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Wave propagation simulation in a linear viscoacoustic medium 
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SUMMARY 
A new approach for viscoacoustic wave propagation is developed. The Boltzmann’s 
superposition principle based on the general standard linear solid rheology is implemented in 
the equation of motion by the introduction of memory variables. This approach replaces the 
conventional convolutional rheological relation, and thus the complete time history of the 
material is no longer required, and the equations of motion become a coupled first-order 
linear system in time. The propagation in time is done by a direct expansion of the evolution 
operator by a Chebycheff polynomial series. The resulting method is highly accurate and 
effects such as the numerical dispersion often encountered in time-stepping methods are 
avoided. The numerical algorithm is tested in the problem of wave propagation in a 
homogeneous viscoacoustic medium. For this purpose the l-D and 2-D viscoacoustic 
analytical solutions were derived using the correspondence principle. 
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1 INTRODUCTION 

Seismic forward modelling has been advancing considerably 
in recent years (Kosloff & Baysal 1982; Alford et al. 1974; 
Gazdag 1981). With the progress in new methods and new 
computer technology, it has become possible to solve the 
governing wave equations with a high degree of precision. 
Most of the progress, however, has been in increasing the 
dimensionality and frequency resolution (Alford et al. 1974), 
while using a simple rheological description. An exception 
has been the incorporation of the elastic rheology to replace 
the acoustic assumption (Kosloff et al. 1984; Virieux 1986; 
Blake et al. 1982). However, an accurate description of 
wave propagation requires a rheology which accounts for 
additional factors like anelasticity, anisotropy, scattering 
from heterogenieties, and propagation through a porous 
medium (Borcherdt 1982; Payton 1983; Biot 1956a,b). 

This paper concentrates on the issue of attenuation of 
seismic waves. However, the subject of wave attenuation 
has practical value in many other fields such as, for example, 
ocean acoustics, non-destructive material testing (Burk & 
Weiss 1979; Szilard 1982) and polymer physics (Ferry 1970). 
The object is to introduce a modelling method which 
includes attenuation, which is correct physically and also fits 
experimental data. In particular, in seismics it is important 
that the material rheology gives causal behaviour and 
approximately a constant Q factor in the seismic frequency 
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band (Liu et al. 1976), although the theory must also deal 
with any type of complex modulus function, no matter the 
frequency range. In addition to attenuating the events on 
the time section, wave propagation simulation which 
includes these physical effects will have dispersion which in 
turn will affect the shape of the observed arrivals. 

Liu et al. (1976) showed that a viscoelastic rheology with 
multiple relaxation mechanisms gives a framework that can 
explain experimental observation of wave propagation 
through the earth, and Earth-type materials. In particular 
they showed that, with a suitable choice of material 
parameters, constant Q values can be obtained, and a 
dispersion relation which qualitatively explains differences in 
seismic-wave velocities in different frequency ranges. A 
wave propagating in a real material induces a non- 
instantaneous deformation, but not all of the energy can be 
recovered, as is the case with a purely elastic solid. The 
energy that is not dissipated also is delivered in a finite time. 
This relaxation time may be a consequence of many 
processes such as interstitial atom relaxation, grain 
boundary relaxation, thermoelasticity, diffusional motion of 
dislocations and point defects, etc. The general standard 
linear solid rheology explains these processes very well. 
Some of them can be modelled with one mechanism and 
others using a spectrum of relaxation mechanisms. 

Use of rheologies which are simpler to program, such as 
the attenuation mechanism used for absorbing boundary 
conditions (Cerjan et al. 1985; Kosloff & Kosloff 1986; 
Kummer & Behle 1984; Leeander 1985; Lysmer & 
Kuhlmeyer 1969), or the Maxwell and Kelvin-Voigt models 
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(e.g. Blake et al. 1982), result in modelling algorithms which 
can give attenuation, but fail to produce realistic 
amplitudes. 

