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Long-wave anisotropy in stratified media: 
A numerical test 

J. M. Carcione*, D. KosloffS, and A. Behles 

ABSTRACT 

When a seismic signal propagates in a stratified 
earth, there is anisotropy if the dominant wavelength 
is long enough compared to the layer thickness. In this 
situation, the layered medium can be replaced by an 
equivalent nondispersive transversely isotropic me- 
dium. Theoretical and experimental analyses of the 
required minimum ratio of seismic wavelength to layer 
spacing based on kinematic considerations yield dif- 
ferent results, with a much higher value in the exper- 
imental test. 

The present work investigates the effects of layering 
by wave simulation and attempts to establish quanti- 
tatively the minimum ratio for which the long-wave 
approximation starts to be valid. We consider two- 
constituent periodically layered media and analyze the 
long-wave approximation for different material com- 
positions and different material proportions in I-D and 
2-D media. The evaluation of the minimum ratio 
compares snapshots and synthetic seismograms visu- 
ally and through a measure of coherence. 

Layering induces scattering with wave dispersion or 
anisotropy depending upon the wavelength-to-layer 
thickness ratio. The modeling confirms the dispersive 
characteristics of the wave field, the scattering effects 
in the form of coda waves at short wavelengths, and 
the smoothed transversely isotropic’ behavior at long 
wavelengths. I-D numerical tests for different media 
indicate that the minimum ratio is highest for the 
midrange of compositions, i.e., equal amount of each 
material, and for stronger reflection coefficients be- 
tween the constituents. For epoxy-glass, the value is 
around R = 8, while for sandstone-limestone, it is 
between R = 5 and R = 6. Recent wave-propagation 
experiments done in epoxy-glass also imply a highest 
minimum ratio for midrange of composition: however, 
the 1 -D numerical tests confirm the long-wave approx- 
imation at shorter wavelengths than experimentally. 
The 2-D case shows that the more anisotropic the 
equivalent medium, the higher the minimum ratio, and 
that the approximation depends upon the propagation 
angle with longer wavelengths required in the direction 
of the layering. 

INTRODUCTION 

In the earth, although many of the materials are intrinsi- 
tally anisotropic (for instance, many of the metamorphic and 
igneous rocks), their random orientation gives rise to a 
material which behaves isotropically when the dominant 
wavelength of the wave field is long compared to the crystal 
dimensions. However, due to the layered nature of sedimen- 
tary formations, transverse isotropy occurs when the domi- 
nant wavelength is long enough compared with the dimen- 

sions of the layers (Riznichenko, 1949; Postma, 1955; Krey 
and Helbig, 1956; Rytov, 1956; Backus, 1962). Wave prop- 
agation effects in stratified media depend on the wavelength 
of the signal. For wavelengths short compared to the dimen- 
sions of the layers, scattering in the form of coda waves is 
present. Thus, these wavelengths show dispersive behavior, 
i.e., the velocity is frequency dependent. On the other hand, 
at long wavelengths or low frequencies, the medium behaves 
as a nondispersive, smoothed, transversely isotropic mate- 
rial. 
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Helbig (1984) analyzed the dispersion relation for SH- 
waves in a periodic layered medium and in the long-wave 
equivalent transversely isotropic medium. He showed that 
the equivalence is valid for wavelengths larger than three 
times the spatial period of layering. Melia and Carlson (1984) 
made experimental laboratory measurements of compres- 
sional wave velocities parallel and perpendicular to a peri- 
odic stratified medium consisting of glass and epoxy layers. 
They concluded that the long-wave approximation holds 
when the ratio R lies between 10 and 100, and that the 
minimum ratio is highest in the midrange of compositions, 
i.e., half glass and half epoxy. 

