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A spectral scheme for wave propagation simulation in 
3-D elastic-anisotropic media 

Jose M. Carcione*, Dan Kosloff*, Alfred Behle**, and Geza Serianis 

ABSTRACT 

This work presents a new scheme for wave propa- 
gation simulation in three-dimensional (3-D) elastic- 
anisotropic media. The algorithm is based on the rapid 
expansion method (REM) as a time integration algo- 
rithm, and the Fourier pseudospectral method for 
computation of the spatial derivatives. The REM 
expands the evolution operator of the second-order 
wave equation in terms of Chebychev polynomials, 
constituting an optimal series expansion with expo- 
nential convergence. The modeling allows arbitrary 
elastic coefficients and density in lateral and vertical 
directions. 

Numerical methods which are based on finite-differ- 
ence techniques (in time and space) are not efficient 
when applied to realistic 3-D models, since they re- 
quire considerable computer memory and time to 
obtain accurate results. On the other hand, the Fourier 

method permits a significant reduction of the working 
space, and the REM algorithm gives machine accuracy 
with half the computational effort as the usual second- 
order temporal differencing scheme. The new algo- 
rithm provides spectral accuracy for band limited 
wave propagation with no temporal or spatial disper- 
sion. Hence, the combination REM/Fourier method 
could be considered at present the fastest and the most 
accurate of all the algorithms based on spectral meth- 
ods in terms of efficiency of computer time The 
technique is successfully tested with the analytical 
solution in the symmetry axis of a 3-D homogeneous 
transversely isotropic solid. Computed radiation pat- 
terns in clay shale and sandstone show the character- 
istics predicted by the theory. A final example com- 
putes synthetic seismograms showing the effects of 
shear-wave splitting of a model where an azimuthally 
anisotropic cracked shale layer is inside a transversely 
isotropic sandstone. 

INTRODUCTION cracks, an important parameter in reservoir engineering 
(e.g., Crampin, 1985). 

The growing importance of 3-D seismic surveys and the The present approach is based on spectral methods, both 
_ 

predominant 3-D character of anisotropic wavefields re- m space and time the Fourier method and the rapid expan- 

quires the development of an efficient and accurate elastic- sion method (REM), respectively. The authors have recently 

anisotropic forward modeling code for an appropriate inter- presented a numerical solution algorithm for two-dimen- 

pretation of the results. For instance, of importance to global sional (2-D) wave modeling in anisotropic media based on 

seismology is the study of the Earth’s crust and upper the Fourier method and a spectral Chebychev expansion of 

mantle, which are known to be anisotropic; 3-D polarization the evolution operator (Carcione et al., 1988). While the 

analysis in anisotropic media can be used as a structure REM method departs from the second-order wave equation, 

indicator: in exploration geophysics, particularly in VSP the former uses a first-order differential equation in time

recording, shear-wave splitting has been observed; this This fact makes the REM twice as fast as the original 

phenomenon gives information about the alignment of spectral expansion. On the other hand, the Fourier method 
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allows using less grid points per wavelength than finite- 
differencing operators, an essential fact in 3-D wave simula- 
tion. Moreover, all the variables are at the same points, 
avoiding the problem of inaccuracy that the staggered grids 
cause in anisotropic modeling, where shear strains are at 
different points than longitudinal strains. Therefore, wave- 
field computations are highly accurate. Besides this fact, 
vectorization (mainly the FFT routine) and parallelization of 
the algorithm provides a very efficient scheme in terms of 
computer time The code is optimized to take advantage of 
the vector and parallel facilities of CRAY systems, particu- 
larly the eight processor CRAY Y-MP8E computer using the 
solid-state storage device (SD). 

The program has been written to compute snapshots and 
synthetic seismograms in a general anisotropic medium that 
can be described by 21 independent parameters. The mod- 
eling code provides different types of seismic source, direc- 
tional forces, pressure and shear sources, and the possibility 
of simulating a free surface. The first section presents the 
equation of motion of the anisotropic solid. Next, the 
numerical algorithm is outlined. The modeling is tested 
against the analytical solution in the symmetry axis caused 
by a vertical force and a horizontal force. Then, the radiation 
pattern in a homogeneous clay shale is analyzed. The last 
example computes synthetic seismograms from a plane- 
layered structure and a dipping-layered model containing a 
shale layer with vertical cracks inside a transversely isotro- 
pic sandstone. 

