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REPRESENTATION OF MATCHED-LAYER KERNELS

WITH VISCOELASTIC MECHANICAL MODELS

JOSÉ M. CARCIONE AND DAN KOSLOFF

Abstract. The Kosloff & Kosloff (KK) absorbing-boundary method is shown to be a particular
case of the split-PML method introduced by Bérenger. In its original form, the PML technique has
been implemented for Maxwell’s electromagnetic equations. On the other hand, the KK method
was applied to the Schrödinger and acoustic wave equations. Both techniques have subsequently
widely been used in dynamic elasticity, involving different rheological equations, including poroe-
lasticity, and electromagnetism. The coordinate stretching used in the PML method is equivalent
to the damping kernel in the KK method, which is based on the Maxwell viscoelastic model. Inside
the absorbing strips, the result is a traveling wave which gradually attenuates without changing
shape or undergoing dispersion. Moreover, we also show that the recently developed unsplit C-
PML method is based on the memory-variable formalism to describe anelasticity introduced by
Carcione and co-workers, and that the damping kernel is based on the Zener viscoelastic model.
The theoretical reflection coefficients, i.e., before discretization, are obtained and re-interpreted
using the theory of viscoelasticity through the acoustic/electromagnetic analogy.
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1. Introduction

The solution of partial differential equations describing several physical process-
es, mainly related to wave propagation in electromagnetism and dynamic elasticity,
are generally solved by using direct methods, based on finite differences, finite ele-
ments or pseudospectral methods. In order to avoid reflections and/or wraparound
from the edges of the numerical mesh, damping has to be implemented at the
boundaries in the form of absorbing strips.

Kosloff and Kosloff [18] introduced a modification of the wave equation inside the
absorbing strips, where the solution is a wave traveling without dispersion but whose
amplitude decreases with distance at a frequency independent rate. A traveling
pulse will thus diminish in amplitude without a change of shape. The method has
been applied to the Schrödinger and acoustic wave equations. Subsequenty, this
method has been applied to different rheological equations, namely, anisotropy,
viscoelasticity and poroelasticity, and to electromagnetism, mainly in algorithms
where the spatial derivatives are computed with pseudospectral methods. A review
can be found, for instance, in Carcione et al. [9] and Carcione [6]. In particular
Carcione et al. [10] and Kosloff et al. [17] applied the method to simulate anelastic
wavefields and to the elastic wave equation for modeling surface waves, respectively.
They have used the Fourier and Chebyshev pseudospectral operators to compute
the spatial derivatives. We note here that the Chebyshev method allows us to use
an alternative non-reflecting boundary condition at the edges of the mesh, based
on characteristics variables, similar to the paraxial wave equation.

On the other hand, the split-PML method has been proposed by Bérenger as an
absorbing boundary condition for electromagnetic waves. The PML method has

Received by the editors February 22, 2011 and, in revised form, December 30, 2011.
2000 Mathematics Subject Classification. 65M06, 65M22, 65M70.
This research was supported by the CO2-CARE project.

221



222 SHORT NAME AND DAN KOSLOFF

been widely used for finite-difference and finite-element methods. Chew and Liu [13]
first proposed the PML method for elastic waves in solids. A recent implementation
can be found in Festa and Vilotte [15], where these authors provide a review of the
application of the PMLmethod to different stress-strain relations in elastodynamics.

The similarity between the two methods under a practical choice of the attenu-
ation parameter is shown in this paper. The advantage of the split-PML method is
that the exact reflection coefficient is zero at all angles of incidence in contrast to
the KK method, whose corresponding reflection coefficient is zero only at normal in-
cidence. However, both coefficients differ from zero after the spatial discretization.
As shown by Komatitsch and Martin [16], the split nature of the PML method caus-
es spurious events at grazing angles. It is shown by these authors and by Bérenger
[2] that a further improvement is obtained by using the C-PML approach. The so-
called unsplit C-PML, introduced by Roden and Gedney [19] in electromagnetism,
is based on a convolutional relation similar to the stress-strain convolution used by
Carcione et al. [10, 11] to simulate anelastic fields in the time domain. In order
to overcome the convolutions, additional variables and therefore additional differ-
ential equations have to be introduced in the formulation. It is shown in this work
that the differential equations used in the C-PML method are the same to the ones
obtained by Carcione et al. [10, 11] to model viscoelasticity with the Zener model.
The equivalence is also shown in the frequency domain.

