allows one to freely impose boundary conditions
(see the “Boundary conditions” section) and is able to directly
yield all the field variables (Karrenbach, 1998).

However, there is a disadvantage in using staggered grids
for anisotropic media of symmetry lower than orthorhombic.
Staggering implies that the off-diagonal stress and strain com-
ponents are not defined at the same location. When evaluat-
ing the stress-strain relation, it is necessary to sum over a lin-
ear combination of the elasticity constants (cI J , I , J= 1, . . . 6)
multiplied by the strain components. Hence, some terms of
the stress components have to be interpolated to the locations
where the diagonal components are defined (Mora, 1989).

A physical criterion to improve accuracy is to compute the
weights w` in equation (20) by minimizing the relative error in
the components of the group velocity cg= ∂ω/∂k (the velocity
of a wave packet). This procedure, combined with grid stagger-
ing and a convolutional scheme, yields an optimal differential
operator for wave equations (Holberg, 1987). The method is
problem dependent because it depends on the type of wave
equation. Igel et al. (1995) obtained high accuracy with opera-
tors of small length (eight points) in the anisotropic case. The
treatment of the P-SV case and more details about the finite
difference approximation are in Levander (1989).

The modeling can be made more efficient by using hybrid
techniques, for instance, combining finite differences with fa-
ster algorithms such as ray-tracing methods (Robertsson et al.,
1996), integral-equation methods (Stead and Helmberger,
1988), and reflectivity methods (Emmerich, 1989). In this way,
modeling of the full wavefield can be restricted to the target
(e.g., the reservoir), and propagation in the rest of the model
(e.g., the overburden) can be simulated with faster methods.

Pseudospectral methods

The pseudospectral methods used in forward modeling of
seismic waves are mainly based on the Fourier and Chebyshev
differential operators. Gazdag (1981) first and Kosloff and
coworkers later applied the technique to seismic exploration
problems (e.g., Kosloff and Baysal, 1982; Reshef et al.,
1988). Mikhailenko (1985) combined transforms methods (e.g.,
Bessel transforms) with FD and analytical techniques.

The sampling points of the Fourier method are xj = j
dx= j xmax/(Nx − 1) ( j = 0, . . . , Nx − 1), where xmax is the
maximum distance and Nx is the number of grid points. For
a given function f (x), with Fourier transform f̃ (k), first and
second derivatives are computed as

∂̃ f

∂x
= ik f̃ ,

∂̃2 f

∂x2
= −k2 f̃ , (22)

where k is the discrete wavenumber. The transform f̃ to the
wavenumber domain and the transform back to the space do-
main are calculated by the fast Fourier transform (FFT). The
derivatives of two real functions—two adjacent grid lines of
the computational mesh—can be computed by two complex
(direct and inverse) FFTs. The two functions are put into the
real and imaginary parts, the FFT is performed, the result is
multiplied by ik, and the inverse FFT gives the derivatives in
the real and imaginary parts. Staggered operators that evaluate
first derivatives between grid points are given by

D±x φ =
k(Nx)∑
k=0

ik exp(±ik dx/2)φ̃(k) exp(ikx), (23)

where k(Nx)=π/dx is the Nyquist wavenumber. The standard
differential operator is given by the same expression, without
the phase shift term exp(±ik dx/2). The standard operator re-
quires the use of odd-based FFTs (i.e., Nx should be an odd
number). This is because even transforms have a Nyquist com-
ponent which does not possess the Hermitian property of the
derivative (Kosloff and Kessler, 1989). When φ(x) is real, φ̃(k)
is Hermitian (i.e., its real part is even and its imaginary part
is odd). If Nx is odd, the discrete form of k is an odd function,
therefore ikφ̃(k) is also Hermitian and the derivative is real. On
the other hand, the first derivative computed with the staggered
differential operator is evaluated between grid points and uses
even-based Fourier transforms. The approximation (23) is ac-
curate up to the Nyquist wavenumber. If the source spectrum
is negligible beyond the Nyquist wavenumber, we can consider
that there is no significant numerical dispersion due to the spa-
tial discretization. Hence, the dispersion relation is given by
equation (10), which for a second-order time integration can
be written as

ω̄ = 2
dt

sin−1
(

ck dt

2

)
. (24)

Because k should be real to avoid exponentially growing solu-
tions, the argument of the inverse sine must be less than one.
This implies the stability condition kmaxc dt/2≤ 1, which leads
toα≡ c dt/dx≤ 2/π , since kmax=π/dx (α is called the Courant
number). Generally, a criterion α < 0.2 is used to choose the
time step (Kosloff and Baysal, 1982). The Fourier method has
periodic properties. In terms of wave propagation this means
that a wave impinging on the left boundary of the grid will
return from the right boundary (the numerical artifact called
wraparound).

The Chebyshev method is mainly used in the velocity-stress
formulation to model free surface, rigid, and nonreflecting
boundary conditions at the boundaries of the mesh. Chebyshev
transforms are generally computed with the FFT, with a length
twice of that used by the Fourier method (Gottlieb and Orszag,
1977, 117). Since the sampling points are very dense at the
edges of the mesh, the Chebyshev method requires a 1-D
stretching transformation to avoid very small time steps [see
equation (12)]. Because the grid cells are rectangular, mapping
transformations are also used for modeling curved interfaces to
obtain an optimal distribution of grid points (Fornberg, 1988;
Carcione, 1994a) and model surface topography (Tessmer and
Kosloff, 1994).

The Fourier and Chebyshev methods are accurate up to
the maximum wavenumber of the mesh that corresponds to
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1310 Carcione et al.

a spatial wavelength of two grid points (at maximum grid spac-
ing for the Chebyshev operator). This fact makes these meth-
ods very efficient in terms of computer storage (mainly in 3-D
space) and makes the Chebyshev technique highly accurate for
simulating Neumann and Dirichlet boundary conditions, such
as stress-free and rigid conditions (Carcione, 1994a, b) (see the
“Boundary conditions” section).

The finite-element method

The FE method has two advantages over FD and PS meth-
ods, namely, its flexibility in handling boundary conditions and
irregular interfaces. On the basis of equation (18), consider
the 1-D case, with uniform grid spacing dx, and an element
whose coordinates are X1 and X2 (X2− X1= dx) and whose
nodal pressures are P1 and P2. This element is mapped into
the interval [−1, 1] in a simplified coordinate system (the ref-
erence Z-system). Denote the physical variable by x and the
new variable by z. The linear interpolation functions are

φ1 = 1
2

(1− z), φ2 = 1
2

(1+ z). (25)

If the field variable and the independent (physical) variable
are computed by using the same interpolation functions, one
has the so-called isoparametric approach (Hughes, 1987, 20).
That is,

p = φ1 P1 + φ2 P1, x = φ1 X1 + φ2 X1. (26)

Assembling the contributions of all the elements of the
stiffness matrix results in a centered second-order differencing
operator if the density is constant. When the density is
variable, the stiffness matrix is equivalent to a staggered FD
operator (Kosloff and Kessler, 1989).

FE methods have been used to solve problems in seismol-
ogy, in particular, propagation of Love and Rayleigh waves in
the presence of surface topography (Lysmer and Drake, 1972;
Schlue, 1979). FE applications for seismic exploration require,
in principle, more memory and computer time than the study of
surface waves (as used in modeling soil-structure interaction).
In fact, the problem of propagation of seismic waves from the
surface to the target (the reservoir) involves the storage of
large matrices and much computer time. During the 1970s and
1980s, the effort was in rendering efficient existing low-order
FE techniques rather than proposing new algorithms. More-
over, it turns out that besides the physical propagation modes,
there are parasitic modes when high-order FE methods are
used (Kelly and Marfurt, 1990). These parasitic modes are non-
physical solutions of the discrete dispersion relation obtained
from the von Neumann stability analysis. For instance, for a
2-D cubic element grid, there are ten modes of propagation:
two corresponding to the P- and SV-waves, and eight parasitic
modes of propagation.

This was the state of the art at the end of the 1980s. In the
1990s. Serón et al. (1990, 1996) further developed the compu-
tational aspects of low-order FE to make them more efficient
for seismic exploration problems.

High-order FE methods became more efficient with the ad-
vent of the spectral element method (SPEM) (Seriani et al.,
1992; Padovani et al., 1994; Priolo et al., 1994; Komatitsch and
Vilotte, 1998). In this method, the approximation functional

space is based on high-order orthogonal polynomials having
spectral accuracy (i.e., the rate of convergence is exponential
with respect to the polynomial order). Consider, for instance,
the 2-D case and the acoustic wave equation. The physical do-
main is decomposed into nonoverlappring quadrilateral ele-
ments. In each element, the pressure field p(z1, z2), defined on
the square interval [−1, 1]× [−1, 1] in the reference system Z,
is approximated by the product

p(z1, z2) =
N∑

i=0

N∑
j=0

Pi j φi (z1)φ j (z2). (27)

In this expansion, Pi j are the nodal pressures and φi are
Lagrangian interpolants that satisfy the relation φi (ζk)= δik

within the interval [−1, 1] and vanish outside (δik denotes the
Kronecker delta and ζk stands for z1 and z2). The Lagrangian
interpolants are given by

φ j (ζ ) = 2
N

N∑
n=0

1
cj cn

Tn(ζ j )Tn(ζ ), (28)

where Tn are Chebyshev polynomials, ζ j are the Gauss-Lobatto
quadrature points, and c0= cN = 0, cn= 1 for 1≤ n≤ N. The
Chebyshev functions are also used for the mapping transfor-
mation between the physical world X and the local system Z.
Seriani et al. (1992) used Chebyshev polynomials from eighth
order to fifteenth order. This allows up to three points per
minimum wavelength without generating parasitic or spurious
modes, and computational efficiency is improved by about one
order of magnitude compared to low-order FE. If the mesh-
ing of a geological structure is as regular as possible (i.e., with a
reasonable aspect ratio for the elements), the matrices are well
conditioned and an iterative method such as the conjugate gra-
dient uses less than eight iterations to solve the implicit system
of equations.