Recently, numerical modeling has begun to be used as a 
tool for investigating the effects of layering on wave propa- 
gation (Carcione, 1987; Egan, 1989; Esmersoy et al., 1989; 
Kerner, 1989; and Philippe and Bouchon, 1989). The present 
work is an attempt to establish quantitatively the minimum 
value of the ratio R = h,,/d for which a periodic layered 
medium can be replaced by a homogeneous transversely 
isotropic medir n, where A,, is the dominant wavelength of 
the signal, and IS the spatial period of the stratified system. 
We restrict our analysis to a two-constituent, spatially 
periodic medium. We refer to the periodic, isotropic, two- 
layered system as the PL medium, and the transversely 
isotropic, long-wave equivalent medium as the TIE medium. 

The analysis is performed by simulating wave propagation 
through an epoxy-glass sequence, as in Melia and Carlson’s 
experiment, and a limestone-sandstone sequence, as used by 
Postma to demonstrate the anisotropic properties of layer- 
ing. These systems are representative of many solids in 
material science and of layered formations in the earth, and 
have different degrees of anisotropy and impedance con- 
strasts. The simulations are carried out by solving the wave 
equation numerically for both the PL and the TIE media in 
1-D and 2-D models. Since the wave-propagation process is 
linear, synthetic seismograms for different dominant wave- 
lengths A, are obtained with a single simulation by consid- 
ering a space-time spike as force and then performing the 
time convolution with the source time function. 

We establish the minimum ratio R by comparing the wave 
fields through a measure of coherence. The evaluation is 
made for different material proportions and for different 
values of the source’s dominant frequency (or different R 
values) for a given spatial period. Visual comparisons be- 
tween snapshots and between synthetic seismograms also 
establish the ratio qualitatively. The proposed numerical 
experiments account for not only the kinematics but also the 
amplitude of the wave field. This evaluation can be consid- 
ered conclusive, since the analysis with theoretical solutions 
is restricted by the complexity of the problem, and labora- 
tory measurements are never exact due to experimental 
uncertainty. 

The paper’s main sections analyze the problem in 1-D and 
2-D media, respectively. We first establish the constitutive 
relations, then the equations of motion: finally, we present 
the results of the numerical experiments. The numerical 
algorithm is tested with an analytical solution in order to be 
sure that effects such as scattering and dispersion are well 
described by the modeling scheme. 

ONE-DIMENSIONAL MEDIA 

The layered medium 

The one-dimensional (1-D) stress-strain relation for each 
material component is given by 

d/f 
CT=M--, (1) 

a x 

where u(x, I) and u(x, t) are the stress and displacement 
wave fields, respectively, depending upon the position x and 
the time variable t. M(x) is the elastic modulus. 

Assuming that each material contributes with a relative 
proportion Pi, we have XPi = 1, where the summation is 
over the number of different materials. For the particular 
case considered in this work, i.e., a PL medium with two 
constituents, the relative proportions are given by 

P, =;. 

and (2) 

& 

P’=d’ 
where d, and d2 are the corresponding layer thicknesses, 
with spatial period 

d=d, +dZ. (3) 

The equivalent medium 

When the dominant wavelength of the signal is long 
enough compared to the spatial period, the PL medium can 
be replaced by a TIE medium. In the I-D case the constitu- 
tive relation of this medium is 

_ a11 
CT=M--, 

ii x 

where the averaged elastic modulus is given by 

M = (M-y’. 

The averaging process is performed by the bracket opera- 
tion, which for sequences consisting of two distinct materials 
is 

(A) = A, P, + A2P2 (6) 

for a given physical quantity A. 
Equation (5) is the expression for the averaged C,s in the 

symmetry axis of a transversely isotropic solid (see Postma, 
1955), since the 1-D problem is equivalent to the problem of 
considering plane waves propagating in the symmetry axis 
direction. Using equations (2). (3). and (6), the average 
modulus (5) is given by 

a= MIMz(dl + 4) 

d,M2 + d2M, ’ 

Similarly. the average density is 

(7) 
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ij=w= 
Pldl + P2d2 

d +d > (8) 
I 2 

with pI and p2 the densities of the individual layers. 