2. The KK method

The boundaries of the numerical mesh may generate non-physical artifacts which
disturb the physical events. These artifacts consists in field wraparound when
using the Fourier method and reflections when using the Chebyshev pseudospectral
method.

When we consider the constant-density pressure formulation, the wave equation
can be written as a system of coupled equations and modified as

(1)
∂

∂t

(

p
q

)

=

(

−γ 1
c2∆ −γ

)(

p
q

)

+

(

0
f

)

where p is the pressure, f are body forces, c is the wave velocity, ∆ is the Laplacian,
and γ is the absorbing parameter or damping factor. Note that q = ṗ if γ = 0, where
the dot above a variable denotes time differentiation. Hereafter, the indices 1, 2
and 3 correspond to the spatial variables x, y and z or x1, x2 and x3, respectively.

The absorbing-boundary parameter γ(x, y, z) differs from zero only in a strip of
nodes surrounding the numerical mesh. Its spatial dependence is chosen to achieve
the best amplitude reduction. The following spatial dependence was chosen in
Kosloff and Kosloff [18],

(2) γ = U0/cosh
2(d n),

where U0 is a constant, d is a decay factor and n denotes the distance in number
of grid points from the boundary. In quantum mechanics, the function γ plays a
similar role to a complex negative potential added to the Hamiltonian.

A single second-order equation can be obtained after elimination of the variable
q. For instance, in the case of homogeneous media and in the absence of the source
we obtain

(3) p̈ = c2∆p− 2γṗ− γ2p.
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Similarly, the acoustic wave equation can be split in a different manner:
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where ∂i denotes the spatial derivative along the i-direction. As shown below, the
solution to equation (3) is a wave traveling without dispersion but whose amplitude
decreases with distance at a frequency independent rate. A traveling pulse will thus
diminish in amplitude without a change of shape.

In the 2-D and 3-D elastic cases, the method has been applied by Kosloff et al.
[17] and Tessmer and Kosloff [20]. In 3-D space, the differential equations are

(5)
v̇i =

1

ρ
∂jσij + fi,

σ̇i(i) = (λ+ 2µ)∂iv(i) + λ∂jvj , j 6= i,
σ̇ij = µ(∂ivj + ∂jvi), j 6= i,

where i, j = 1,. . .3, the v’s are particle-velocity components, the σ’s are stress
components, ρ is the mass density, λ and µ are the Lamé constants, and an index
between parentheses means that there is no implicit summation. The damped
system in this case has been obtained in the same manner as in equations (1) and
(4), i.e., by adding the diagonal operator −γI, where I is the identity matrix, to
the right-hand-side of equation (5).

The parameter γ depends on the three spatial coordinates and, depending on the
side of the mesh, different parameters to define γ can be chosen. This means that
each absorbing strip has a different absorption property according to the particular
material properties in that part of the model.

3. Relation between the split-PML and KK methods

The differential equations corresponding to the split-PML method, written in
the particle-velocity stress formulation, can be found in many papers, for instance,
in Festa and Vilotte [15]. They are

(6)

v̇ki + γkv
k
i =

1

ρ
∂kσi(k) + δikfi,

σ̇k
i(i) + γkσ

k
i(i) = (λ + 2µ)∂kv(k), k = i,

σ̇k
i(i) + γkσ

k
i(i) = λ∂kv(k), k 6= i,

σ̇k
ij + γkσ

k
ij = µ∂kvj , k = i 6= j,

where

(7)

vi = v1i + v2i + v3i ,
σi(i) = σ1

i(i) + σ2
i(i) + σ3

i(i),

σij = σk
ij(δik + δjk), i 6= j.