Source implementation

The basic seismic sources are a directional force, a pressure
source, and a shear source, simulating, for instance, a vertical
vibrator, an explosion, or a shear vibrator. Complex sources,
such as earthquakes sources, can be represented by a set of
directional forces [e.g., a double couple (Aki and Richards,
1980, 82)].

Consider an elastic formulation of the wave equation, that
is, P- and S-wave propagation (Kosloff et al., 1984). A direc-
tional force vector has components fi =a(xi )h(t)δim, where a is
a spatial function (usually a Gaussian), h(t) is the time history,
δ denotes the Kronecker delta function, and m is the source
direction. A pressure source can be obtained from a potential
of the form φ=a(xi )h(t) as fi = ∂φ/∂xi . A shear source is of
the form f=∇ ×A, where A is a vector potential. In 2-D space,
A= (0, A) with A=a(xi )h(t). In velocity-stress formulations,
the source can be introduced as described above or in the con-
stitutive equations (stress-strain relations) such that a pressure
source implies σ11= σ22= σ33 initially at the source location,
and shear sources result from a stress tensor with zero trace
(e.g., Bayliss et al., 1986).

Introducing the source in a homogeneous region by imposing
the values of the analytical solution should handle the singular-
ity at the source point. Many FD techniques (Kelly et al., 1976;
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Seismic Modeling 1311

Virieux, 1986) are based on the approach of Alterman and
Karal (1968). The numerical difficulties present in the vicin-
ity of the source point are solved by subtracting the field due
to the source from the total field due to reflection, refraction,
and diffractions in a region surrounding the source point. This
procedure inserts the source on the boundary of a rectangular
region. The direct source field is computed analytically. This
method has been recently used by Robertsson and Chapman
(2000) to “inject” a numerical wavefield into a FD mesh. Their
approach allows for efficient computation of many common-
shot experiments after alterations of the seismic model in a
subarea containing the target (e.g., the reservoir).

When solving the velocity-stress formulation with pseu-
dospectral (PS) algorithms and high-order FD methods
(Bayliss et al., 1986), the source can be implemented in one grid
point in view of the accuracy of the differential operators. Nu-
merically (in 1-D space and uniform grid spacing), the strength
of a discrete delta function in the spatial domain is 1/dx, where
dx is the grid size. Since each spatial sample is represented by
a sinc function with argument x/dx (the spatial integration of
this function is precisely dx), the introduction of the discrete
delta will alias the wavenumbers beyond the Nyquist (π/dx) to
the lower wavenumbers. However, if the source time-function
h(t) is band limited with cut-off frequency fmax, the wavenum-
bers greater than kmax= 2π fmax/c will be filtered. Moreover,
since the wave equation is linear, seismograms with different
time histories can be implemented by convolving h(t) with only
one simulation obtained with δ(t) as a source (a discrete delta
with strength 1/dt).

The computation of synthetic seismograms for simulating
zero-offset (stacked) seismic sections requires the use of the
exploding-reflector concept (Loewenthal et al., 1976) and the
so-called nonreflecting wave equation (Baysal et al., 1984). A
source proportional to the reflection coefficients is placed on
the interfaces and is initiated at time zero. All the velocities
must be halved in order to get the correct arrival times. The
nonreflecting condition implies a constant impedance model to
avoid multiple reflections, which are, in principle, absent from
stacked sections and constitute unwanted artifacts in migration
processes.

Boundary conditions

Free-surface and interface boundary conditions are the most
important in seismic exploration and seismology. Although
in FE methods the implementation of traction-free bound-
ary conditions is natural (simply do not impose any constraint
at the surface nodes), FD and PS methods require a special
boundary treatment. However, some restrictions arise in FE
and FD modeling when large values of the Poisson’s ratio (or
VP/VS ratio) occur at a free surface.

Consider first the free-surface boundary condition. The clas-
sical algorithm used in FD methods (e.g., Kelly et al., 1976)
is to include a fictitious line of grid points above the sur-
face, and use one-sided differences to approximate normal
derivatives and centered differences to approximate tangen-
tial derivatives. This simple low-order scheme has an upper
limit of VP/VS≤ 0.35, where VP and VS are the P-wave and
S-wave velocities. Moreover, the method is inaccurate due to
the use of one-sided differences. The use of a staggered differ-
ential operator and radiation conditions of the paraxial type

(see below) is effective for large variations of Poisson’s ratio
(Virieux, 1986).

The traction-free condition at the surface of the earth can
be obtained by including a wide zone on the upper part of the
mesh containing zero values of the stiffnesses [the so-called
zero-padding technique (Kosloff et al., 1984)]. Whereas for
small angles of incidence this approximation yields acceptable
results, for larger angles of incidence it introduces numerical
errors. Free surface and solid-solid boundary conditions can
be implemented in numerical modeling with nonperiodic PS
operators by using a boundary treatment based on character-
istics variables (Kosloff et al., 1990; Kessler and Kosloff, 1991;
Carcione, 1991; Tessmer et al., 1992; Igel, 1999). This method
is proposed by Bayliss et al. (1986) to model free-surface and
nonreflecting boundary conditions. The method can be summa-
rized as follows (Tessmer et al., 1992; Carcione, 1994b). Con-
sider the algorithm for the SH-wave equation (2). Most explicit
time integration schemes compute the operation Hv≡ (v)old,
where H is defined in equation (2). The vector (v)old is then
updated to give a new vector (v)new that takes the boundary
conditions into account. Consider the boundary x3= 0 (e.g., the
surface) and that the incident wave is incident on this boundary
from the half-space x3 > 0. Compute the eigenvalues of matrix
B:±√µ/ρ=±c and 0. Compute the right eigenvectors of ma-
trix B, such that they are the columns of a matrix R, where
B=RΛR−1, with Λ the diagonal matrix of the eigenvalues. If
we define the characteristics vector as c=R−1v, and consider
equation (2) corresponding to the modes traveling along the
x3-direction,

∂c
∂t
= Λ

∂c
∂x3

, (29)

the incoming and outgoing waves are decoupled. Two of the
characteristic variables, components of vector c are v2+ σ32/Z
and v2− σ32/Z, with Z= ρc. The first variable is the incoming
wave and the second variable is the outgoing wave. Equating
the new and old outgoing characteristic and assuming stress-
free boundary conditions (σ32= 0), the update of the free- sur-
face grid points is v

σ12

σ32


new

=

1 0 Z−1

0 1 0

0 0 0


 v

σ12

σ32


old

. (30)

It can be shown that this application of the method of char-
acteristics is equivalent to a paraxial approximation (Clayton
and Engquist, 1977) in one spatial dimension.

Robertsson (1996) presents a FD method which does not
rely on mapping transformations and therefore can handle ar-
bitrary topography, although with a staircase shape. The free-
surface condition is based on the method of images introduced
by Levander (1988). This method is accurate and stable for high
values of the Poisson ratio. An efficient solution to the stair-
case problem is given by Moczo et al. (1997), who propose a
hybrid scheme based on the discrete-wavenumber, FD, and FE
methods. These modeling algorithms include attenuation based
on memory-variable equations (Emmerich and Korn, 1987;
Carcione et al., 1988; Carcione, 1994b; Robertsson et al., 1994).

Interface boundary conditions are satisfied explicitly in ho-
mogeneous modeling (Kelly et al., 1976). At the interface
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1312 Carcione et al.

between a solid and a fluid, the normal particle velocity (or dis-
placement, depending on the formulation) and normal stress
components are continuous when crossing the interface; in a
solid/solid boundary, both horizontal and vertical particle ve-
locity components and normal stresses are continuous. How-
ever, heterogeneous modeling is preferred when the interfaces
have arbitrary shape. In this case, spurious diffractions arise
from an inappropriate modeling of curved and dipping inter-
faces (the so-called staircase effect). Irregular interfaces and
variable grid spacing are easily handled by FE methods, since,
in principle, grid cells can have any arbitrary shape. When
using FD and PS algorithms, an averaging method can be
used to reduce spurious diffractions arising from the stair-
case effect. Muir et al. (1992) used effective media theory
based on Backus averaging to find the elastic constants at the
four grid points of the cell. The modeling then requires an
anisotropic stress-strain relation. Zeng and West (1996) obtain
satisfactory results with a spatially weighted averaging of the
model properties (slowness averaging, mainly), and Zhang and
LeVeque (1997) present a method based on the modification
of the FD scheme in the vicinity of an interface to satisfy the
boundary conditions. Similarly, algorithms based on rectangu-
lar cells of varying size allow the reduction of staircase diffrac-
tions and the number of grid points (Moczo, 1989; Opršal and
Zahradnik, 1999). When the grid points are not chosen in a
geometrically regular way, combinations of 1-D Taylor series
cannot be used, and 2-D Taylor series must be applied (Celia
and Gray, 1992, 93).