The equation of motion 

The 1-D wave equation for the displacement field is 

1 a __EauEii+f 
yax ax Y’ 

(9) 

where E = M(x), y = p(x) in the PL medium, and E = a(x), 
y = p(x) in the TIE medium.f’(x, t) is the body force and a 
dot above a variable denotes time differentiation. The body 
force is taken as 

“f-(x, d = 6(x - xo)W, (10) 

where 6(x - x0) means a discrete delta located at x = x0 and 
s(t) a time delta function indicating that the motion begins at 
t = 0. 

The dominant wavelength of the signal is defined in the 
long-wave approximation by 

v 
ho =-) 

f-0 

where 

(11) 

(12) 

is the average velocity, and f. is the source’s dominant 
frequency. We define R as the ratio of dominant wavelength 
ho to spatial period d: 

R=;. (13) 

The aim of this work is to find the minimum R for which the 
long-wave approximation starts to be valid. 

Equation (9) is solved numerically by using the Chebychev 
spectral method as a time integration and the Fourier method 
to compute the spatial derivatives. A detailed description of 
the algorithm can be found in Carcione et al. (1988). After 
the synthetic seismograms are obtained with the body force 
given in equation (lo), they are convolved with a causal 
zero-phase time function given by 

h(r) = &(l- ro)? cos [27rfo(t - to)], (14) 

where to is a constant time delay. The amplitude spectrum of 
h(t) is represented in Figure 1, where the cutoff frequency is 
2fo. This method for computing the system response to a 
band-limited function is valid since the wave propagation 
process is linear. In this way it is possible to compute 
synthetic seismograms for different dominant frequencies 
with minimum cost in computing time

1-D numerical tests 

The properties of the isotropic materials are given in Table 
1 with the respective P-wave and S-wave impedances. The 
average modulus is calculated by using equation (7), consid- 
ering that M = V,‘p for the individual layers. The average 
velocities, given by equation (12), are listed in Table 2 for 
different material proportions, together with the average 
densities. Discretization of the space implies that d, = nlDX 
and d2 = n2DX, with DX the grid spacing and n, and n2 

f 0 f (Hz) 

FIG. 1. Amplitude spectrum of the source given in equation 
(14). f. is the dominant frequency. 

Table 1. Material properties of the PL media. 

VP vs 
Material (m/s) (m/s) (KgTm’) 

- - 

Epoxy 2530 1200 1120 2833 1344 
Glass 5560 3200 2510 13955 8032 

2530 1200 1815 4591 2178 
5560 3200 1815 10091 5808 

Sandstone 2950 1620 2300 6785 3726 
Limestone 5440 3040 2700 14688 8208 

Table 2. Material properties of the 1-D TIE media. 

p2 fll - - - - 

Epoxy-glass 0.25 3 1 2513 1467 
0.50 2 2689 1815 

p (const) 0.50 2 ; 3256 1815 
0.75 I 3 3222 2162 

Sandstone-limestone 0.50 2 2 3578 2500 
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natural numbers. Thus, the spatial period is d = (ni + nz)DX 
and, from equation (2), 

d 
n1 = (1 - P2) -, 

DX 

d 
n2 = P2 -. 

DX 

(15) 

By choosing, for instance, dlDX = 4, we obtain the different 
relative proportions in Table 2. In the following examples the 
subindex nomenclature is (1, 2) = (e, g) for the epoxy-glass 
periodic solid, and (1, 2) = (t, S) for the limestone-sandstone 
periodic medium. The number of grid points is NX = 385, 
with DX = 0.25 mm grid spacing for epoxy-glass and DX = 
25 m for sandstone-limestone; therefore, the spatial periods 
are d = 1 mm and d = 100 m, respectively. 

First, we test the numerical algorithm in the problem of 
wave propagation through a PL medium with P, = 0.50. The 
analytical solution is calculated with a propagator matrix 

Numerical 

-______ Analytical 

P) 

FIG. 2. Comparison between numerical and analytical solu- 
tions in a 1-D PL epoxy-glass medium with P, = 0.50, where 
(a)fa = 0.3 MHz and (b)f, = 0.6 MHz. 

method (Haskell, 1953). Figure 2 compares numerical and 
analytical solutions for the particle velocity (ir) for two 
different values of the source dominant frequency, (a) f0 = 
0.3 MHz, and (b)f, = 0.6 MHz. The agreement is very good, 
which assures that dispersion and scattering are correctly 
described with the modeling. 