EQUATION OF MOTION 

In a 3-D continuous medium the linearized equations of 
momentum conservation are 

aa;j 

Piii = c + Pfi, i= 1, 2, 3, (1) 
J 

where x = (x,, x2, x3) = (x, y, z) is the position vector, 
aij(x, t) are the stress components, Ui(x, t) are the displace- 
ments, p(x) denotes the density, and fi(x, t) are the body 
forces, t being the time variable. Repeated indices imply 
summation, and a dot above a variable indicates time differ- 
entiation. 

The constitutive relation of a 3-D elastic-anisotropic 
is given by 

where 
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which are the strain components, and cIJ = cJI, I, J = 
1 ** 9 6 are the space-dependent elastic coefficients. 
Equations (I), (2), and (3) can be found in any book dealing 
with elasticity theory, e.g., Auld (1973). 

THE NUMERICAL METHOD 

The time integration scheme used to solve the wave 
equation is the rapid expansion method (REM) (Kosloff et 
al., 1989). The algorithm requires that the equation of motion 
be written as 

ii = -L2u + f, (4) 

where u is the displacement vector, f is the vector of the 
body forces, and -L2 is a linear matrix operator containing 
the spatial derivatives and the material properties. This 
matrix operator is expressed by 

-Lfj= ’ ViJCJKVgj, 
P (5) 

i,j= 1, 2, 3 J, K= 1, . . . , 6, 

with V, the components of a spatial derivative operator 
matrix given by 

1 0 oaa a 

ax3 ax2 aX, 0 

The formal solution to equation (4) with zero initial condi- 
tions is given by 

I 
f 

u(x, t) = 
sin [L(x)(t - T)] 

L(x) 
f(x, 7) d7, (7) 

0 

as can be checked by substitution. Assuming a separable 
source term of the form 

f(x, r) = g(x)h(t), (8) 

the solution (7) can be expressed as 

u(x, t) = G(x, t) * h(t), G(x, t) = 
sin [L(x)t] 

L(x) 
g(x), 

(9) 

where the symbol “*” denotes time convolution. Note that 
when g(x) = 6(x), the impulse response, G(x, t) represents 
the Green’s function of the system. 

The REM algorithm is derived by expanding (7) in terms of 
modified Chebychev polynomials Qk as follows: 

2 a R 
u(t) = k c &k+ 1 (t) z Q2k+ 1 

k=O 

(10) 

where the Qk’s satisfy the following recursion relation 

and 

Qk+z(s) = (4s2 + 2)Qk(s) - Qk-2(s), 
(11) 

QI (~1 = 1, Q3(s) = 4s3 + 3s, 
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f bk(t) = I Jk(7R)h(t - T) dT, (12) 
0 

with Jk the kth order Bessel function. R is a positive real 
number greater than the range of the eigenvalues of the 
operator -L2. For 3-D wave propagation, R is taken as 
~C~,,lhlD, with C,,, the highest velocity in the grid and 
D the minimum grid spacing. Exponential convergence is 
obtained for a number of terms in equations (10) greater than 
tR. Actually, the summation can be safely truncated with a 
k value slightly greater than tR. More details about the 
method can be found in Kosloff et al., (1989). 

Spatial derivatives are calculated by using the Fourier 
pseudospectral method based on the mixed-radix Fast Fou- 
rier transforms (Temperton, 1983), and prime factor Fast 
Fourier transforms (Temperton, 1988). In this case the 
length of each FFT is the product of odd prime numbers. 
Calculations with Nyquist wavenumbers are avoided. 

Specific details about the computer implementation of the 
spatial derivative terms on CRAY computer systems can be 
found in Reshef et al., (1988). As here, they use the Fourier 
method to calculate the spatial derivatives, but a second- 
order finite-difference approach to march the solution in 
time This results in an unbalanced scheme with infinite 
spatial accuracy but only second-order temporal accuracy. 
Instead, the present algorithm uses both spectral methods in 
time and space, in this way avoiding any type of numerical 
dispersion and reaching machine accuracy with efficient 
performance. 

Practical applications of 3-D forward modeling require 
large quantities of CPU memory. Typical problems need 
tens of megawords of storage, a size which exceeds the 
central memory of most computer systems. Implementation 
of the present algorithm needs three times the number of 
displacement components at each grid point, three additional 
arrays for temporal storage, plus the arrays for the elastic 
coefficients and density, i.e., M = 15 for the isotropic case, 
M = 18, for the transversely isotropic case, and M = 34 for 
the general anisotropic case. Total memory requirements are 
given by MN,N YNZ megawords, a quantity that should not 
exceed the CPU memory to have efficient performance (N 
denotes number of grid points). 