Absorbing boundaries

The boundaries of the numerical mesh may produce non-
physical artifacts which disturb the physical events. These arti-
facts are reflections from the boundaries or wraparound as in
the case of the Fourier method. The two main techniques used
in seismic exploration and seismology to avoid these artifacts
are the sponge method and the method based on the paraxial
approximation.

The classical sponge method uses a viscous boundary or a
strip along the boundaries of the numerical mesh, where the
field is attenuated (Cerjan et al., 1985; Kosloff and Kosloff,
1986). When we consider the pressure formulation, equa-
tion (1) can be written as a system of coupled equations and
modified as

∂

∂t

(
p

q

)
=
(−γ 1

−L2 −γ

)(
p

q

)
+
(

0

f

)
, (31)

where γ is an absorbing parameter. The solution to this equa-
tion is a wave traveling without dispersion but whose ampli-
tude decreases with distance at a frequency-independent rate.
A traveling pulse will thus diminish in amplitude without a
change of shape. In the frequency domain, this implies that
the stiffness is divided by the factor iω+ γ , whereas the den-
sity is multiplied with the same factor. Therefore, the acoustic
impedance remains real valued. This can be adjusted in such
a way that the reflection coefficient is zero at the onset of the
absorbing strip. An improved version of the sponge method is
the perfectly matched-layer method or PML method used in
electromagnetism (Berenger, 1994) and interpreted by Chew
and Liu (1996) as a coordinate stretching. It is based on a
(nonphysical) modification of the wave equation inside the

absorbing strips, such that the reflection coefficient at the
strip/model boundary is zero, and there is a free parameter to
attenuate the wavefield. The improvement implies a reduction
of nearly 75% in the strip thickness compared to the classical
method.

The sponge method can be implemented in FE modeling by
including a damping matrix C in equation (19):

KP+ C
∂P
∂t
+M

∂2P
∂t2
+ S = 0, (32)

with C=αM+βK, where α and β are the damping parameters
(e.g., Sarma et al., 1998).

For approximations based on the one-way wave equation
(paraxial) concept, consider the acoustic wave equation on the
domain x≥ 0. At the boundary x= 0, the absorbing boundary
condition has the general form{

J∏
j=1

[
(cosα j )

∂

∂t
− c

∂

∂x

]}
p = 0, (33)

where |α j |<π/2 for all j (Higdon, 1991). Equation (33) pro-
vides a general representation of absorbing boundary condi-
tions (Keys, 1985; Randall, 1988). The reason for the success
of equation (33) is the following. Suppose that a plane wave
is hitting the boundary at an angle α and a velocity c. In 2-D
space, such a wave can be written as p(x1 cosα+ x3 sinα+ ct).
When an operator of the form (cosα)∂,t − c∂,x1 is applied to
this plane wave, the result is zero. The angles α j are chosen to
take advantage of a priori information about directions from
which waves are expected to reach the boundary.

Consider now the approach based on characteristic variables
(discussed in the “Boundary conditions” section) and apply it
to the SH-wave equation (2) in the plane x3= 0. The outgo-
ing characteristic variable is v2− σ32/Z. This mode is left un-
changed (new= old), while the incoming variable v2+ σ32/Z is
set to zero (new= 0). Then, the update of the boundary grid
points is v

σ12

σ32


new

= 1
2

1 0 Z−1

0 2 0

Z 0 1


 v

σ12

σ32


old

. (34)

These equations are exact in one dimension (i.e., for waves
incident at right angles). Approximations for the 2-D case are
provided by Clayton and Engquist (1977).

Example

Modeling synthetic seismograms may have different pur-
poses, for example, to design a seismic experiment (Özdenvar
et al., 1996), to provide for structural interpretation (Fagin,
1992), or to perform a sensitivity analysis related to the de-
tectability of a petrophysical variable, such as porosity, fluid
type, fluid saturation, etc. Modeling algorithms can also be part
of inversion and migration algorithms.

Model and modeling design

Designing a model requires the joint collaboration of geolo-
gists, geophysicists, and log analysts when there is well infor-
mation of the study area. The geological modeling procedure
generally involves the generation of a seismic-coherence vol-
ume to define the main reservoir units and the incorporation of
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Seismic Modeling 1313

fault data of the study area. Seismic data require the standard
processing sequence and prestack depth migration supported
by proper inversion algorithms when possible. A further im-
provement is achieved by including well-logging (sonic- and
density-log) information. Since the logs have a high degree
of detail, averaging methods are used to obtain the velocity
and density field at the levels of seismic resolution.

In planning the modeling with direct methods, the following
steps should be followed.

1) From the maximum source frequency and minimum ve-
locity, find the constraint on the grid spacing:

dx ≤ cmin

2 fmax
. (35)

This implies that the spacing should not exceed half the
smallest wavelength in order to avoid aliasing. The actual
grid spacing depends on the scheme chosen. For instance,
an FD scheme which is second-order in time and fourth-
order in space would require 5–8 grid points per minimum
wavelength.

2) Find the number of grid points from the size of the model.
3) Allocate additional grid points for each absorbing strip

at the sides, top, and bottom of the model. For instance,
the standard sponge method requires four wavelengths,
where the wavelength is given by λ= 2cmax/ fd and fd is
the dominant frequency of the seismic signal.

4) Choose the time step according to the stability condi-
tion (12) and accuracy criteria. Moreover, when possi-
ble, the modeling algorithm used requires testing against
known analytical solutions to verify its correctness.

5) Define the source-receiver configuration.

Simulation

The 2-D model we consider is shown in Figure 2 with the
properties indicated in Table 1. The low velocities and low

FIG. 2. Geological model. See Table 1 for material properties.

quality factors of medium 7 simulate a sandstone subjected
to an excess pore pressure. All the media have a Poisson ratio
equal to 0.2, except medium 7 which has a Poisson ratio of 0.3,
corresponding to an overpressure condition. The 2-D modeling
algorithm (Carcione, 1992) is based on a fourth-order Runge-
Kutta time-integration scheme and the Fourier and Chebyshev
methods to compute the spatial derivatives along the horizon-
tal and vertical directions, respectively. This allows the mod-
eling of free-surface boundary conditions. Since the mesh is
coarse (two points per minimum wavelength), Zeng and West’s
(1996) averaging method is applied to the slownesses to avoid
diffractions due to the “staircase” effect (the density and the
relaxation times are arithmetically averaged). The mesh has
135× 129 points, with a horizontal grid spacing of 20 m and
a vertical dimension of 2181 m with a maximum vertical grid
spacing of 20 m. Stress-free and nonreflecting boundary condi-
tions of the type of equations (30) and (34) are applied at the
top and bottom boundaries, respectively. In addition, absorb-
ing boundaries of the type of equation (31) with a length of 18
grid points are implemented at the sides and bottom bound-
ary. The source is a vertical force (a Ricker wavelet) applied
at 30-m depth with a maximum frequency of 40 Hz. The wave-
field is computed by using a time step of 1 ms with a maximum
time of 1 s (the total wall-clock time is 120 s for an Origin 2000
computer with four CPUs).

The seismogram recorded at the surface is shown in
Figure 3, where the main event is the Rayleigh wave (ground
roll) traveling with wave velocities between the shear veloc-
ities of media 1 and 2, approximately. The reflection event
corresponding to the anticlinal structure can be clearly seen
between 0.6 and 0.8 s.

INTEGRAL-EQUATION METHODS: HUYGENS’ PRINCIPLE

As a first step in discussing integral-equation methods, let us
consider Huygens’ formulation illustrated in Figure 1. Huygens
states that the wavefield originating from the flame can be con-
sidered as a superposition of waves due to point sources located
in the flame. We can also formulate this in a somewhat more
mathematical way. Consider the scalar wave equation for a ho-
mogeneous medium (i.e., with constant density and constant
speed of sound c= c0),(

∇ · ∇ − 1
c2

0

∂2

∂t2

)
p = −q, (36)

Table 1. Material properties for the geological model in
Figure 2.

Medium VP (km/s) VS (km/s) QP QS ρ g/cm3

1 2.6 1.6 80 60 2.1
2 3.2 1.96 100 78 2.3
3 3.7 2.26 110 85 2.3
4 4 2.45 115 90 2.4
5 4.3 2.63 120 92 2.5
6 4.5 2.75 125 95 2.6
7 3.2 1.7 30 25 2.3
8 4.6 2.82 150 115 2.6
9 4.8 2.94 160 120 2.7
10 5.4 3.3 220 170 2.8
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1314 Carcione et al.

which follows from equation (1) with q= c−2
0 f . The inte-

gral representation for this scalar wave equation is given by
(Courant and Hilbert, 1937, 403)

p(x, t) =
∫

G(x, xs, t − t ′) q(xs, t
′) dxs dt′, (37)

where x is the position vector. Since the velocity is constant,
the Green’s function G is given by

G(x, xs, t) = δ(t − |x− xs|/c0)
4π |x− xs| . (38)

The Green’s function is the medium’s response to a point
source, and satisfies the wave equation (36) for a point source
given by q= δ(x − xs)δ(t). If we substitute equation (38) into
equation (37), we obtain the integral representation

p(x, t) =
∫

D

q(xs, t − |x− xs|/c0)
4π |x− xs| dxs, (39)

where D is the region in space where the source term q is
present. Equation (39) is the mathematical formulation of
Huygens’ principle illustrated in Figure 1. The integration is a
summation over volumetric wave field densities, q/4π |x− xs|.
Each element of that distribution resides at a “source point” xs

at time t and arrives at the point x at the retarded time t −
|x− xs|/c0. The volumetric wave field density is given by the
initial source distribution, q, weighted by the so-called “3-D
spreading factor” 4π |x− xs|. In order to derive the wave equa-
tion and its corresponding integral representation above, one
needs integral and differential calculus which was not yet de-
veloped at the time of Huygens.