Snapshots and synthetic seismograms between the PL and 
the TIE media are compared by using the semblance 

S(S) = 100 2 h + bij2 
2 c (a? + bf)’ 

(16) 

for a given discrete series a and b where the summation is 
over the number of samples. 

Figure 3 represents snapshots of the displacement field at 
t = 15 ks with the source located at grid point 192, for R = 
5, and two different material proportions, (a) P, = 0.25 and 
(b) P, = 0.50. The dashed line is for the PL medium and the 
continuous line for the TIE medium. The best agreement is 
when P, = 0.25. These results confirm that the long-wave 

Semb = 

(b) 

FIG. 3. 1-D snapshot comparison at t = 15 ps in epoxy-glass 
for R = 5 and two different material proportions, where (a) 
P = 0.25 (d, = 0.75 mm and dg = 0.25 mm) and P, = 0.50 
(le = dg = 0.5 mm). The dashed and continuous lines 
correspond to the PL and TIE media, respectively. 
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approximation is a function of the proportions of the mate- 
rials as found experimentally by Melia and Carlson (1984). 
They concluded that the minimum ratio was highest in the 
midrange of compositions (Ps = 0.50). 

Figure 4 displays synthetic seismograms of the displace- 
ment field in a receiver located at gridpoint 142, for P, = 
0.50, where (a) R = 3, (b) R = 5, and (c) R = 8. The 
continuous line corresponds to the time media. The results

08_ Pg = 0.5 
A=5 

0.6- Semb = 81 X 

FIG. 4. Synthetic seismogram comparisons in I-D epoxy- 
glass for Pg = 0.50 (d, = d = 0.5 mm), where (a) R = 3 (b) 
R = 5, and (c) R = 8. fie dashed and continuous lines 
correspond to the PL and TIE media, respectively. 

for the semblance are summarized in Table 3, where the 
cases P, = 0.25 and Pg = 0.75 are also included. As in the 
previous example, P, = 0.50 gives the lowest values for the 
semblance. When R = 3, i.e., the dominant wavelength is 
three times the spatial period, the PL medium induces 
scattering which causes the coda waves, strongest for P, = 
0.50. Moreover, for different values of R, the peak of the 
primary pulsehas differenr arrival times. Tnis means thatthe 
medium is dispersive, i.e., the velocity varies with wave- 
length. For this system, the long-wave approximation seems 
to be valid when R > 8 if we consider that a value greater 
than 97 percent for the semblance makes the PL and TIE 
media equivalent. As such, for wavelengths greater than 
eight times the spatial period, the medium behaves nondis- 
persively. For illustration, Figure 5 represents the variation 
of the semblance with R for the case P, = 0.50. As can be 
seen, the curve becomes flat at R = 8. 

To study the influence of the density, we consider a PL 
epoxy-glass system with pe = pa = 1815 Kg/m3 which is the 
average density when Pg = 0.50. The average velocity for 
this system when P, = 0.50 is given in Table 2. The values 
of the semblance for R = 3, 5, and 8 are S = 65, 95, and 99 
percent, respectively. These results indicate that the mini- 
mum ratio is between R = 5 and R = 6, although it is not 
clear that this is because the density is constant. The next 
example helps clarify this point. 

Table 3. Semblance (%) (epoxy-glass system). 