WAVE PROPAGATION IN HOMOGENEOUS MEDIA 

Comparison with analytical solution 

The first example compares numerical and analytical 
solutions in the symmetry axis of a 3-D transversely isotro- 
pic medium. The material is defined by the following prop- 
erties: 

cl1 = 66.6 GPa, cl2 = 19.7 GPa, cl3 = 39.4 GPa, 

~33 = 39.9 GPa, c44 = 10.9 GPa, p = 2590 Kg/m3, 

which represent Mesaverde clay shale (Thomsen, 1986). 
Figure 1 shows a section of the wave surfaces through a 
plane containing the symmetry axis. Three-dimensional 
wave surfaces have azimuthal symmetry. This medium is 
class IV according to the classification given by Payton 
(1983, p. 38) for which a section of the qS V wave surface has 

four cuspidal triangles, two centered on the vertical axis and 
two centered on the horizontal axis. Modes qP and qSV are 
coupled while SH is pure. 

Parameters of the numerical mesh are Nx = N r = Nz = 
119, with Dx = Dy = D, = 15 m, the grid size. The 
symmetry axis coincides with the vertical axis (Z-axis). The 
motion is initiated by a directional force with a Ricker time
history, 

h(t) = ,(lw%- r0J2 cos ‘TFfo(t - to), (13) 

where to = 60 ms andfo = 50 Hz, i.e., a central frequency 
of 25 Hz. The program ran on an Apollo 10000 computer 
with vector facilities using about 20 hours of CPU time

The analytical solution in the symmetry axis is given in the 
Appendix. For a vertical force, only the vertical displace- 
ment uz is different from zero, while for a horizontal force 
(say in the X direction), only u, contributes. Figures 2a and 
2b represent the responses of the medium to a unit step H(t) 
for vertical and horizontal forces, respectively, at a distance 
of 700 m from the source. The 3-D Green’s function or 
response to the impulse 8(t) can be calculated by time
differentiation. The arrival time of the qP wavefield is t,, 
and the lacuna of the qSV mode is between times t, and ll 
[these times are defined in equations (A-7)]. The singularity 
at tl is not present in an isotropic medium since tl = 0 [by 
evaluation of (A-9)] and from (A-7) t 1 + a. As shown in the 
next section, this singularity contributes a very high ampli- 
tude. 

Figures 3a and 3b compare normalized numerical and 
analytical solutions at a distance of 300 m from the source 
position, respectively, (a) Z-directional force, and (b) X-di- 
rectional force. Maximum propagating time of the numerical 

1 
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FIG. 1. Zonal section of the energy velocity surfaces in clay 
shale. The section contains the symmetry axis. Modes qP 
and qSV are coupled and SH is pure. Cusps can be seen in 
the qSV wavefront. 
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seismograms is 0.3 s. As the figures show, the comparison 
between these solutions is excellent. 

Radiation pattern 

Snapshots of the wavefield due to an X-directional force 
are computed for different planes passing through the source 
position. Figure 4 displays snapshots after t = 0.22 s in the 
XZ, XY, and YZ-planes. The Z-axis is always vertical; in 
the XY-planes, the Y-axis is vertical. Some characteristics 
are now discussed. We define the incidence plane by the 
propagation direction and the Z-axis, qP and qSV motions 
lie in this plane, while SH motion is normal to the plane. 
Hence, the uz component does not contain SH motion. 

XZ-plane.-The u,-component has only qP and qSV 
motions since SH motion is normal to the plane, although by 
summetry the uy component vanishes. The cusps can be 
distinguished. The higher amplitude is in the symmetry axis 
where the singularity at time t, contributes to the lacuna of 
the qSV mode. The small contribution of SH motion in the 
u,-component could be caused by near source effects. 

XY-plane.-Wave surface sections are circles because of 
isotropy in this plane. The inner wavefront corresponds to 
the qSV mode. This is a contribution from the slower 
branches of the qSV mode for which the wavenumber vector 
is not parallel to the line Y = 0. The outer wavefronts are SH 
and qP motion, respectively. By symmetry, the uz compo- 
nent vanishes. 
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FIG. 2. Analytical displacements for a unit step H(t) time
loading function in the symmetry axis of a 3-D transversely 
isotropic clay shale. (a) Normalized vertical displacement 
response to a vertical force, and (b) normalized horizontal 
displacement response to a horizontal force. The distance 
from the source is 700 m. 