However, for direct methods in the time-domain the 
convolutional kernel contained in the stress-strain constitu- 
tive relation (Boltzmann's superposition principle) is difficult 
to implement in the equations of motion. This problem was 
addressed previously by Day & Minster (1984), where they 
used an approach based on Pad6 approximants to transform 
the convolution integral into a convergent sequence of 
constant-coefficient differential operators of increasing 
order, which is equivalent to the rheology of multiple 
relaxation mechanisms mentioned above. Then, for each 
mechanism a first-order differential equation was obtained, 
which together with the scalar equation of motion, were 
solved by a finite-difference scheme. 

The central problem in the modelling of the viscoelastic 
behaviour is the correct description of the memory kernel. 
Difficulties of this kind have been found in the physics and 
chemistry of dense media where a similar memory kernel 
arises. A solution to this problem has been proposed by 
Adelman (1980), who showed that the memory kernel can 
be successfully approximated by a chain of linearly coupled 
ghost atoms whose frequencies correspond to moments of 
the memory kernel spectrum. In this work, a similar 
approach which uses ghost degrees of freedom is applied to 
reduce the integro-differential equation to solvable coupled 
differential equations. 

This work is concerned with viscoacoustic wave 
propagation. Extension of the algorithm to viscoelastic 
rheology will be carried out in a future work. The first 
section briefly derives the basic equations of a viscoacoustic 
medium. The derived equations include the well known 
convolutional relation between pressure and volumetric 
strain. In the next section we calculate the complex 
modulus, quality factor and phase velocity which charac- 
terize the viscoacoustic solid. Subsequently, the basic 
equations are reformulated with an introduction of memory 
variables which circumvent the convolutional relation. In 
the following sections, a time-integration technique based 
on the work of Tal Ezer (1986) is introduced. The numerical 
algorithm is then tested against the problem of wave 
propagation in a homogeneous viscoacoustic medium. The 
1-D and 2-D viscoacoustic solutions used for the 
comparisons are obtained by using the correspondence 
principle. 

2 BASIC EQUATION OF THE 
VISCOACOUSTIC MOTION 

The description of wave propagation is based on momentum 
conservation, combined with the relations which describe 
the rheology of the medium. The standard linear solid 
rheology was adopted as a starting point for describing the 
response function. A detailed description of the standard 
linear solid response function and its use in explaining the 
rheology of the Earth is given in Fung (1965), Liu et al. 
(1976) and Hudson (1980). 

For the n-dimensional solid the equations of momentum 
conservation are given by 

aujiiaxj = p s i  + f i  i, j = l , .  . . ,n, (1) 

where xi denote a set of Cartesian coordinates, ui(xk, t) is 
the displacement vector, ffji(xk, t) is the stress tensor, 
p(xk, t )  is the density, and ti(&, t) are the body forces. In 
equation (l), as in the remainder of this work, a dot above a 
variable denotes time differentiation. In addition, the 
convention in which the repetition of indices implies 
summation is used. 

In a general acoustic medium the components of the stress 
tensor can be written as 

where p(xk,  t) is the pressure field acting on the medium. 
Equation (1) then becomes 

-aplaxi  = piii + f i .  (3) 
Dividing both sides of (3) by the density and taking the 
divergence yields 

a 1 ap 
axi p a x i  

_- ( -- ) = e + s ,  (4) 

where 

e = aui/axi = e, (5 )  

is the trace of the strain tensor, or the dilatation, and 

a 1  
S =- (-6). 

axi P 
The stress-strain relation for a generalized standard linear 
solid with many relaxation mechanisms for the viscoacoustic 
case is given by (Christensen 1982, p. 14), 

(7) 

where dkldtk denote kth order time derivative, and ck  and 
dk are coefficients related to the material properties of the 
medium, subjected to the following constraints on the initial 
conditions 
m m 

~ , p ' - ~ ( 0 )  = drer-"(0), 
r-k r=k 

with P ' - ~ ( O )  and e'-'(O) indicating the ( r  - k)th order 
derivative of the pressure and dilatation evaluated at t = 0. 
Alternatively, by solving equation (7) with Laplace 
transform methods, the pressure field can be expressed 
explicitly by 

(8) 
where r&k) and re[(&) denote material relaxation times 
for the lth mechanism, L is the number of relaxation 
mechanisms and MR(xk)  is the relaxed modulus of the 
medium (Liu et al. 1976). Equation (8) is the formulation of 
the Boltzmann's superposition principle, such that the 
current pressure is determined by the superposition of the 
responses at previous times. 