R 

3 5 8 
- - 

0.25 56 91 
p, 0.50 ::, :: ;: 

0.75 98 

1 .o 

0.9 

0.6 

I / I -7- 
4 5 6 7 8 9 a 

R 

FIG. 5. Semblance versus ratio of dominant wavelength 
spatial period for P, = 0.50 in epoxy-glass. 
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Let us consider a PL medium composed of sandstone and 
limestone whose properties are given in Table 1. The aver- 
age velocity and density of the TIE medium for Pe = 0.50 are 
given in Table 2. The system is composed of alternating 
layers, each 50 m thick. Figure 6 displays synthetic seismo- 
grams for (a) R = 3, (b) R = 5, and (c) R = 8. The values of 
the semblance are similar to those obtained for constant 
density with the epoxy-glass system. Again, the long-wave 
approximation seems to be valid between R = 5 and R = 6. 
This difference to the variable-density epoxy-glass system, 
for which the minimum ratio is around R = 8, suggests that 
the long-wave approximation depends upon the impedance 
contrast between the constituents, i.e., on the reflection 
coefficients. Thus, weaker reflectivity implies that the long- 
wavelength approximation takes place for smaller values of 
R. From Table 1, AZ,, = 11 122 lo3 Kg/s/m’ and AZ, = 5500 

FIG. 6. Synthetic seismogram comparisons in 1-D sandstone- 
limestone for PL = 0.50 (d, = de = 50 m), where (a) R = 3, 
(b) R = 5, and (c) R = 8. The dashed and continuous lines 
correspond to the PL and TIE media, respectively. 

lo3 Kg/s/m’ for the variable and constant-density epoxy- 
glass systems, respectively, and AZ, = 7900 x lo3 Kg/s/m* 
for the sandstone-limestone system. They give reflection 
coefficients of R, = 0.66 (epoxy-glass), R, = 0.37 (constant- 
density epoxy-glass), and R, = 0.37 (sandstone-limestone). 
These facts explain why the results between the constant- 
density epoxy-glass system and the sandstone-limestone 
sequence are identical. 

TWO-DIMENSIONAL MEDIA 

The layered medium 

The constitutive relation of each individual component of 
the 2-D layered medium can be expressed in matrix notation 
as 

[$]=L”r:‘” A\ j[$zJ (17) 

where the u’s and the E’S are stress and strain components, 
respectively, depending upon the position vector r = (x, z) 
and the time variable f. A(r) and k(r) are the Lame constants. 

As in the 1-D case, we assume that the material is a 
two-constituent, spatially periodic medium with relative 
proportions and spatial period given by equations (2) and (3). 
Lamination is taken parallel to the x-axis, i.e., z is parallel to 
the symmetry axis. 

The equivalent medium 

In the long-wave approximation the layered medium is 
equivalent to a homogeneous transversely isotropic medium 
with stress-strain relation given by 

[;;;I = [-a: :; .“][;;]. (18) 

where the averaged elasticities are calculated as (Backus, 
1962) 

?,, = (4’.L(A + ‘.L)(h + 2lL-1) 

+ ((A + 2l~-‘)-‘@(A + 2~) -I)*, 
(19a) 

C,3 = ((A + 2~) -‘)-‘(A(A + 2’.~) -I), (19b) 

(‘33 = ((A + 2p.) -‘)-I, (19c) 

and 

cjs = (p-I)-‘. (1%) 

In the case of a periodic sequence composed of two alter- 
nating plane, parallel, and homogeneous isotropic layers, 
equations (19) lead to the averaged elasticities obtained by 
Postma (1955). The average density is given by equation (8). 

The equation of motion 

The equation of motion for a 2-D transversely isotropic 
medium can be expressed as (Carcione et al., 1988) 

a r au, Wl 
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+t [c55(f$+ff$] +_fi, 0-W 

a 

[ 

au, au, 
Yk = G Cl3 z + c33 - 

az 1 
+; [cII(~+~)] +.L, (20b) 

where II, and uZ are the horizontal and vertical displace- 
ments and f, and f, are the source components. 

For the homogeneous TIE medium, c,, = Cl,, cl3 = C13, 
c33 = C33, c55 = Cs5, and y = p; and for the layered medium, 
c,, = cj3 = A + 2p, cl3 = h, c55 = ).L, and y = p. The source 
components are 

and 

Lb, f) = 0 

fi(r, t) = S(r - r0PW. 