YZ-plane.-SH motion is normal to this plane. The char- 
acteristic ellipse can be seen in the u, component. There is 
a strong contribution from the qSV mode around the line 
Y = 0, due to the singularity in the symmetry axis at time t, 
(see Figures 2a and 2b). As mentioned in the previous 
section, this contribution is not present in an isotropic 
medium. By symmetry, the uy and uz components have zero 
amplitude. 

It is also verified that snapshots in off-source planes 
contain the three wave motions except the SH in the 
u,-component, as mentioned before. 

WAVE PROPAGATION IN INHOMOGENEOUS MEDIA 

This example shows wave propagation through a plane- 
layered structure. A cracked shale layer is enclosed in a 
transversely isotropic sandstone (vertical symmetry axis). 
The upper picture in Figure 5 represents a vertical section of 
the model, and the lower picture is a horizontal section 
through the shale. This medium is transversely isotropic with 
symmetry axis horizontal, making an angle of 45 degrees 
relative to the coordinate axes and horizontal recording lines. 
The material represents an azimuthally anisotropic solid with 
vertical cracks. 

The media are taken from the table published by Thomsen 
(1986). They correspond to Taylor sandstone where 

ctt = 34.6 GPa, cl3 = 10.6 GPa, ~33 = 28.3 GPa, 

cs5 = 8.4 GPa, c66 = 12.6 GPa, p = 2500 Kg/m3, 
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FIG. 3. Comparison between numerical and analytical solu- 
tions in the symmetry axis of a 3-D transversely isotropic 
clay shale. (a) Normalized vertical displacement due to a 
vertical force, and (b) normalized horizontal displacement 
due to a horizontal force. The source time function is given 
by equation (13). The seismograms are recorded at 300 m 
from the source. 
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FIG. 4. Radiation pattern in clay shale after t = 0.22 s in XY, XZ, and YZ planes passing through the source position. The source 
is an X-directional force with time function given by equation (13). 
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and Mesaverde shale (medium without cracks) where used to obtain the dimensionless compliances EN and ET 
from Thomsen’s parameters E and y . This example uses E = 
0.15, and y = 0.1. The elastic coefficients of the transversely 
isotropic cracked solid become 

cl1 = 71.8 GPa, cl3 = 1.2 GPa, ~33 = 53.4 GPa, 

css = 26.1 GPa, ~66 = 34.3 GPa, p = 2810 Kg/m3. 

The cracks are introduced by using the theory in Schoenberg 
and Douma (1988). The strike of the cracks is taken perpen- 
dicular to the symmetry axis of the shale. Equation (23) in 
Schoenberg and Douma is used to obtain the equivalent 
transversely isotropic solid with cracks, and equation (27) is 
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FIG. 5. Plane layered model-vertical and horizontal sec- 
tions. The sandstone is transversely isotropic with vertical 
symmetry axis, while the cracked shale is transversely 
isotropic with horizontal symmetry axis. 

cl1 = 71.8 GPa, cl3 = 0.9 GPa, c33 = 39.1 GPa, 

css = 20.1 GPa, ~66 = 34.3 GPa. 

Figure 6 represents a section of the 3-D wave surfaces of 
the sandstone, and Figure 7 displays sections of the wave 
surfaces of the shale and the cracked shale, respectively, 
where the symmetry axis is in the vertical direction. These 
media are class V according to Payton’s classification. The 
qSV wavefront has four cuspidal triangles (very small), none 
of which cross the coordinate axes. 

For illustration, the radiation pattern for an X-directional 
force in Taylor sandstone is represented in Figure 8 where 
propagating time is 0.24 s. For this medium, the solution at 
the symmetry axis has no singularity at time zt in contrast 
with the clay shale (see Figures 2a and 2b). Therefore, the 
qSV mode does not contribute significantly to the symmetry 
axis (see, for instance, YZ-plane in Figure 4). Moreover, 
since there are no cusps in the XY-plane, there is no qSV 
motion in this plane (compare Figures 4 and 8). 