and γk(xk) is the absorption parameter for the k-direction.
Equation (6) can be generalized to the case γk = γk(x, y, z). If, in particular we

make the choice γk = γ for all k, and add triplets of equations (6), according to the
split (7), we obtain

(8)
v̇i + γvi =

1

ρ
∂ijσij + fi,

σ̇i(i) + γσi(i) = (λ+ 2µ)∂iv(i) + λ∂jvj , j 6= i,
σ̇ij + γσij = µ(∂ivj + ∂jvi), j 6= i,
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It turns out that this system of equations is equivalent to equation (5) with damping
as used in Kosloff et al. [17] and Tessmer and Kosloff [20].

3.1. The equivalence in the frequency domain. Let us assume a kernel exp(iωt−
ikx) and the 1-D homogeneous case, where ω is the angular frequency and k is the
complex wavenumber. Substitution of this kernel into equation (3) gives the fol-
lowing complex velocity

(9) vc =
ω

k
=

c
√

1− 2iβ − β2
=

c

1− iβ
, β =

γ

ω

Since the wavenumber is complex, k = κ− iα, where κ is the real wavenumber and
α is the attenuation factor, we can obtain from (9) the phase velocity, α and the
quality factor:

(10) vp =
ω

κ
=

[

Re

(

1

vc

)]−1

= c,

and

(11) α = −ωIm

(

1

vc

)

=
γ

c

Then, the wave equation (3) possesses a general solution of the form

(12) p(x, t) = Af1(x− ct) exp
(

−γ

c
x
)

+Bf2(x+ ct) exp
(γ

c
x
)

.

This solution represents traveling waves which are exponentially attenuated in s-
pace. All frequency components are equally attenuated because the decay factor
γ/c is frequency independent. This fact has important significance, as a propagat-
ing pulse containing a frequency band will gradually attenuate without changing
shape or undergoing dispersion.

On the other hand, the PML method implies a coordinate stretching, which in
the frequency domain can be expressed as [15]

(13) x → xs = x
(

1− i
γ

ω

)

.

This implies

(14) exp(−iκxs) = exp(−iκx) exp
(

−γ

c
x
)

,

which is equivalent to equation (12).
When the decay factor γ is spatially variable, the 1-D equation can be solved

by the propagator matrix method and the effectiveness of the absorbing region
can thus be evaluated numerically [18]. Consider the region −∞ < x < ∞. The
acoustic velocity is uniform and the absorbing coefficient differs significantly from
zero only in the region A < x < B. A sinosoidal wave exp[i(ωt− κx)] in the region
−∞ < x < A, and with ω/κ = c creates a reflected waveR exp[i(ωt+κx)] for x < A,
and a transmitted wave T exp[i(ωt− κx)] for B < x. When the spatial dependence
of γ is chosen properly, the magnitude of T and R can be kept small thus effectively
ensuring that no energy is reflected or transmitted from the absorbing region.

We obtain in the appendix the exact electromagnetic reflection coefficients be-
tween vacuum and a PML layer, corresponding to both damping formulations. The
differential equations are those of the original paper of Bérenger [1], who develope-
d the method for electromagnetic waves. In view of the acoustic/electromagnetic
analogy [7, 12], the TM equations are mathematically equivalent to the equations
describing SH viscoelastic and viscoacoustic (P) waves, so the derivation is rather
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general. We then re-derive Bérenger’s reflection coefficient using the mathematics
of viscoelasticity.

4. The C-PML method and the memory-variable formalism

The last version of the PML method to absorb unphysical reflections from the
edges of the mesh is the unsplit convolutional PML method or C-PML method,
also known as the non-split complex frequency-shifted convolution PML [14]. Ko-
matitsch and Martin [16] implement the technique to solve the elastic wave equation
and note that the convolution approach is effectively similar to that of Carcione
et al. [11] to simulate viscoelastic fields. We show in this section that, in fact,
the resulting equations corresponding to the additional field variables are identical.
Note that in this new method, which improves the split-PML approach, the field
variables are not split.