Equations (4) and (8) fully describe the deformation of 
the viscoacoustic medium, and in principle could be a basis 
for a numerical solution algorithm. However, the convolu- 
tion integrals in (8) pose difficulties because they require a 
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knowledge of the full strain history, unlike elastic relations 
which involve only current values of variables. Moreover, 
the relation (7) is equally difficult to apply. Consequently, in 
the next sections the rheological relations are reformulated 
to yield a more convenient description. 

3 COMPLEX MODULUS, DISPERSION 
RELATION, QUALITY FACTOR A N D  
PHASE VELOCITY FOR THE 
VISCOACOUSTIC SOLID 

Equation (8) can be expressed in terms of a convolution as 

where 

(9) 

is the relaxation function of the medium, and H ( t )  is the 
Heaviside function. 

d 
-B(w) = W F (  [H(t)V(OI], (11) 

Mc(w) = F[; [H(t)V(t)l). (12) 

Mc(w) = F[ s( t )V( t )  + H ( t )  I = 1  c @ 1 ( 0 ) e - " ~ ~ ~ ] ,  

where the operator F performs the time Fourier transform. 

the medium Mc(w), 
From equation (11) we identify the complex modulus of 

d 

Differentiating and using equation (10) we obtain 
L 

(13) 

where d ( t )  is the Dirac's function, and @l( t )  is defined as the 
response function corresponding to the 1-mechanism: 

Taking the Fourier transform in (13), we find that 

After integration, the complex modulus can be expressed in 
a compact form as 

As w + m, Mc(w)+ Mu, the unrelaxed modulus defined by 

and when w + 0, Mc(w) + MR, the relaxed modulus. 
Real materials behave elastically at both very low and 

very high frequencies. The relaxation function (lo), which is 
based on the general standard linear solid rheology, 
describes correctly this behaviour (Liu et al. 1976). In this 
work we choose the acoustic behaviour in the low-frequency 
limit. For a standard linear solid mechanical model, the 

acoustic limit is reached when the dashpot is eliminated, 
implying z,,-+O and t u , + O  (Ben-Menahem & Singh 1981, 
p. 856). This is equivalent to w+O, as it can be seen from 
(16), hence the relaxed and acoustic modulus coincide. In 
practice, however, we do not need to restrict the 
representation of real materials to mechanical models, so we 
choose the acoustic or 'non-dispersive' behaviour in the 
high-frequency limit (see Ben-Menahem & Singh 1981, p. 
873). In conclusion, when tuf and tEl+ 0 or tuf = t,, in (16), 
the complex bulk modulus equals the relaxed bulk modulus 
and the acoustic case is obtained. 

We define the complex velocity v ( w )  as 

where w or k can be complex. Relating equation (16) to (18) 
we obtain the dispersion relation: 

w2 1 +iwt,, 
0'0 I=1 1 + iwt, 
-=l-L+c,- ,  (19) 

with wo = cak and ca = (MR/p)l'', the acoustic velocity. 
In order to obtain the temporal quality factor Qt(w)  and 

the phase velocity c(w),  we solve (19) numerically for the 
complex frequency wc = w + iw,. The value of wc depends 
on all the material constants p ,  MR, z,,, tor, 1 = 1, . . . , L as 
well as on the real wave number k. Then we define (Pilant 
1979, p. 327), 

Q,(w) = w/201 

and the phase velocity, 

c(w) = w / k .  