Domain integral-equation method

Apart from radiation from sources, as illustrated by equa-
tion (39), domain-integral representations can also be used
to formulate and solve scattering problems. Consider, for in-
stance, the case of a scattering object V with a sound speed

FIG. 3. Seismogram of the vertical particle velocity.

c(x) embedded in a surrounding medium with constant sound
speed c0. Both scattering object and embedding medium have
the same (constant) density ρ0. The wave equation then reads,(

∇ · ∇ − 1
c2

∂2

∂t2

)
p = −q, (40)

with c= c0 outside V . This can be rewritten in the following
contrast formulation:(

∇ · ∇ − 1
c2

0

∂2

∂t2

)
p = −q −

(
1
c2

0

− 1
c2

)
∂2 p

∂t2
. (41)

The wave equation we obtain in this way is very similar to
equation (36), the only difference being an additional source
term due to the presence of the object. Therefore, we can write
the integral representation, analogous to equation (39), in the
form

p = pinc + psc, (42)

where the incident field pinc, which would have been present
due to the source q in the absence of the object, is given by the
right-hand side of equation (39) and the scattered field is given
by

psc(x, t) =
∫

V

(
1
c2

0

− 1
c(x′)2

)
∂2

∂t2

p(x′, t − R/c0)
4πR

dx′,

(43)

with R= |x− x′| the distance between observation point x and
integration point x′. With the aid of equations (42)–(43), the
field outside the object V can be represented in terms of the
sources q and the field values inside the object. In order to
determine the field values inside the object, we can take x inside
V in equation (42), substitute psc of equation (43), and obtain
an integro-differential equation for the unknown field p inside
the object V . So far, the acoustic case has been presented here
for the sake of simplicity. The elastic case has been discussed
by Pao and Varatharajulu (1976). For an overview of different
methods for acoustic, electromagnetic, and elastic fields, see
De Hoop (1995).

In the above, a homogeneous embedding medium was con-
sidered. This method is also applicable to heterogeneous em-
bedding media, provided the Green’s function (the wavefield
due to a point source) can be determined. This is the case for
layered media using plane-wave summation techniques (Ursin,
1983).

For special geometries, the volume integral equation ob-
tained here can be solved with the aid of separation techniques.
In general, however, these methods are not applicable and the
equation has to be solved numerically. This can be done with
the method of moments (Harrington, 1968). The first step in
applying this method is discretization of the unknown function
with the aid of expansion functions, followed by a weighting of
the integral equation using appropriate weighting functions. To
illustrate this procedure, we apply it to the integral-equation
formulation given by equations (42)–(43). First, we subdivide
the volume V of the scatterer into smaller volumes Vm with
centers xm(m= 1, . . .M) and assume that the pressure is con-
stant in each subvolume. If we then enforce the equality sign at
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Seismic Modeling 1315

the center points at times t j , we obtain the following relation:

p
(
xn, t j

) = pinc(xn, t j
)+ M∑

m=1

∫
Vm

(
1
c2

0

− 1
c(x′)2

)

× ∂
2
t p
(
x′, t j − Rn

/
c0
)

4πRn
dx′, (44)

with n= 1, 2, . . .M and Rn the distance between xn and x′. If
we express the time derivative under the integral in backward
time differences, we obtain an explicit time-stepping algorithm
where new values in each point can be computed from previ-
ously computed values. In this way, no matrix inversion is re-
quired. A disadvantage of this method, however, is that one
has to be aware of potential instabilities and that previously
computed values in all points have to be stored. If the object
is large compared to the pulse width of the field, this approach
becomes impractical. An alternative is to formulate the prob-
lem in the frequency domain and solve the resulting system of
equations separately for each frequency. This circumvents the
storage and stability problems but can still be inefficient if the
object is large compared to the wavelength due to the fact that
the system matrix is full (in contrast to FD methods). There-
fore, this type of volume integral-equations is especially suited
to the case of objects of modest size.

Boundary integral-equation methods

In Figure 4, Huygens’ principle is illustrated in a different
form. Each point on a wavefront can be considered as the
source of waves propagating away from that point. In order to
obtain a mathematical formulation corresponding to the situa-
tion of Figure 4, we again consider the wave equation, but this
time in a domain D containing a bounded object with bound-
ary S(D is the region outside S). On S, we prescribe an explicit
boundary condition, for example a pressure-release boundary
condition. We then have the following relations:(
∇ · ∇ − 1

c2
0

∂2

∂t2

)
p(x, t) = −q(x, t), (x ∈ D), (45)

FIG. 4. Illustration of Huygens’ principle showing that each
point on a wavefront acts as secondary source for spherical
waves [taken from the 1690 Traité de la lumière (Huygens,
1990)].

and boundary condition

p(x, t) = 0 (x ∈ S). (46)

As in the previous section, the pressure in D can now be de-
composed into two contributions,

p = pinc + psc, (47)

where the incident field, pinc, is again given by the right-hand
side of equation (39), and the scattered field, accounting for the
presence of the object, is given by the integral representation

psc(x, t) =
∫

S

n · ∇′p(x′, t − R/c0)
4πR

dx′, (48)

where n is the outward pointing normal vector on S. This can
be derived by applying the boundary condition (46) to the inte-
gral representation for the scalar wave equation in a bounded
domain (see, for instance, Bennett and Mieras, 1981). The inte-
gration over Sis in fact a summation of point-source wavefields
located on Sand is therefore a mathematical representation of
the same idea illustrated in Figure 4. With the aid of equa-
tions (47)–(48), the field ouside the object can be represented
in terms of sources q and certain field values at the boundary
of the object. In order to determine these field values, we can
let the point of observation approach the object and enforce
the boundary condition (46). In this way, we obtain the integral
equation

pinc(x, t) = −
∫

S

n · ∇′p(x′, t − R/c0)
4πR

dx′ (x ∈ S).

(49)
From this equation, the field quantity n · ∇′ p on S can be de-
termined. In general, this integral equation has to be solved
numerically using methods similar to those discussed for the
case of the volume-integral equation. In the discretization pro-
cedure, proper care has to be taken of the singularity of the
Green’s function at x= x′. Here, we have only discussed a scalar
example for the pressure-release boundary condition. The elas-
tic formulation for the above problem is given by Tan (1976).
Scattering of elastic waves by cracks or cavities has also been
discussed by Bouchon (1987) and, more recently, elastic scat-
tering by hydrofractures was discussed by Pointer et al. (1998).
The application of integral-equation techniques for studying
wave propagation in media with a number of cracks was dis-
cussed by Liu et al. (1997), whereas wave propagation in media
containing large numbers (several thousands) of small cracks
was studied by Muijres et al. (1998). In particular, the case of
many small cracks can be solved very efficiently with the aid
of boundary-integral equations since each crack is represented
by only one unknown coefficient which represents the jump in
normal velocity.

Boundary-integral equations are also very well suited to ac-
curately model geometries with either explicit boundary con-
ditions or discontinuities in properties. For instance, scattering
of elastic waves by a rough interface between two solids was
discussed by Fokkema (1980). The geometry of irregular bore-
holes was considered by Bouchon and Schmidt (1989), and
the radiation of seismic sources in boreholes in layered and
anisotropic media was discussed by Dong et al. (1995).
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1316 Carcione et al.

Integral-equation modeling example

In order to investigate the effect of small-scale scattering ob-
jects like cracks or inclusions, integral equations can be useful.
If the cracks are small with respect to the dominant seismic
wave length, each crack only adds one unknown to the prob-
lem, which implies that large number of cracks can be modeled.
In Figure 5, 4000 cracks are randomly positioned in a homoge-
neous embedding medium with sound velocity c0= 3000 m/s.
After choosing the wave form of the incident pressure field (in
the frequency domain) and solving the relevant integral equa-
tion numerically for each frequency, the resulting total trans-
mitted field at the receiver is shown in Figure 6 in comparison
with the incident field. This method is described in more detail
in Muijres et al. (1998).

ASYMPTOTIC (RAY-TRACING) METHODS

The integral representations discussed in the previous sec-
tion are especially useful if the medium is homogeneous. In the
case of heterogeneous media, the computation of the Green’s
function is tedious. In that case, asymptotic methods can be an

FIG. 5. Model consisting of 4000 cracks having a width of 1 m
each. The speed of sound in the embedding medium is 3000 m/s.
The receiver location is indicated with o; the incident wave is
a plane pressure wave propagating downwards.