Inside the PML strips, each of the spatial derivatives in equations (5) are replaced
by a time convolution. Let f be a particle-velocity or a stress component. We have

(15) ∂if → s ∗ ∂if, i = 1, 2, 3,

where

(16) s(t) =
δ(t)

ǫ
+ a exp(−bt)H(t),

“∗” denotes time convolution, H is the step function, δ is the Dirac function, and
ǫ, a and b are absorbing parameters.

Let us transform the convolution into a differential equation, according to the
memory-variable formulation of Carcione et al. [10]. Note that

(17) s =
δ

ǫ
+ gH, g = a exp(−bt), ġ = −bg.

We then have

(18) s ∗ ∂if =
∂if

ǫ
+ ef , ef = gH ∗ ∂if,

where ef is a memory variable.
The time derivative of the memory variable is

(19) ėf = (δg + ġH) ∗ ∂if = g(0)∂if − bgH ∗ ∂if = g(0)∂if − bef ,

or

(20) ėf = a∂if − bef .

Each derivative ∂if is replaced by (∂if)/ǫ+ef and the additional differential equa-
tion ėf = a∂if − bef has to be solved. This equation is slightly different from that
obtained by Komatitsch and Martin [16]. However, both equations are equivalent
for the time step used in the numerical calculations (dt small enough) and the per-
formance is the same. This is shown in the following. Using our notation, equation
(26) of Komatitsch and Martin [16] can be written as

(21) en+1
f =

[

enf − a

b
(∂if)

n+1/2
]

exp(−bdt) +
a

b
(∂if)

n+1/2,

where n denotes the n-th time step. Since exp(−bdt) ≈ 1− bdt, we obtain

(22) en+1
f = enf + dt

[

a(∂if)
n+1/2 − benf

]

,

which is precisely the first-order time discretization of equation (20).
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5. The damping kernels in terms of viscoelastic mechanical models

Let us consider for simplicity the 1-D wave equation in the particle-velocity/stress
formulation,

(23)
v̇ =

1

ρ
∂xσ,

σ̇ = M∂xv,

where v is the particle velocity, σ is the stress and M = ρc2. The KK or PML
equations in the absorbing strips are

(24)
v̇ + γv =

1

ρ
∂xσ,

σ̇ + γσ = M∂xv.

In the frequency domain these equations simplify to

(25) ω2σ + c2s2∂xxσ = 0,

where

(26) s(ω) =
iω

iω + γ
.

This is the kernel of a Maxwell viscoelastic solid, where 1/γ is the relaxation time
and c2/γ is the viscosity of the dashpot [6].

On the other hand, the C-PML equations are

(27)
v̇ =

1

ρ
s ∗ ∂xσ,

σ̇ = Ms ∗ ∂xv,

where s is given by equation (16). In the frequency domain we obtain an equation
similar to (25), with

(28) s(ω) = sR

(

1 + iωτǫ
1 + iωτσ

)

,

where

(29) sR =
1

ǫ
+

a

b
, τσ =

1

b
, τǫ =

1

b+ aǫ
,

and the subindex R denotes relaxed. This is the kernel of a Zener viscoelastic model
[6]. (Note: s as defined here is the time Fourier transform of s̄x(t) given in equation
(18) in Komatitsch and Martin [16]).

Note that equation (25) is a Helmholtz equation, where the complex velocity is
given by

(30) vc = cs.