4 INTRODUCTION OF THE MEMORY 
VARIABLES 

In this section we show that by the introduction of memory 
variables the convolutional integral in (8) can be avoided. 
Integration of equation (8) by parts yields: 

where &(t) is given by equation (14). At this stage it is 
important to note that equation (22) is also derived for 
physical processes other than the standard linear solid. In 
that case the kernel @ I  is replaced by a different expression 
(Adelman 1980). The function @ I  obeys the differential 
equation 

$ l ( t )  = - @ I ( w % *  (23) 

We now define L memory variables el, by 

el,(t) = 1 e ( t )@l ( t  - t )  dt 1 = 1, . . . , L. (24) 
-m 

Because of equation (23) we have 

t l l ( t )  = + @,(O)e(t). (25) e (4  
Xu, 
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The stress-strain relation (22) can now be expressed as 

P(t) = -(M,e(f) + I = 1  5 elJ. (26) 

where Mu is the unrelaxed modulus (17). Equations (4), 
(25) and (26) fully describe the response of the solid and will 
be the basis for a numerical solution algorithm described in 
the following section. 

5 NUMERICAL ALGORITHM 

In order to solve the problem numerically the fomulae 
governing wave propagation need to be recast as a coupled 
first-order system of ordinary differential equations in time. 
A combination of (4) and (26) gives 

L 

where D is a spatial operator defined by 

D = 2  (‘2). 
axi paxi  

Then, using (25) and (27), the system to be solved can be 
written in compact notation as: 

E=ME+s ,  (29) 
where M is a spatial operator matrix of dimension L + 2. 
given by 

M =  

with 

0 1 0 0 ... 0 

DM, 0 D D ... D 

0 
-1 &(O) 0 0 . . .  

-1  

. .  . . . .  . 

. .  . . . .  . 

ET = [e, e,  el,, el*, . . . , elL1, 

and the source vector given by 

ST = [O, s, 0, 0, . . . , 01. 

For the spatial derivative terms in equation (29) we use the 
Fourier method (Kosloff & Baysal 1982), which consists of a 
spatial discretization and calculation of spatial derivatives 
using the fast Fourier transform (FFT). Considering a 3-D 
medium with N,, Ny and N, denoting the respective number 
of grid points in the x ,  y and z directions, the system (29) 
becomes a coupled system of L N = L - N, - N, - N, 
ordinary differential equations in the unknown variables at 
the grid points. Equation (29) then can be expressed as 

EN = MNEN + SN, (33) 

subject to the initial conditions 

EN(o) = Ek, (34) 
where EN, MN and SN are the discrete representations of E, 
M and S, respectively. The solution to (33) subject to (34) is 
formally given by 

EN = eMN’E& + eMNrSN(t - t) dt. (35) 6 
We consider a separable source term SN(t) = ANh(t), where 
AN is the spatial distribution of the source, usually chosen to 
be a delta or a highly localized function. The function h(t) is 
the source time history. Considering zero initial condition 
and replacing the source term, equation (35) becomes 

EN = [ 6eMf lh( t  - t) d t  AN. 1 
To solve this equation we use a new time integration 
technique based on the well-known Chebycheff expansion of 
the function ez (Tal-Ezer, 1986), 

where IzI d tR and z lies close to the imaginary axis. Co = 1 
and Ck = 2 for k 2 1. Jk is the Bessel function of order k and 
Qk are the modified Chebycheff polynomials which satisfy 
the recurrence relation 

Qk+1(4) = 2qQk(q) + Qk-1(4), (38) 

Q,=1  and Q l = q .  (39) 

with 

Replacing tMN for z in (37), equation (36) becomes 

where the coefficients bk are given by 

bk = Jk(tR)h(t - Z) dr. (41) 6 
In Tal-Ezer’s (1986) article it was shown that to ensure 
convergence, the parameter R must be chosen larger than 
the region spanned by the eigenvalues of MN, which should 
be in the vicinity of the imaginary axis. It is known 
(Abramowitz & Stegun (1972) that J k ( @ )  converges to zero 
exponentially when k increases beyond 8, so we must take 
the cut-off K to be greater than tR to find a solution. 
Actually, the value of K can be determined by finding the 
range in which the coefficients b, differ greatly from zero. 