FIG. 6. Normalized incident pressure field recorded by the re-
ceiver in the absence of cracks and transmitted total field ac-
counting for the presence of the cracks.

attractive alternative. Before we discuss the asymptotic meth-
ods, we first return to equation (38), the Green’s function
for a homogeneous medium. Clearly, this function describes
a spherical wavefront which propagates at speed c0. An initial
disturbance of the medium at t = 0 and x= xs is spreading in
space as time proceeds; at time t , it has arrived at the sphere
|x− xs| = c0t . The function

φ(x, xs) = |x− xs|/c0 (50)

measures the time needed for the disturbance to travel from
the source location xs to the point x. It is called the travel-
time function. The amplitude of the disturbance is given by the
function

A(x, xs) = 1
4π |x− xs| . (51)

With these two definitions, we can rewrite the Green’s function
for a constant velocity medium as

G(x, xs, t) = A(x, xs)δ(t − φ(x, xs)). (52)

In what follows, we work with the temporal Fourier transform
of the Green’s function, which is denoted by G(x, xs, ω). For
the constant velocity case, it is of the form

G(x, xs, ω) = A(x, xs)eiωφ(x,xs). (53)

In general, the velocity of course varies with position x. In
geophysical applications, this is predominantly caused by tran-
sitions from one geological formation to another, but there are
also other causes, such as varying geopressure or fluid con-
tent of the rocks. From physical intuition, one would expect
that the solution of the wave equation (36) still behaves like
a propagating wavefront in this case. This can be made more
precise mathematically by studying the high frequency behav-
ior of G(x, xs, ω). It can be shown that in the limit ω→∞
(hence the name asymptotic) G(x, xs, ω) is still of the form
of equation (53), where φ(x, xs) and A(x, xs) are general trav-
eltime and amplitude functions. The wavefront is no longer
spherical in the heterogeneous case, and the traveltime and
amplitude functions are no longer given by the simple explicit
relations (50) and (51) above.

Eikonal and transport equations

We illustrate the use of asymptotic methods by constructing
the high-frequency behavior of the Green’s function G(x, xs, ω)
away from the location of the source (i.e., for x 6= xs). We start
by substituting the expression (53) into the Fourier transform
of the wave equation. This equation is given by(

∇ · ∇ − (−iω)2

c(x)2

)
G(x, xs, ω) = 0 (54)

and is known as the Helmholtz equation. The result is

((iω)2[(∇φ)2 − c−2(x)]A

+ iω[2∇A · ∇φ + A1φ]+1A)eiωφ = 0. (55)

Dividing out the factor eiωφ , we obtain a polynomial in iω,
which is equated to zero. Since this equation has to hold for all
ω, all the coefficients of the polynomial have to be zero.
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Seismic Modeling 1317

From the coefficient of (iω)2, we find that the traveltime
function has to satisfy the so-called eikonal equation

(∇φ)2 = c−2(x). (56)

Similarly, from the coefficient of iω we find

2∇A · ∇φ + A1φ = 0. (57)

This equation is called the transport equation for the amplitude
function. These two equations, when supplemented with suit-
able initial conditions, determine the traveltime and amplitude
function uniquely. For a constant velocity, this leads to an am-
plitude given by equation (51) for which 1A= 0. For spatially
varying velocity, 1A 6= 0, which implies that the coefficient of
(iω)0 in equation (55) is not equal to zero. Therefore, one is
forced to replace the simple solution (53) by a power series in
(−iω)−1, i.e.,

G(x, xs, ω) =
∑
k≥0

(−iω)−k Ak(x, xs)eiωφ(x,xs). (58)

To determine the equations for the higher order amplitudes
Ak+1 (k≥ 0), one substitutes this expression in the Helmholtz
equation and equates the coefficients of all powers ofω to zero.
Besides the eikonal equation (56) for φ(x, xs) and the transport
equation (57) for A0(x, xs), one finds for k≥ 0 the following
higher order transport equations:

2∇Ak+1 · ∇φ + Ak+11φ = 1Ak. (59)

This shows that a solution of the wave equation of the form (58)
can be constructed by first solving the eikonal equation for
φ(x, xs), subsequently the transport equation for A0(x, xs), and
then solving the higher order transport equations recursively
for Ak+1(x, xs) (k≥ 0).

So we are naturally led to an infinite power series (58) in 1/ω,
which converges for |ω| ≥ω0≥ 0. If ω0= 0, it converges for all
frequencies; if ω0=∞, the series is meaningless. If the series
converges uniformly in x for a given frequency, it is a solution
of the Helmholtz equation for that frequency. The fact that
the series (58) in general diverges for small frequencies means
that we have only constructed the solution of the Helmholtz
equation for large frequencies. Therefore, ones speaks of an
asymptotic solution of the Helmholtz equation.

Let us try to assess the consequence of knowing only a high-
frequency solution for the time-domain solution. To this end,
we take the inverse Fourier transform of G(x, xs, ω), which can
be written as

G(x, xs, t) = 1
2π

∫ ω0

−ω0

G(x, xs, ω)e−iωt dω

+ 1
2π

∫
|ω|>ω0

G(x, xs, ω)e−iωt dω. (60)

The first term is not known (at least not by the procedure out-
lined above) unless ω0 happens to be zero. The only thing that
can be said about it is that it must be a smooth function of
t, x and xs, since differentiation can be done under the integral
for an integral over a finite interval. Equivalently, the second
term of equation (60) is representative for the singular (i.e.,
nonsmooth) behavior of the solution. The smooth part of the
solution has a frequency dependence that must decay faster

than any algebraic power of ω and can therefore not be repre-
sented by a power series.

If ŵ(ω) is a smooth taper function satisfying, e.g.,

ŵ(ω) =
{

0 if |ω| ≤ ω0

1 if |ω| ≥ 2ω0,
(61)

we can write

G(x, xs, t) ∼ 1
2π

∫
ŵ(ω)G(x, xs, ω)e−iωt dω, (62)

where the∼ sign means that we have neglected a smooth func-
tion. The taper function effectively acts as a high-pass filter.
We can now substitute the series (58) in the right-hand side of
this relation. The term with k= 0 transforms into A0w(t −φ)
[which equals A0 (w ∗ δφ)(t), a high-pass version of a propa-
gating wavefront]. Similarly, the term with k= 1 transforms
into A1 (w ∗ Hφ)(t), where H is the Heaviside step function,
given by

Ha(t) =
{

0 if t < a

1 if t ≥ a.
(63)

This is again a propagating wavefront. The Heaviside function
is discontinuous at the wavefront φ(x, xs)= t , but the discon-
tinuity of the Heaviside function is of course less severe than
the singularity of the delta function. Similarly, the higher order
terms, which can be obtained by repeatedly integrating with
respect to t , become less and less singular.

Usually, one breaks off the solution after the first term. From
the above, it is clear that this means that one only considers the
most singular part of the solution. Moreover, for the constant
velocity case, the first term coincides with the full solution.

Constructing the asymptotic solution

Before discussing numerical methods, we first explain how
to construct a solution from a theoretical point of view by the
method of characteristics. Numerical methods for solving the
eikonal and transport equations rely heavily on this theoretical
concept.

Method of characteristics: seismic rays

The method of characteristics is in fact a general solution
method for first-order partial differential equations, of which
the eikonal equation is an example [see, e.g., Courant and
Hilbert (1966) for a classical reference]. The general idea is
to construct curves x(σ ) along which the partial differential
equation reduces to an ordinary differential equation.

To explain this concept in the case of the eikonal equation,
we again first consider the simplest case of a constant velocity.
In that case the wavefronts (i.e., the surfaces of constant travel-
time t) are spheres of radius ct centered at the source location
xs [see equation (50)]. Moreover, choosing an arbitrary point x
on a wavefront φ= t , the line from xs to x is orthogonal to that
wavefront and hence in the direction of the gradient∇φ(x, xs).
Therefore, this line can be parameterized as

x(σ ) = xs + σ∇φ(x, xs) = xs + σ
c

x− xs

|x− xs| , (64)
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1318 Carcione et al.

where we have scaled the parameter σ in such a way that

dx
dσ
= ∇φ = 1

c

x− xs

|x− xs| . (65)

Differentiating the traveltime function φ(x, xs) along this line
x(σ ), we obtain

dφ

dσ
= dx

dσ
· ∇φ = (∇φ)2 = 1

c2
, (66)

which is indeed an ordinary differential equation for the trav-
eltime. Given the line and this equation, the traveltime func-
tion is easily retrieved. Integrating with respect to σ , one
finds φ= σ/c2. Moreover, from equation (64) one finds that
σ = c|x− xs|, and hence φ(x, xs)= |x− xs|/c.

In conclusion, we can say that, for the constant velocity case,
it is sufficient to have the family of lines originating from the
source location (these are the characteristic curves in this case)
and the ordinary differential equation (66) along these lines to
solve for the traveltime function.

In the general case of a spatially varying velocity, we would
also like to construct curves x(σ ) satisfying dx/dσ =∇φ. Un-
fortunately, to construct these curves, one would have to know
the solution φ of the eikonal equation up front, whereas the
whole purpose of constructing characteristics is to find this so-
lution. To circumvent this problem, we differentiate once more
with respect to σ :

d2x
dσ 2
= d

dσ
∇φ

= dx
dσ
· ∇(∇φ)

= ∇φ · ∇(∇φ)

= ∇[(∇φ)2/2]

= ∇[c−2/2]. (67)

Hence, we find a second-order equation for the curve x(σ )
which does not depend on the solution φ. This second-order
equation is equivalent to the system of first-order equations

dx
dσ
= p,

(68)
dp
dσ
= ∇[c−2/2].

The solution curves (x(σ ), p(σ )) of this system are called
bicharacteristic curves. They belong to the phase space
{(x, p) | x, p∈R3}. The curves x(σ ), which live in the configu-
ration space R3, are called the characteristic curves or, briefly,
the characteristics of the eikonal equation. In seismology, they
are also referred to as (seismic) rays.