In the split PML case we obtain equation (9) and in the C-PML case we obtain

(31) vc = cR

(

1 + iωτǫ
1 + iωτσ

)

, cR = csR

i.e., the complex velocity of a Zener viscoelastic medium, where cR is the relaxed
(low-frequency) velocity.
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6. Conclusions

We have re-interpreted known absorbing-boundary methods in terms of mechan-
ical models and showed their relationships in the time and frequency domain. The
split-PML and KK methods are based on a Maxwell viscoelastic model. The new
modification of the PML method, developed at the end of nineties and called C-
PML, is based on the well-known memory-variable equations used to model wave
propagation in anelastic media. A representation in terms of mechanical models
shows that the C-PML method is based on a kernel given by the Zener model. A re-
derivation of Bérenger’s reflection coefficient of a vacuum/PML layer is performed
by using the mathematics of viscoelasticity, which shows how the two methods are
related.

Acknowledgments

JMC thanks the support of the CO2-CARE project.

References
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Appendix A. Electromagnetic reflection coefficient between vacuum and

a PML layer

We denote by PML layer the medium describing the absorbing strips and obtain
the reflection coefficient corresponding to the Kosloff & Kosloff [18] and split-PML
[1] methods, in order to better understand the relation between the two approaches
in terms of reflection coefficients.

Let us consider the TM equation, called TE equation by Bérenger [1] (his eq.
(1)), and its extension at the absorbing strips according to the method proposed
by Kosloff and Kosloff [18]. We have

(32)

Ėx + γEx =
1

ǫ0
∂yHz ,

Ėy + γEy = − 1

ǫ0
∂xHz,

Ḣz + γHz =
1

µ0
(∂xEy − ∂yEx).

where Ex and Ey are electric-field components, Hz is the magnetic-field component,
ǫ0 is the permittivity of vacuum, µ0 is the magnetic permeability of vacuum, and
γ is the absorbing parameter. Equation (32) is similar to eq. (1) of Bérenger [1],
with the choice

(33) γ =
σ

ǫ0
=

σ∗

µ0
,

where σ and σ∗ are conductivity parameters. Hence, equation (32) satisfies by
construction the matching condition given by eq. (2) of Bérenger [1], and the fact
that the impedance of the PML layers is equal to that of vacuum and no reflection
occurs at normal incidence, as we shall show in the following. We note here that
the KK method is referred as to matched-layer (ML) method by Bérenger [1] (see
his Table I).

It is easy to show that the complex permittivity and magnetic permeability
associated with equation (1) are ǭ = ǫ0(1−iγ/ω) and µ̄ = µ0(1−iγ/ω), respectively.

Thus, the impedance is
√

µ̄/ǭ =
√

µ0/ǫ0 ≡ Z0, i.e., that of vacuum. On the other
hand, the complex velocity is vc = 1/

√
µ̄ǭ = c/(1− iγ/ω), where c = 1/

√
µ0ǫ0 is the

light velocity. Note that this velocity is equivalent to the acoustic complex velocity
(9) in view of the acoustic/electromagnetic analogy [7, 12].

Let us denote by subscript 1 the upper layer (vacuum) and by subscript 2 the
lower medium (the PML layer). The complex reflection coefficient of the vacu-
um/PML layer is [12]

(34) RTM =

√

µ̄/ǭ cos θI −
√

µ0/ǫ0 cos θT
√

µ̄/ǭ cos θI +
√

µ0/ǫ0 cos θT
,

where θI and θT are the incidence and transmission angles. These angles are com-
plex quantities in general (In this particular case, θI is real since the incidence
medium is vacuum). Bérenger [1] uses the notation θ1 and θ2 for the (real) inci-
dence and transmission phase angles. The mathematical form given by equation
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(34) can also be used to obtain the reflection coefficient of SH waves [6]. Since the
two media have the same impedance, we have

(35) RTM =
cos θI − cos θT
cos θI + cos θT

.

Now, Snell’s law at an interface separating vacuum from a lossy medium is [21, 12, 6]

(36)
sin θI
c

=
sin θT
vc

.