(21) 

As in the 1-D case, S(r - ro) means a discrete delta located 
at r. = (x0, zo). The compressional and shear dominant 

Ib, 

wavelengths are given by 

VP 
A0 

(P) = _ 

f0 

and 

vs 
A0 

WI =_ 

f0 

FIG. 8. Snapshots at 27 ps in 2-D epoxy-glass for a dominant 
frequency for the source off” = 0.2 MHz, where (a) are the 
PL media and (b) the TIE media. Thicknesses are d, = dg 3 
0.5 mm. The dominant wavelengths along the symmetry axts 
direction are A(‘) = 13.44 mm and A”) = 6.46 mm. 

(22) 

FIG. 7. Energy velocity curves for epoxy-glass of different 
material proportions: (a) P = 0.25, (b) P, = 0.50, and 
(c) P, = 0.75. The outer andlinner curves correspond to the 
quasi-P and quasi-S waves, respectively. 

FIG. 9. Snapshots at 27 ps in 2-D epoxy-glass for a dominant 
frequency for the source off0 = 0.1 MHz, where (a) are the 
PL media and (b) the TIE media. Thicknesses are d, = dg 7 
0.5 mm. The dominant wavelengths along the symmetry axis 
direction are X(‘) = 26.88 mm and A@) = 12.92 mm. 
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Table 4. Material properties of the 2-D TIE media. 

p2 

Cl1 Cl3 

4 n2 Wa) Wa) C33 GP4 GS GW (r&3) 4) 
- - 

Epoxy-glass 0.25 1 : 23.2 4.6 9.7 2.1 1467 22.5 
0.50 39.4 5.8 13.1 3.0 1815 26.8 
0.75 1 3 56.2 8.7 22.4 5.4 2162 22.5 

Sandstone-limestone 0.50 1 1 47.5 12.3 32.0 9.7 2500 9.8 

where vp and vs are the P and S energy velocities of the TIE 
medium. Note that these velocities depend upon the propa- 
gation direction as do the dominant wavelengths. As before, 
we define the ratios 

(23) 
(S) 

&S) =x0 
d * 

Equations (20) are solved numerically by using the Cheby- 
chev spectral method (Carcione et al., 1988). Synthetic 
seismograms are calculated as in the 1-D problem with the 
source time function given by equation (14). 

Material properties and wave characteristics 

The 2-D stratified medium is composed of alternating 
plane layers with thicknesses d, and d2. The material 
properties are given in Table 1. Considering that A = (V$ - 
2V&p and p, = Vip, and using equations (19), we get the 
elasticities and density of the TIE medium for the different 
relative proportions given by equation (2), and spatial period 

EPE!4GY VELOCITY (l-E SAN)SToNE-UMESToNE) 
61 I I I I I I 

-4 I I I I I I 

-6 
-6 -4 -2 2 4 6 

(Ce)x 
[&n/s) 

FIG. 10. Energy velocity curves in sandstone-limestone for 
Pe = 0.50. The outer and inner curves correspond to the 
quasi-P and quasi-S waves, respectively. 

given by equation (3). The material properties of the long- 
wavelength transversely isotropic media are illustrated in 
Table 4, where 

A(%) = 100 
VP@ = ?7/2) - v,(e = 0) 

v,(e = ?r/2) + Vp(8 = 0) 

(24) 

is the quasi-P wave anisotropy, with V, the quasi-P wave 
energy velocity, and 0 the angle between the symmetry axis 
and the propagation direction. The highest degree of aniso- 
tropy is around Pg = 0.50. The energy velocity curves 
(equivalent to the wavefront curves) are illustrated in Figure 
7 for different glass proportions: (a) Pg = 0.25, (b) P, = 0.50, 
and (c)P, = 0.75. The outer and inner curves correspond to 
the quasi-P and quasi-S waves, respectively. Expressions 
for the energy velocities can be found in Carcione et al. 
(1988). 