The system (68) can be solved if we specify initial conditions
x(0) and p(0). We choose

x(0) = xs, p(0) = 1
c(xs)

sin ξ1 cos ξ2

sin ξ1 sin ξ2

cos ξ1

 . (69)

Thus, all rays start at xs for σ = 0 and leave the source location
in the direction specified by the angles ξ1 and ξ2. The solution
curves depend smoothly on the initial conditions xs, ξ1, and ξ2.

If the source location is fixed, we write x= x(ξ1, ξ2; σ ) and
p= p(ξ1, ξ2; σ ) to denote the dependence on the take-off angles
of the ray at xs.

In fact, the solution curve x(ξ1, ξ2; σ ) defines a map
(ξ1, ξ2, σ ) 7→ x(ξ1, ξ2; σ ) which can be seen as a coordinate
transformation provided, of course, that the Jacobian

J(ξ1, ξ2, σ ) = ∂(x, y, z)
∂(ξ1, ξ2, σ )

(70)

does not vanish. Notice that for the constant velocity case, this
is just the transformation from spherical to rectangular coordi-
nates, and the Jacobian indeed does not vanish away from the
source location.

In order to construct a solution φ(x, xs) of the eikonal equa-
tion, we supplement (just as in the constant velocity case) the
equations (68) with the equation

dφ̃

dσ
= 1

c2
, φ̃(0) = 0. (71)

Integrating this equation along a characteristic curve
x(ξ1, ξ2; σ ), one finds

φ̃(ξ1, ξ2; σ ) =
∫ σ

0

dσ ′

c2(x(ξ1, ξ2; σ ′))
. (72)

If the Jacobian J introduced in equation (70) is indeed nonzero,
this function can also be seen as a function of x:

φ(x(ξ1, ξ2; σ ), xs) = φ̃(ξ1, ξ2; σ ). (73)

Notice that equation (68) is a system of Hamilton equations
for the Hamiltonian H , given by

H(x, p) = (p2 − c−2(x))/2. (74)

This system can be written as

dx
dσ
= ∂H

∂p
,

(75)
dp
dσ
= −∂H

∂x
.

Let H̃(ξ1, ξ2, σ )= H(x(ξ1, ξ2; σ )). Then, because of these equa-
tions, H̃ is independent of σ :

∂ H̃

∂σ
= dx

dσ
· ∂H

∂x
+ dp

dσ
· ∂H

∂p
= 0. (76)

Moreover, because of the initial conditions (69), H̃(ξ1, ξ2, 0)=
0. Therefore, the Hamiltonian vanishes identically along the
bicharacteristics:

H̃(ξ1, ξ2, σ ) = 0. (77)

From the definition of H , we see that this means noth-
ing else than that the length of the tangent vector
p(ξ1, ξ2; σ )= dx(ξ1, ξ2; σ )/dσ is always 1/c(x). For this reason,
p is often called a slowness vector in geophysics.

The only thing left to show is that the function φ(x, xs) that
we have constructed in this way does indeed satisfy the eikonal
equation. Since we have just shown that p2= c−2, it is sufficient
to show that p=∇φ, just as in the constant velocity case. A
proof of this relation can be found in Courant and Hilbert
(1966).
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Seismic Modeling 1319

Transport along the rays

Now let us turn our attention to the transport equation (57).
This equation can also be rewritten as an ordinary differential
equation along the rays. The gradient of the traveltime func-
tion in a point x(ξ1, ξ2; σ ) is given by the momentum vector
p(ξ1, ξ2; σ ) which, according to Hamilton’s equations (68), is
equal to the tangent vector dx/dσ . Therefore, the term∇A · ∇φ
represents the derivative d A/dσ of the amplitude along a ray.
Hence, we can cast the transport equation into the form

1
A

d A

dσ
= −1

2
1φ. (78)

In fact, there is a simpler form of the transport equation which
uses the identity

1φ = 1
J

d J

dσ
. (79)

This follows from the definition (70) of the determinant J and
Hamilton’s equations (Červený et al., 1977; Červený, 1985,
1987). Using this identity, we find

d

dσ
(
√

J A) = 0. (80)

In other words, the quantity
√

J A is equal to a constant C
along a ray. The constant C can be found by requiring that
the amplitude A approaches the constant velocity amplitude
A given by equation (51) for σ ↓ 0 [see, e.g., Bleistein (1984)].
The result is

C = 1
4π

√
sin ξ1

c(xs)
. (81)

So we get

A(x, xs) = 1
4π

√
sin ξ1

c(xs)J(ξ1, ξ2; σ )
. (82)

This result shows that the amplitude of the Green’s function
can be calculated from the determinant of the matrix

Q =
(
∂x
∂ξ1

,
∂x
∂ξ2

,
∂x
∂σ

)
. (83)

If we also introduce the matrix

P =
(
∂p
∂ξ1

,
∂p
∂ξ2

,
∂p
∂σ

)
, (84)

we can derive from Hamilton’s equations that the matrices Q
and P satisfy the system of ordinary differential equations

d Q

dσ
= P,

d P

dσ
= Qt∇∇(c−2/2). (85)

Solving the Hamilton equations (68) together with the sys-
tem (85) is called dynamic ray tracing [see, e.g., Červený et al.
(1977) and Červený (1985, 1987) for a standard reference]. It
enables us to calculate the traveltimes and amplitudes neces-
sary for the computation of the asymptotic Green’s function.
The elements of the matrices Q and P are used in many asymp-
totic calculations, e.g., in true amplitude Kirchhoff migration
[see, e.g., Bleistein et al. (2001) for a recent reference].

Caustics

In the previous section, we saw that the determinant
J(ξ1, ξ2, σ ) defined in equation (70) plays an important role.
If it is nonzero, the transformation (ξ1, ξ2, σ ) 7→ (x1, x2, x3) is
a coordinate transformation, which enables us to consider
the traveltime function φ in equation (72) and the amplitude
function A in equation (82) as functions of (x1, x2, x3) rather
than of (ξ1, ξ2, σ ). Moreover, J occurs explicitly in the expres-
sion (82) for the amplitude. A point x0(ξ (0)

1 , ξ
(0)
2 , σ (0)), for which

J(ξ (0)
1 , ξ

(0)
2 , σ (0)) vanishes, is called a caustic point. From equa-

tion (82), it is clear that we are in serious trouble here, since
the amplitude A(x0, xs) would be infinite. Because of this, it is
impossible to find a solution of the simple form Aeiωφ for the
Green’s function at a caustic point.

Let us analyze from a geometrical point of view the vanish-
ing of the determinant. To this end, we consider the collection
of all solutions of the ray equations {x(ξ1, ξ2; σ ), p(ξ1, ξ2; σ )}
in phase space, the 6-D space spanned by all (x, p). Clearly,
this collection is a smooth 3-D subset of phase space, which
is parameterized by the take-off angles ξ1, ξ2 and the flow pa-
rameter σ along the bicharacteristics. The tangent vectors in
the direction of the ξ1, ξ2, and σ -coordinate axes are given
by (∂x/∂ξ1, ∂p/∂ξ1), (∂x/∂ξ2, ∂p/∂ξ2), and (∂x/∂σ, ∂p/∂σ ), re-
spectively. Projecting these vectors to the 3-D physical space,
we get ∂x/∂ξ1, ∂x/∂ξ2, and ∂x/∂σ . The condition J= 0 means
nothing else than that these vectors are dependent, i.e., that
they span a space of dimension lower than three. This implies
that the space, spanned by these tangent vectors, has at least
one direction which is purely “vertical,” i.e., in the p-direction.

As a consequence, the set of bicharacteristics may “turn”
in phase space. This situation is illustrated in Figure 7. The
solid curve in this figure is a cartoon of the 3-D set of bichar-
acteristics in phase space. The point x0 is a caustic point; it is
right underneath a point (x0, p0) where the set of bicharacter-
istics has a vertical tangent direction. The point x′ exemplifies
a point in configuration space where several rays intersect. No-
tice that at the point of intersection the two rays have differ-
ent directions given by the slowness vectors p(ξ (1)

1 , ξ
(1)
2 , σ (1))

and p(ξ (2)
1 , ξ

(2)
2 , σ (2)). Also, at such a point x′ there are two

distinct traveltimes φ̃(ξ (1)
1 , ξ

(1)
2 , σ (1)) and φ̃(ξ (2)

1 , ξ
(2)
2 σ (2)) de-

pending on whether the journey from xs to x′ is undertaken
along the first or the second ray. So once there are caustics, there

FIG. 7. Turning of the set of bicharacteristics in phase space. At
the caustic point x0, the set of bicharacteristics has a vertical
tangent direction.
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1320 Carcione et al.

are several rays in general, all with different slowness vectors
p(i ), passing through the same point in physical space. The trav-
eltime function φ̃(ξ1, ξ2, σ ) becomes a multivalued function in
x-coordinates: φ(i )(x)= φ̃(ξ (i )

1 , ξ
(i )
2 , σ (i )). Because of this, and

because of the fact that the gradient vectors ∇φ(i ) jump dis-
continuously from one branch of the traveltime function to the
other, we cannot speak of a classical solution of the eikonal
equation anymore. Still, the different branches are important
for imaging in complex geologies [see, e.g., ten Kroode et al.
(1998) and Operto et al. (2000)].