Using this equation and replacing the complex velocity vc = c/(1 − iγ/ω) into
equation (35) yields

(37) RTM =

√

1− sin2 θI − pv
√

1− sin2 θI/(1− iβ)2

√

1− sin2 θI + pv
√

1− sin2 θI/(1− iβ)2
, β = γ/ω,

where pv denotes the principal value. The reflection coefficient is equal to zero
only if θI = 0, i.e., at normal incidence. The value of β can be chosen in order to
minimize the reflection coefficient at non-normal incidence.

Let us obtain the physical phase angle of the transmitted wave as a function
of the incidence angle. By physical phase angle we mean the angle made by the
real wavevector (or slowness vector) with a line perpendicular to the interface.
Since the incidence medium is lossless, the attenuation vector in the transmission
medium is perpendicular to the interface, indicating that the transmitted wave is
the analogous to an inhomogeneous viscoelastic wave [4]. This is a consequence of
Snell’s law in lossy media [21]. Let us assume an interface parallel to x-axis and
perpendicular to the y-axis. The physical transmission phase angle θ2 is given by

(38) tan θ2 =
s1

Re(sT2 )

(eq. (6.47) in Carcione [6]), where s1 = sin θI/c is the horizontal slowness com-
ponent parallel to the interface in the transmission medium, which by Snell’s law
equals that of the incidence medium, and sT2 is the complex slowness componen-
t perpendicular to the interface in the transmission medium. This component is
given by [3, 12, 6]

(39) sT2 = pv

√

1

v2c
− sin θ2I .

Therefore, the transmission angle can be obtained from

(40) tan θ2 =
sin θI

Re

(

pv

√

c2

v2c
− sin θ2I

) .

In the case of impedance matching we have vc = c/(1− iβ) and

(41) tan θ2 =
sin θI

Re
(

pv
√

(1− iβ)2 − sin θ2I

) .

We obtain θ2 = θI = θ1 at normal incidence and in the lossless case (β = 0), but
in the latter case there is no damping at all in the PML layer.

We develop in the following the demonstration of the reflection and transmission
coefficient at a vacuum/lossy medium interface, including anisotropy and the field
splitting introduced by Bérenger [1], and show that the reflection coefficient is zero



230 SHORT NAME AND DAN KOSLOFF

at non-normal incidence for a given choice of the conductivity parameters. This is a
re-derivation of Bérenger’s reflection coefficient by using elements of viscoelasticity
theory [12]. First, we obtain the dispersion equation and the polarizations of the
lossy anisotropic medium. The split PML equations are

(42)

ǫ0Ėx + σyEx = ∂y(Hzx +Hzy),

ǫ0Ėy + σxEy = −∂x(Hzx +Hzy),

µ0Ḣzx + σ∗
xHzx = −∂xEy,

µ0Ḣzy + σ∗
yHzy = ∂yEx,

where Hzx +Hzy = Hz. Let us assume the plane-wave solution

(43) P = [Ex, Ey, Hzx, Hzy]
⊤ exp[iω(t− s1x− s2y)],

where s1 and s2 are the slowness components, and every quantity is complex except
t, ω and the spatial variables. Substituting this solution into equation (42) gives

(44)

ayEx = −s2(Hzx +Hzy),
axEy = s1(Hzx +Hzy),
bxHzx = s1Ey,
byHzy = −s2Ex,

where

(45) ax = ǫ0 − i
σx

ω
, ay = ǫ0 − i

σy

ω
, bx = µ0 − i

σ∗
x

ω
, by = µ0 − i

σ∗
y

ω
,

Note that the matching condition (33) implies bx = Z2
0ax and by = Z2

0ay, where

Z0 =
√

µ0/ǫ0 is the impedance of vacuum. Eliminating the magnetic-field compo-
nents gives

(46)

(

ay −
s22
by

)

Ex +
s1s2
bx

Ey = 0,

s1s2
by

Ex +

(

ax − s21
bx

)

Ey = 0.

Setting the determinant of this system equal to zero gives the dispersion equation:

(47)
s21

axbx
+

s22
ayby

= 1.