As the terms in the expansion (40) decay exponentially 
for k greater than tR, machine accuracy can be obtained. 
Therefore stability problems, as with differencing in time, 
do not exist with this algorithm. 

The starting values for the recursion are given by 

Qo(MN/R)AN = AN, and &i(MN/R)AN = (MN/R)AN, 
(42) 

according to equation (39). Additional terms are generated 
by (38) with MN/R replacing q, while E$ is summed by 
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(40). The final value of EE is obtained after summing over K 
terms. 

The solution can be propagated in time again by 
considering Eat,) as an initial condition, by means of the 
homogeneous solution in equation (35). It yields 

(43) 

where to is the size of the first time-increment which should 
be larger than the duration of the source time history. The 
calculation of time histories at a given point of the material 
does not require significant additional computational effort 
since the terms Qk(MN/R)EN are calculated in any case; 
only additional sets of Bessel functions need to be 
generated. The intermediate results are calculated according 
to 

for t' < t. 
It is shown in Appendix A that the matrix MN has 

eigenvalues corresponding to propagating waves close to the 
imaginary axis, but also has eigenvalues corresponding to 
non propagating modes, located away from this axis, near 
the negative real axis. As mentioned before, in order to use 
the algorithm all the eigenvalues must be close to the 
imaginary axis. However, a slight modification of the 
integration technique can restore convergence. Multiplying 
equation (35) by eyl', where y is constant and I is the 
identity matrix, gives 

where 

sh(t) = eY"sN(t). 

The solution of the problem is the same as before, but 
instead of expanding the matrix MN, we expand (MN + yI). 
Afterwards, the results are multipled by the diagonal matrix 
e-yu. This modification causes a shift of value y in the 
eigenvalues of the operator. 

The parameter R should be chosen so that the region of 
convergence includes the eigenvalues of the matrix 
(MN + yI). From Appendix A we have that the largest real 
eigenvalue of the evolution operator is approximately 
A =  -l/min (to,), 1 = 1, . . . , L. We have found that the 
algorithm converges reasonably well by choosing 

R = &I2 + R?)ln, (47) 

Y = A/2 ,  (48) 

and 

where RI is the imaginary part of the largest eigenvalue 
corresponding to the propagating modes (R, = 630.151s in 
Appendix A). The numerical results presented in the next 
section show that these choices yield the required spectral 
convergence. 

6 COMPARISON WITH ANALYTIC 
RESULTS 

In this section we present numerical results to illustrate the 
resolution properties of the time integration method and to 
compare viscoacoustic and acoustic wavefields. 

6.1 1-D wave propagation 

In order to illustrate the accuracy of the time integration 
technique we consider the initial value problem in a 1-D 
viscoacoustic medium. To obtain the viscoacoustic analytical 
solution we first solve the acoustic problem and then apply 
the correspondence principle. The acoustic wave equation 
with constant density is 

(491 

where c, is the acoustic velocity. The solution of equation 
(49) under the initial condition e(n, 0) = g(x) is (Pilant 1979, 
P. 401, 

e(x, t )  = +[g(x + cat) + g(x - cat)]. 

g(x) = e-qKax2 cos ( ~ n ~ d ) ,  

(50) 

(51) 

Assuming 

with KO the cut-off wave number, and E and q constants, the 
time Fourier transform of equation (50) is 

where k ,  = 2nK,. 
Quoting Bland (1960, p. 96), the correspondence 

principle states: 'The solution for a dynamic problem for a 
viscoelastic material can be obtained from the solution for 
the corresponding problem for an elastic solid by applying 
the one-sided Fourier transform to the elastic solution, 
replacing the elastic constants by the corresponding 
viscoelastic complex moduli and finally inverting the 
transform.' In this case we replace the acoustic velocity in 
equation (52) by the complex velocity defined by equation 
(18). The viscoacoustic solution is then 

&[x, 01 = q x ,  w, v (w) ] .  (53) 
The solution in the time domain e,,(x, t) is obtained by 
performing an inverse Fast Fourier transform on equation 
(53). 