Figure 8 illustrates the concept of caustics and multivalued
traveltime functions in the case of two spatial dimensions. The
figure shows a fan of rays originating from a common sur-
face location (xs, 0). The velocity model is a smoothed ver-
sion of the well known Marmousi model (Versteeg and Grau,
1991). Also indicated are some wave fronts (i.e. surfaces of
constant traveltime) perpendicular to the rays. Clearly, there
are regions in the model where several rays pass through the
same subsurface location, giving rise to multivalued travel-
times. Also, the wavefronts, which are initially smooth curves,
develop singularities in these regions. It can be shown that
these singularities, which manifest themselves as the sharp
edges of so-called cusps are precisely the caustics introduced
above.

The solution of the wave equation near caustic points has
been carefully analyzed by Hörmander (1971), Duistermaat
(1974, 1995) and Maslov and Fedoriuk (1981) from a mathe-
matical point of view, and by Chapman and Drummond (1982)
from a more geophysical point of view. It turns out that in a
neighborhood of a caustic point one can find a solution of the
form

G(x, xs, ω) =
(−iω

2π

)3/2 ∫
dp a(x, xs; p)eiωψ(x,xs;p).

(86)

FIG. 8. A fan of rays in two dimensions starting from a surface
location and the associated wavefronts. The ray coverage is
kept sufficiently high by filling in shadows with new rays (see
the section on wavefront construction).

To appreciate the difference with our earlier starting point
G= Aeiωφ , we try to apply the lemma of stationary phase to
the integral in the right-hand side of equation (86). The sta-
tionarity conditions are∇pψ(x, xs; p)= 0, which can be seen as
three equations from which we can try to solve for p(x, xs). If
this works, we simply set

φ(x, xs) = ψ(x, xs; p(x, xs)) (87)

and

A(x, xs) = a(x, xs; p(x, xs))/
√
|det H(ψ)|, (88)

where the Hessian ofψ is defined as the matrix of second order
derivatives:

H(ψ) =
(
∂2ψ

∂pi ∂pj

)
. (89)

Application of the lemma of stationary phase then gives a so-
lution of the form Ae−iµπ/2eiωφ , which differs only by a phase
factor e−iµπ/2 from our earlier starting point (see below for the
definition of the numberµ). However, according to the implicit
function theorem, in order to solve p(x, xs) from the station-
arity conditions, we need to have that det H(ψ) 6= 0. It turns
out that this condition is equivalent to the condition J 6= 0,
which we have found above in our discussion of the method
of characteristics for the eikonal equation. In other words, it is
not possible to apply the lemma of stationary phase in a caus-
tic point. Fortunately, the integral representation (86) remains
valid in a caustic point.

Away from the caustic points, we can solve the stationarity
conditions for p but, as explained above, there will in general
be several solutions p(i )(x, xs), one for each ray from xs to x.
Hence, we will find a solution of the form

G(x, xs, ω) =
N∑

i=1

A(i )(x, xs)e−i π2 µ
(i )

eiωφ(i )(x,xs), (90)

where the integer number

µ(i ) = [3− sgn H
(
ψ
(
x, xs; p(i )))]/2 (91)

is called the KMAH index. The notation sgn H denotes the sig-
nature of the matrix H , i.e., the difference between the number
of positive and the number of negative eigenvalues of H . If a
ray passes through a caustic point x0, the determinant of the
Hessian goes through zero, which means that one (or two)
eigenvalues of H(ψ) change sign. As a consequence, the sig-
nature of H(ψ) changes by an even number and the phase in
equation (90) changes by an integer multiple of π/2.

Numerical methods

There are several classes of numerical methods for solv-
ing the eikonal and transport equation. We discuss two of them.
The first consists of methods which use ray tracing followed by
interpolation to a rectangular grid. The second class comprises
FD methods.
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Seismic Modeling 1321

Numerical ray-trace methods: wavefront construction

In practical applications, one often wants to solve the fol-
lowing problem. Suppose that xs= (xs, ys, 0) is the location of
a seismic source at the surface of the earth, and we want to
calculate the traveltime function φ(x, xs) for all x on a regu-
lar grid. One way of doing this is by shooting a fan of rays
starting from the source location xs, i.e., by solving the ray
equations (68) with initial conditions (69) for a range of ini-
tial angles ξ (k)

1 = ξmin
1 + (k− 1)1ξ1, ξ

(`)
2 = ξmin

2 + (`− 1)1ξ2 (see
Figure 8 for a 2-D example).

In fact, it is most convenient to parameterize the ray
equations by time t instead of the flow parameter σ . Since
dφ/dσ = p2= 1/c2, the reparameterized equations become

dx
dt
= c2p,

dp
dt
= −c−1∇c,

dφ

dt
= 1. (92)

The equations are usually solved numerically by a Runge-
Kutta method. The result is a family of points xk`m=
x(ξ (k)

1 ), x(ξ (`)
2 ),m1t . For fixed indices k and `, these points are

on an individual ray characterized by the initial angles ξ (k)
1 , ξ

(`)
2 .

For fixed index m, they form a discretization of a wavefront at
time t =m1t .

The half space z> 0 is then divided into prisms with ver-
tices xk,`,m, xk+1,`,m, xk,`+1,m, xk,`,m+1, xk+1,`,m+1, and xk,`+1,m+1.
If a point x is inside such a prism, one interpolates the trav-
eltime in x trilinearly from the known values at the vertices.
This concept of shooting a fan of rays and then interpolating in
prisms is widely applied in practice. Obviously, the interpola-
tion tends to become somewhat inaccurate if two neighboring
rays, which are initially close to each other, start to diverge
strongly. This is partly a natural process as time increases (con-
sider, e.g., the constant velocity case where rays are radii from
a sphere centered at the source location); partly it may also be
caused by strong variations in the velocity. For example, high-
velocity regions tend to act as diverging lenses for a fan of rays.
In order to get accurate traveltimes for such situations, Vinje
et al. (1993) introduced the concept of wavefront construction.
The essence of this method is that, whenever the three points
xk,`,m, xk+1,`,m, and xk,`+1,m are too far apart, a new ray is started
on the wavefront t =m1t starting from a location between
these three points. In this way, one will get an even distribution
of the subsurface with rays. This method has been used in the
computation of the result shown in Figure 8.

Notice that this method is quite capable of calculating mul-
tivalued traveltime functions, because a given point x can be in
several prisms. Each of those yields an interpolated traveltime
at x.

Obviously, one need not restrict the interpolation to travel-
times. All other quantities computed during the ray tracing are
known at the vertices xk`m and can be interpolated in the same
way. In particular, one can calculate the amplitudes A(x, xs)
of the Green’s function on a regular grid. Just as the travel-
time, the amplitude function will be multivalued at a point x,
if x lies in several prisms. In this way we can calculate, for ex-
ample, the asymptotic Green’s function given in equation (90)
associated with the fan of rays in Figure 8 at the bottom of
the model (z= 2900 m). Obviously, the amplitudes blow up in
the neighborhood of caustics, where one should use the repre-
sentation (86). Taking this for granted, and convolving with a
50-Hz Gabor wavelet, one obtains the result plotted in Figure 9.
Notice that most of the energy is in the later arrivals.

FD methods

Instead of using a ray-tracing method, one can also solve
the eikonal and the transport equations directly by using FD
methods. The methods we describe here are the essentially
non-oscillatory (ENO) upwind FD methods. These methods
were introduced by Osher and Sethian (1988) for a general
class of first-order partial differential equations. Further work
on the eikonal equation was done by Vidale (1988, 1990), Van
Trier and Symes (1991), El-Majeed et al. (1997), Kim and Cook
(1999), and Qian and Symes (1999).

The advantage of FD methods (as opposed to ray-tracing
methods) is that they calculate the traveltime fieldφ(x) directly
on a grid, so there is no need for interpolation. Also, no spe-
cial precautions have to be taken in shadow zones, unlike the
wavefront construction method described above, which shoots
additional rays in these regions in order to keep an even ray
coverage. Therefore, FD eikonal solvers are computationally
very efficient.

Multivaluedness is, however, not so easily incorporated into
an FD eikonal solver. In fact, most FD eikonal solvers calculate
the so-called viscosity solution, introduced in the mathematical
literature by Crandall and Lions (1983). The idea is roughly
as follows. If one adds a viscosity term −ε1φ to the eikonal
equation (56), there is a unique smooth (and, in particular,
single-valued) solution φε . The viscosity solution is then the
limit, in a weak sense, limε↓0 φε . It turns out that the viscosity
solution coincides with the first arrival from the source to the
location x.

The nature of this first-arrival or viscosity solution is il-
lustrated in Figure 10, which shows the propagation of first-
arrival wavefronts for the same model and shot as used for
the calculation of rays and wavefronts in Figure 8. Comparing
Figures 8 and 10, one sees that the cusps (corresponding to
the later arrivals) are missing from the wavefronts. Notice that
the first-arrival wavefronts in Figure 10 have points where their

FIG. 9. Green’s function (convolved with a 50-Hz Gabor
wavelet) for the fan of rays from Figure 8 evaluated at
z= 2900 m and at 25-m x intervals.
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1322 Carcione et al.

gradient vector is discontinuous; these correspond to the self-
intersections of the true wavefronts (Figure 8) and are called
shocks.

Let us briefly discuss the general structure of an upwind
FD method for the eikonal equation. First, one solves the z-
component of the traveltime gradient from the eikonal equa-
tion by choosing

∂φ

∂z
=
√

1
c2
−
(
∂φ

∂x

)2

−
(
∂φ

∂y

)2

. (93)

Obviously, the choice of the positive root means that we are
restricting ourselves to rays propagating downwards, which is
not a serious limitation for many applications. Another conse-
quence is that we have to take precautions in order to guarantee
that the argument of the square root remains positive. The ar-
gument can become negative if the angle θ that a ray makes with
the positive z-axis becomes too large. The remedy is to replace
the argument by cos2(θmax)/c2) if c−1(φ2

x +φ2
y)> sin2(θmax). Ef-

fectively, this amounts to accurate traveltime calculation inside
a cone |θ |<θmax.