FIG. 11. Snapshots at 0.48s in sandstone-limestone for a 
dominant frequency for the source offs = 12 Hz, where (a) 
are the PL media and (b) the TIE media. Thicknesses are d, 
= de = 10 m. The dominant wavelengths along the symme- 
try axis direction are A (‘) = 349 m and A(‘) = 157 m. 
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1.0 

08. Pg 0.5 = I 2-D 

Angle = 45 
06. R(S) = 3.0 

2 
3 0.4. Semb = 72 % 

o.8_ Pg = 0.5 
Angle = go 

06. R(S) = 3 0 
2 R(P) = 10.8 
?L 0.4- Semtl = 44 : 

: : 
-0.8 : : (c) 

: / 
-1.0 ‘\I 

0 2 1 b 8 10 12 

time (microsec) 

FIG. 12. Synthetic seismogram comparisons in 2-D epoxy- 
glass for P = 0.50 (d, = d,g = 0.50 mm), where (a) 0 = 0, (b) 
0 = 45, ana (c) tI = 90 degrees, and the receivers are located 
5 mm from the source. The dashed and continuous lines 
correspond to the PL and TIE media, respectively. 

Table 5. Semblance (%) (2-D glass-epoxy system). 

Angle (degrees) 

0 45 90 

0.25 
:!: ;: 

99 
p, 0.50 44 

0.75 95 83 31 

The TIE medium is class V according to the classification 
given by Payton (1983, p. 26) for which the phase velocity 
curve presents four bitangents and the wavefront curve, four 
cuspidal triangles at 8 = 45 degrees, as seen in Figure 7. This 
classification depends upon the particular value of the elas- 
ticities which are constrained by certain inequalities. A 
theoretical evaluation of these constraints for the TIE me- 
dium appears quite cumbersome, although numerical verifi- 
cations for different layered media indicate that the equiva- 
lent medium is always class V. 

2-D numerical tests 

We consider PL media with interfaces parallel to the 
X-axis. All the examples in this section use NX = NZ = 405 
and a vertical source located at gridpoints (202, 202). First 
we compute snapshots in an epoxy-glass system with P, = 
0.50 and spatial period d = 1 mm. Grid spacing is DX = DZ 
= 0.5 mm. The results are displayed in Figures 8 and 9, for 
source dominant frequencies of f0 = 0.2 MHz and f0 = 0.1 
MHz, respectively, where (a) is the PL medium and (b) is the 
TIE medium. The propagating time is 27 ps. The values of 
the ratios, as given by equation (23), depend upon the angle 
8 between the symmetry axis and the propagation direction. 
For& = 0.2 MHz, they are RcP’(B = 0 degrees) = 13.44, 
Rtp’(t) = 90 degrees) = 23.31, and R”‘(0 = 0 degrees) = 
R’“‘(0 = 90 degrees) = 6.46. Forfo = 0.1 MHz, these values 
should be multiplied by a factor of two. Whenf” = 0.2 MHz, 
as in Figure 8, the P-wave shows no differences between the 
PL and the TIE media, but the S-wave has important 
differences around 0 = 90 degrees, while the cusps are 
perfectly equivalent. These differences are more pronounced 
in the 14, component. Figure 9 shows that, when f,, = 0.1 
MHz, the two media are completely equivalent. 

As mentioned, the case P, = 0.50 shows the highest 
degree of quasi-P-wave anisotropy with A = 26.8 percent. 
The 2-D sandstone-limestone TIE medium is less anisotro- 
pit, with a value of A = 9.8 percent for Pt = 0.50 as 
indicated in Table 4. The energy velocity curves for this 
material are represented in Figure 10. Comparing these 
curves with those of Figure 7b, it can be seen that the 
quasi-.S wave is also more anisotropic in the epoxy-glass 
system. 