To get the azimuthally anisotropic medium from the 
transversely isotropic shale, we perform a clockwise rota- 
tion by ~12 about the X-axis followed by counterclockwise 
rotation by ~14 about the new Y-axis. The corresponding 
rotation matrix is given by equation (18) of Thomsen (1988). 
The elastic coefficients in the new coordinate system are 
calculated by using the so-called bond transformations 

-6 
-6 -4 -2 0 2 4 6 

(Ve)x (Km/s) 

FIG. 6. Zonal section of the energy velocity surfaces in 
Taylor sandstone. The section contains the symmetry axis. 
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[equations (3.32) and (3.39) in Auld (1973)]. The nonzero 
elastic coefficients are 

ctt = 48.2 GPa, cl2 = 8.1 GPa, 

cl3 = 2.0 GPa, cl6 = 8.2 GPa, 

c22 = Cl17 c23 = Cl39 c26 = cl67 

6 

-61 
-6 -4 _i 

(Ve)x ~KITI~s)~ i s 

6- 

-6. 

FIG. 7. Zonal section of the energy velocity surfaces in 
Mesaverde shale (top) and cracked Mesaverde shale 
(bottom). 

c33 = 71.7 GPa, c36 = 1.1 GPa, ~44 = 27.2 GPa, 

c45 = 7.1 GPa, c55 = c447 c66 = 27.3 GPa. 

The numerical mesh has a size of Nx = 135, and NY = 
Nz = 125 with a grid spacing of DX = D y = Dz = 15 m, 
including an absorbing region of 18 points on the lateral and 
bottom edges. No free surface is implemented. The source is 
a directional force acting in the X-direction with time history 
given by equation (13) and cutoff frequency off,, = 60 Hz. 
The problem requires 34 x 135 x 1252 = 71 megawords of 
storage. The program ran on a CRAY Y-MP8E system with 
8 CPUs and 128 Mwords of central memory in a wall-clock 
time of 1.6 hours. Maximum propagating time is 1.5 s. 

Figures 9a and 9b represent vertical and horizontal snap- 
shots respectively of the u, component at a propagating time
of 0.5 s. Figure 9a shows two shear waves traveling in the 
sandstone while in Figure 9b the cracked shale also produces 
shear-wave splitting but in the vertical direction. Clearly, one 
shear wave at the top of the shale splits in two at the bottom of 
the layer. The u,-component synthetic seismograms of two 
mutually perpendicular recording lines are represented in 
Figure 10. Sl and S2 indicate the two shear events reflected 
from the bottom of the shale layer. Since the source is 
X-directional, the P and SH direct events should vanish in the 
uy component. This problem comes from the fact that the 
source is very close to the absorbing region, only two grid 
points away. What we see are hyperbolas close to straight lines 
produced by reflection of the direct waves in the absorbing 
strip. This problem can be solved by taking the source away 
from this boundary and optimizing the absorbing parameters. 

Figure 11 represents the u, and uy components in a 
vertical recording line (VSP). Changes in the slopes of the 
events are located at the interfaces. From the first interface 
(450 m depth) the shear waves, one polarized along the 
cracks (Sl) and the other perpendicular to the cracks (S2) 
start to separate and are transmitted through the bottom of 
the shale layer (1050 m depth). Figure 12 shows the u, and 
uy components of the survey line indicated in the upper 
picture. It can be seen how the reflected events from the 
bottom of the cracked shale layer arrive at the surface with 
more traveltime separation. It can be seen how the multi- 
ples, although weak, split even more. The last 36 traces are 
in the absorbing region that appears to have performed very 
well since the wraparound effect observed in the figures does 
not reach the model region. 

For illustration, a laterally inhomogeneous structure is 
also considered. This model is composed of the same mate- 
rials as the previous example but interfaces are dipping as 
shown in the upper part of Figure 13. The parameters of the 
numerical mesh are also the same as in the plane layered 
model. Figure 13 compares u, components for a vertical 
recording line. The seismogram of the previous model is at 
the left, and at the right, the model with dipping layers. 
Shear-wave splitting is still evident. 