If we denote the right-hand side of equation (93) by
F(c, ∂xφ, ∂yφ) and write φk

i j for the value of the traveltime on
the grid point (i1x, j1y, k1z), we can write

φk+1
i j
∼= φk

i j +1zF
(
ck

i j , (∂xφ)k
i j , (∂yφ)k

i j

)
(94)

and solve for φk+1
i j recursively. If one wants higher order accu-

racy, one should, of course, use a higher order scheme for the
z-integration.

The essence of the method is the specification of how to
calculate the derivatives ∂xφ and ∂yφ in the right-hand side
of equation (94) by finite differences. This is done by choos-
ing an ingeneous combination of the standard first order FD
operators:

D±x φ(x, y, z) = ±φ(x ±1x, y, z)− φ(x, y, z)
1x

,

(95)
D±y φ(x, y, z) = ±φ(x, y±1y, z)− φ(x, y, z)

1y
.

FIG. 10. Propagation of first-arrival wavefronts for the same
shot and model as used in Figure 8.

For a first-order scheme, for example, one takes

∂xφ ∼= max|max(D−x φ, 0),min(D+x φ, 0)|, (96)

and similarly for the y-derivative. These FD operators are such
that only upwind (i.e., in the direction from which the rays
are coming) information is used to approximate the deriva-
tive. To see this, we discern the four cases: (1) D−x φ > 0,
D+x φ > 0, (2) D−x φ < 0, D+x φ < 0, (3) D−x φ < 0, D+x φ > 0, and (4)
D−x φ > 0, D+x φ < 0.

Case 1 corresponds to the situation where all rays intersect-
ing a certain depth level z in an x-interval [x−1x, x+1x]
travel from left to right. The right-hand side of equation (96)
is then equal to D−x φ, which is indeed an upwind finite differ-
ence. The second case corresponds to the situation where all
rays in the interval [x−1x, x+1x] travel from right to left,
and again the difference operator (96) picks the upwind differ-
ence. In case 3, the right-hand side of equation (96) vanishes.
This case corresponds to the situation where the rays passing
through the interval [x−1x, x+1x] at depth z change direc-
tion: first they all move from left to right, then they move from
right to left. Presumably, x is then close to a point of rarefac-
tion, and the derivative ∂xφ is indeed zero up to first order.
Finally, case 4 corresponds to the situation where there is a
shock on the interval [x−1x, x+1x] (see Figure 10 for an
illustration). In principle there are now two rays arriving in the
point (x, y, z+1z), so we could choose two different travel-
times. The choice maxmod (D−x φ, D+x φ, 0) to approximate the
derivative ∂xφ turns out to select the shortest traveltime (see
Qian and Symes, 1999).

For practical purposes, first-order schemes are very ineffi-
cient. Moreover, if one also wants to solve the transport equa-
tion by finite differences, one needs to have higher order accu-
racy for the traveltimes. For this purpose, one can use the ENO
methods mentioned before. They differ from the first-order
method described above by a more complicated prescription
of the difference operators than the one given in equation (96),
which is accurate up to higher order [see Osher and Sethian
(1988) and Kim and Cook (1999)].

The fact that no later arrivals are calculated is a disadvan-
tage for some applications, such as multivalued imaging. Symes
(1996) and Benamou (1999) adapted the standard FD meth-
ods in such a way that they calculate multivalued arrival times
when these occur.

Interfaces

Until now, we have implicitly assumed that our velocity
model c(x) is smooth (i.e., that it does not contain jump discon-
tinuities). The theory of asymptotics is most easily explained
in such a medium. The asymptotic solutions in smooth me-
dia, and in particular the traveltime and amplitude functions
φ(x, xs) and A(x, xs), can be used in transmission tomography
and migration using a smooth background model (see, e.g.,
Cohen et al, 1986).

Most geological subsurface models, however, contain dis-
continuities. After all, this is the reason that we can probe
the subsurface by surface seismic techniques in the first place.
Asymptotic techniques are easily extended to models with in-
terfaces of discontinuities. Assuming that the interface divides
the subsurface into two regions, each with its own smooth
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velocity function, say c1(x) and c2(x), we write

G(x, xs, ω) = Ain(x, xs)eiωφin(x,xs)

+ Aref `(x, xs)eiωφre f `(x,xs) (97)

on one side of the interface and

G(x, xs, ω) = Aref r (x, xs)eiωφre f r (x,xs) (98)

on the other side. Here, φin and φre f ` satisfy the eikonal equa-
tion for the velocity function c1(x), while φre f r is a solution of
the eikonal equation for the velocity function c2(x). The physi-
cal interpretation of the above is that one has an incoming and
a reflected wave on one side of the interface and a refracted
wave on the other side.

To proceed, one requires continuity of the solution G and
its normal derivative n · ∇G at the interface of discontinu-
ity. These two conditions lead to Snell’s reflection/refraction
laws for the rays. Integrating along reflected/refracted rays
will provide us with reflected/refracted traveltimes φre f ` and
φre f r . Moreover, they enable us to express the amplitudes
Aref `(x, xs) and Aref r (x, xs) at the interface in terms of the
amplitude Ain(x, xs). Integrating the transport equation along
reflected/refracted rays will provide us with the amplitudes
Aref `(x, xs) and Aref r (x, xs) away from the interface.The de-
tails of the calculation can be found e.g in Červený et al. (1977)
and Červený (1985, 1987), or Bleistein (1984).

CONCLUSIONS

The direct methods discussed in this review (finite differ-
ences, pseudospectral methods, and finite-element methods)
do not have restrictions on the type of constitutive equation,
boundary conditions, and source-type, and allow general ma-
terial variability. For instance, the numerical solution of wave
propagation in an anisotropic poro-viscoelastic medium (ap-
propriate for reservoir environments) is not particularly diffi-
cult in comparison with simple cases, such as the acoustic wave
equation describing the propagation of dilatational waves.
Many of the complex constitutive equations handled by di-
rect methods cannot be solved by integral-equation or asymp-
totic methods without simplifying assumptions. However, di-
rect methods for solving these equations are certainly more
expensive in terms of computer time and storage requirements.

Finite differences are simple to program and are efficient
when compared to alternative methods in cases where the ac-
curacy requirements are fairly mild. In this sense, a good choice
can be an FD algorithm which is second order in time and
fourth order in space. Pseudospectral methods can be more
expensive in some cases, but guarantee high accuracy and rela-
tively lower background noise when staggered differential op-
erators are used. These operators are also suitable when large
variations of Poisson’s ratio are present in the model (e.g.,
a fluid-solid interface). In three dimensions, pseudospectral
methods require a minimum of grid points and can be the best
choice when limited computer storage is available. However,
if a dense grid is required for physical reasons (e.g., fine layer-
ing, scattering inhomogeneities, etc.) the FD algorithm can be
more convenient.

Without doubt, the best algorithm to model surface topog-
raphy and curved interfaces is the FE method. With the use
of spectral interpolators, this algorithm can compete with the

previous techniques as regards accuracy and stability. How-
ever, FE methods may prove to be unstable for large variations
of the Poisson’s ratio. FE methods are best suited for engineer-
ing problems, where interfaces are well defined (in contrast
with geological interfaces). Accurate modeling of topography
or interfaces often requires the use of nonstructured grids. Es-
pecially in three dimensions, this is one of the main disadvan-
tages of FE methods because of the geometrical problems to be
solved when constructing the model. FE methods, however, are
to be preferred for seismic problems involving the propagation
of surface waves in situations of complex topography.

Integral-equation methods are based on integral representa-
tions of the wavefield. These representations contain a Green’s
function that accounts for wave propagation in the embed-
ding medium. For specific geometries (such as boreholes or
other boundaries, media containing cracks, and inclusions of
bounded extent), these methods can be relatively efficient as
compared to direct methods. The reason for this efficiency is
that the number of unknown functions to be determined is con-
fined to a bounded region. The price to pay for this reduction
in unknowns is the fact that the system matrix is full, whereas
direct methods usually have sparse system matrices that can be
solved in an efficient way. Since integral-equation methods can
explicitly account for the boundary conditions at crack bound-
aries or borehole walls, these methods can provide accurate
results for those specific geometries including irregular bore-
holes or boundaries, media containing cracks, and inclusions
of bounded extent. Also, for deriving analytical imaging meth-
ods, integral-equation techniques are very well suited, and are
often used together with asymptotic methods.

Asymptotic methods aim at the calculation of approximate
solutions for the wave equation that are valid for high frequen-
cies. Asymptotic methods calculate the solution up to a smooth
error. In fact, they calculate only the most singular part of the
solution, which is characterized by a traveltime function and
an amplitude function. The traveltime function is a solution of
the eikonal equation; the amplitude function is a solution of the
transport equation. These equations can be solved in several
ways. Wavefront construction and ENO upwind FD schemes
are two of the most important ones. Both methods are very
efficient in terms of CPU usage.

Due to their computational efficiency, asymptotic methods
are widely applied in the generation of synthetic seismograms
and the solution of inverse problems such as traveltime tomog-
raphy and migration.
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