This functional form is an ellipse with complex coefficients. Note that to obtain the
physical dispersion equations, a relations between Re(s1) and Re(s2) is necessary
and can be found from this complex equation, since these real quantities are the
physical components of the slowness vector. This relation has been found by Car-
cione [6] in the case of homogeneous viscoelastic SH waves, which are equivalent to
TM waves. If the matching condition (33) holds, we have

(48)
s21
a2x

+
s22
a2y

= Z2
0 .

Let us obtain the eigenvector. Assume that Ex = E0 sinφ and Ey = E0 cosφ,
where E0 and φ are complex. This substitution is a change of variables performed
for convenience. From equations (44) and (46) the eigenvector is

(49) E ≡ [Ex, Ez , Hzx, Hzy]
⊤ = E0

[

sinφ, cosφ,
s1
bx

cosφ,−s2
by

sinφ

]⊤

,
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where

(50) tanφ = − s1s2
bx(ay − s22/by)

= −(ax − s21/bx)
by
s1s2

.

In vacuum, ax = ay = ǫ0 and bx = by = µ0, and the eigenvector is

(51) E = E0

[

cos θI , sin θI ,−
sin2 θI
Z0

,−cos2 θI
Z0

]⊤

,

where θI is the angle of incidence (a real quantity), with s1 = sin θI/c and s2 =
cos θI/c, since it is a lossless medium.

The electromagnetic field for a wave of unit intensity incident from vacuum
(medium 1) is

(52) E1 = EI +ER, and E2 = ET ,

where

(53)

EI =

[

cos θI , sin θI ,−
sin2 θI
Z0

,−cos2 θI
Z0

]⊤

exp[iω(t− s1x− s2y)],

ER = RTM

[

cos θI ,− sin θI ,−
sin2 θI
Z0

,−cos2 θI
Z0

]⊤

exp[iω(t− s1x+ s2y)],

ET = TTM

[

sinφ, cosφ,
s1
bx

cosφ,−sT2
by

sinφ

]⊤

exp[iω(t− s1x− sT2 y)],

where RTM and TTM are the electric-field reflection and transmission coefficients,
and from equation (47)

(54) sT2 = pv

√

ayby

(

1− s21
axbx

)

.

Note in equation (53) the sign differences between the incidence and reflected
electric-field components and vertical slowness. The boundary conditions require
continuity of

(55) Ex and Hzx +Hzy

at the interface. This yields two equations with two unknowns, the reflection and
transmission coefficients. Using (50), we obtain

(56) RTM =
sT2 − Z0ay cos θI
sT2 + Z0ay cos θI

.

This is a general reflection coefficient, when there are four conductivity parameters
defining the lower medium (medium 2), i.e., σx, σ

∗
x, σy and σ∗

y .
The interest here is to match the layers and therefore we use condition (33). In

this case, bx = Z2
0ax and by = Z2

0ay,

(57) sT2 = pv

√

a2y

(

Z2
0 − s21

a2x

)

.

and

(58) RTM =

√

1− sin2 θI − pv
√

1− sin2 θI/(1− iβx)2

√

1− sin2 θI + pv
√

1− sin2 θI/(1− iβx)2
, βx =

σx

ǫ0ω
,
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where we have used equation (45) and s1 = sin θI/c. Note that the reflection
coefficient does not depend on βy = σy/(ǫ0ω), and no matter the value of βy, RTM

= 0 if σx = 0.
The different cases are: i) σx = σy = 0; the lower medium is vacuum and

there is no damping; ii) σx = σy; this case, which has been already discussed
and its solution is equation (37), corresponds to the KK method; iii) σx = 0 and
σy 6= 0; this is Bérenger’s case RTM = 0, and there is perfect transmission – before
spatial discretization – at all angles of incidence; v) σx 6= 0 and σy = 0; this case
corresponds to zero reflection coefficient when the interface is parallel to the y-axis.
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