To compare results between the two systems, we compute 
snapshots in PL and TIE sandstone-limestone media. For 
Pt = 0.50, we take DX = DZ = d, = dt = 10 m, i.e., a 
spatial period d = 20 m, and a dominant frequency for the 
source off0 = 12 Hz. Snapshots at 0.48 s are shown in 
Figure 11, where (a) is the PL medium and (b) the TIE 
medium. The ratios are R”‘(8 = 0 degrees) = 17.44, R”‘(B 
= 90 degrees) = 14.31, and R’“‘(C3 = 0 degrees) = R’“‘(B = 
90 degrees) = 7.88, which are comparable with the values for 
the epoxy-glass test at fb = 0.2 MHz. From Figure 8 it is 
clear that the long-wavelength approximation is not valid for 
the S-wave (inner wavefront), while it applies to the sand- 
stone-limestone system as seen from Figure 11. Thus, the 
more anisotropic the TIE medium, the higher the minimum 
ratio. 

Finally, we computed synthetic seismograms in PL media 
with different material proportions. These simulations use 
DX = DZ = 0.25 mm, with spatial periods d = 1 mm and 
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thicknesses as in the 1-D problem but in the z-direction. The 
seismograms for P, = 0.50 are represented in Figure 12, 
where (a) 8 = 0 degrees, (b) 0 = 45 degrees, and (c) 8 = 90 
degrees. The receivers are located 500 m from the source. 

To compare seismograms with dissimilar material propor- 
tions, we chose the source’s dominant frequency for dif- 
ferent angles such that the ratio for S-waves has a common 
value R@’ = 3. The values of Rep) for P, = 0.5 are indicated 
in Figure 12, while for P, = 0.25 they are R"' = 6.3, 4.9, and 
9 9 and for P, = 0.75, R"' = 6.1, 4.2, and 9.6, correspond- . 3 
ing to the angles 8 = 0,45, and 90 degrees, respectively. The 
results for the semblances are summarized in Table 5. The 
agreement is very good at 8 = 0 degrees (along the symmetry 
axis), where only P-wave motion contributes, with RcP' 
values greater than six. As in the I-D case, the midrange of 
compositions gives the lowest semblances. For 0 = 0 de- 
grees, only the S-wave contributes. As mentioned, R"' = 3, 
which is not enough to apply the long-wavelength approxi- 
mation. The perfect matching for P, = 0.25 is due to the fact 
that the wave travels mainly through the epoxy layers, which 
have a velocity of 1200 m/s, while the TIE medium has 
approximately the same velocity v@)(8 = 90 degrees) = 
(C33/p)“2 = 1196 m/s. When P, = 0.50 and P, = 0.75, i.e., 
there is more glass contribution with velocity 3200 m/s, the 
velocity increases in the PL medium, and the peak of the 
signal arrives earlier (7 and 5 ps, respectively, compared to 
8 ks when P, = 0.25). 

Actually, it is not surprising that the long-wavelength 
approximation does not apply for angles far from the sym- 
metry axis, since in these cases the wave “sees” a longer 
spatial period; its value approaches infinity for 8 = 90 
degrees. 

CONCLUSIONS 

Using numerical modeling for simulating wave propaga- 
tion in periodically layered media, we conclude that 

(1) Depending upon the relation of wavelength to 
layer thickness, a stratified medium induces disper- 
sion, scattering, and a smoothed transversely isotropic 
behavior. 

(2) The minimum ratio of wavelength to layer thick- 
ness for the long-wavelength approximation to be valid 
is highest in the midrange of compositions, as found 
recently in laboratory experiments. 

(3) The minimum ratio depends on material compo- 
sitions through the reflection coefficients between the 
constituents. For instance, for epoxy-glass it is around 
R = 8, and for sandstone-limestone (which has a lower 
reflection coefficient) it is between R = 5 and R = 6. 

(4) 2-D numerical tests reveal that the more aniso- 
tropic the equivalent medium, the higher the minimum 
ratio. 

(5) The minimum ratio depends upon the propaga- 
tion angle. For S-waves, for a given value of wave- 
length to spatial thickness, the long-wavelength ap- 
proximation applies for angles close to the symmetry 
axis and even to the cusps, but not in the direction of 
layering. 

These tests were done in periodically layered media with 
isotropic constituents and, in the 2-D case, by using a 
vertical source. Further investigations should consider non- 
periodic media with anisotropic layers, as well as different 
source types to study the long-wavelength approximation for 
each wave mode in detail. 
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