CONCLUSIONS 

A realistic 3-D seismic survey in exploration geophysics 
implies at least a 3 km cube region, which by using a 15 m 
grid spacing gives a 2003 numerical mesh. For anisotropic 
wave modeling using the REM algorithm, this means 

(text continues on p. 1606) 
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FIG. 8. Radiation pattern in Taylor sandstone due an X-directional force. Propagating time is 0.24 s. 
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FIG. 9. Snapshots at a propagating time of 0.5 s. (a) The u, component at 300 m a horizontal plane below the 
source, and (b) the u, component in a vertical plane passing through the source location. 
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FIG. 10. The u,, component synthetic seismograms of two mutually perpendicular recording lines. Sl and S2 indicate the two 
shear events reflected from the bottom of the shale layer. 
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FIG. Il. The u, and uY component synthetic seismograms for the recording line are indicated in the upper picture. S 1 is a shear 
event polarized along the cracks, while S2 has polarization normal to the crack strike. 
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FIG. 12. The u, and u,, component synthetic seismograms for the recording line are indicated in the upper picture. Shear-wave 
splitting is greater at the surface. Multiples split even more. 
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FIG. 13. The uY component synthetic seismograms for the survey line indicated in the upper picture. At the left, the response 
of the plane layered model, and at the right, the response of the dipping layered model. 
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34 X 2003 = 272 megawords of storage, a feasible problem 
for today’s supercomputers. 

The modeling code computes wavefields with spectral 
accuracy. Errors are associated with spatial discretization of 
dipping and curved interfaces, and absorbing regions. The 
first problem requires denser grids, and the second optimi- 
zation of the absorbing parameters, and moving the source 
away from the absorbing region since significant artificial 
reflections occur mainly at grazing angles. 

The accuracy of the algorithm is verified in the comparison 
with analytical solutions in the symmetry axis of a 3-D 
transversely isotropic solid. Computed wavefronts show the 
characteristics predicted by the energy velocity surfaces. 
Amplitude behavior is also predicted by the modeling. For 
instance, at the point where the qSV wavefront crosses itself, 
there is a contribution that is not present in 3-D isotropic 
media. A simple structure like the plane layered model shows 
a characteristic seismic response caused by anisotropy. Rhe- 
ology proves to be as important as interface geometry. In 
particular, wave coupling and shear-wave splitting influence 
the synthetic seismograms. The present modeling technique 
accurately reproduces these phenomema. A previous compu- 
tation of the source radiation pattern is useful to interpret the 
seismograms since each anisotropic solid has its own radiation 
characteristics, in particular, for the shear modes. 
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APPENDIX A 

ANALYTICAL SOLUTION IN THE SYMMETRY AXIS OF 3-D TRANSVERSELY ISOTROPIC SOLID 

The analytical solution is taken from Payton (1983). We 
define the following dimensionless parameters: 

Q = c33/css 9 P = Cll/C55> 
(A-1) 

y = 1 + $3 - (Cli/C55 + 1)2, 6 = ;(p - c*2/c55). 

The solution can be expressed in compact form by using the 
following dimensionless variable: 

Z C55 

Z=Vst J- vs= -, (A-2) 
P 

where z is the distance to the source along the symmetry 
axis. 

The analytical solution is valid for materials satisfying the 
inequalities y < (l3 + 1) and (-y* - 4$3) < 0. 

ts = ZIVS, tp = zl~c33lp, t1 = tstr1. 

The quantity D( .T) is given by 

D(F) = {y - (f3 + 1)Z2}2 - 4p(u - f2)(l - Z2) 

and 

(A-7) 

Vertical force.-The response to 

f = (0, 0, 1)6(x)S(y)6(z)H(t), 

where H(t) is the step function, is given by 

(A-3) 

(A-g) 

t1 = [r(P + 1) - 2P(o + 1) 

U, = Uq’ = 0, (A-4) + 2{~(1 + ap - y)(cw + P - r)}1’211’2/(13 - 1). (A-9) 

0, o<tstp, 

1 h(f), tp < t 5 t,y, 
uz =- 

4rrzv; 2h(.8, t&y5t<t1, 

1, t’tl, 

where 

2 h(i)=l_2(1-i)-v+(P+l)~2 

2dD 

with 

(A-5) 

(A-6) 



Forward Modeling in 3-D Anisotropic Media 1607 

Horizontal force.-The response to 

f = (1, 0, oP(x)s(Y)6(zMt) 

is given by 

(A-10) 

where 

uy = uz = 0, (A-l 1) 
k(~) = i + (P - 112 + (Y - 243) 

33 2&D . 
(A-13) 

0, o<tstp, 

1 k(t), tp 5 t < ts, Equations (A-S) and (A-13) are the responses to a unit step 
=- 

” 87rzV; 6-l + 2k(z), 
(A-12) 

tS<t<tl, 
H(t). The solution due to a unit impulse s(t) is obtained by 
convolving these expressions with the time derivative of the 

6-1 + p-1, t>tl> source time history, equation (13). 