The relaxed modulus of the medium is chosen 
MR = 8 GPa, and the density, p = 2000 kg m-3, which give 
an acoustic velocity, c, = 2000 m s-'. The analytical solution 
is computed at a distance xo = 400 m, and at the time level 
to = 0.2s, that in the acoustic case corresponds to the main 
peak of the signal with amplitude 2e(xo, to) = g(no - cato) = 
1. The anelasticity is defined by the five sets of relaxation 
times given in Table 1. Fig. l(a) shows the temporal quality 
factor Q,, and Fig. l(b) the phase velocity dispersion, both 
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Table 1. Relaxation times (seconds). 

1 re, % 
1 0.3196389 0.3169863 
2 0.0850242 0.0842641 
3 0.0226019 0.0224143 
4 0.0060121 0.0059584 
5 0.0016009 0.0015823 

as a function of the frequency. The parameters of g(x )  are 
KO = 1/40m-', 9 = 0.5 and E = 1. The exact solution is 
obtained by using double precision arithmetic. It yields 

2e,(x0, to) = 0.7528533138. 

The numerical solution is computed using a number of grid 
points, N=198 and a grid spacing DX=lOm. This 
sufficient sampling ensures that the error comes solely from 
the time-integration method. According to the theory, K 
should be greater than toR to obtain enough spectral 
accuracy. From equation (47) and Appendix A, where we 
compute the eigenvalues for the smallest relaxation times, 
we have that toR = 266.96 for this example. 

Table 2 illustrates the resolution properties of the scheme. 
The result for. K = 325 shows that, while the minimum value 
required to have an acceptable resolution (two digits) is 
Kmin = 280, increasing K by only 14 per cent is enough to 
match the analytical solution by up to 10 digits. 

6.2 2-D wave propagation 

The problem involves wave propagation in a 2-D 
homogeneous viscoacoustic medium. The calculations use a 
132 x 132 grid with a grid spacing DX = DZ = 20 m. The 
motion is initiated by a point force which is applied at the 
centre of the grid. The time history of the source is given by 
equation (B9) with 9 = 0.5, E = 1, to = 0.06 s andfo = 50 Hz. 
The relaxed modulus, denisty, and relaxation times (Table 
1) of the 1-D problem are also used here. They give an 

Table 2. Resolution properties. 

Analytical K Numerical Error 

0.7528533138 275 0.7832041480 <lo-' 
280 0.7589254561 <lo-' 
285 0.7533112375 <lo-' 
290 0.7527847257 
300 0.7528512004 
320 0.7528533138 <lo-" 

almost constant temporal quality factor Q, = 100 (see Fig. 
la), a typical value in the exploration seismic band. 

The analytical solution of the problem is obtained in 
Appendix B, where we calculate the 2-D viscoacoustic 
Green's function by using the correspondence principle. Fig. 
2(a-c) compares numerical and analytical time histories at 
stations located at distances of 200, 500 and 800m, 
respectively. As the figure shows, the comparison between 
numerical and analytical solutions is excellent. 

Figure 3(a-c) compares time histories at the same 
stations, between viscoacoustic and purely acoustic forward- 
modelling algorithms. As expected, at large distances the 
discrepancy between the solutions becomes pronounced. At 
the distance of 800 m (Fig. 3c), it can be appreciated clearly 
that the viscoacoustic pulse arrives earlier than the acoustic 
one. This is because the phase velocity in the viscoacoustic 
solid is greater than the acoustic or relaxed velocity for the 
whole frequency range (see Fig. lb). 

In virtue of the complete accuracy both in time and space 
for band-limited functions, it can be concluded that 
numerical dispersion is not present in this numerical 
algorithm. This is very important in anelastic wave 
propagation where the numerical dispersion can be taken as 
physical dispersion. 

7 CONCLUSIONS 

The paper has dealt with viscoacoustic wave propagation. 
The model used to simulate this propagation is based on the 

1 0  PO 30 l o  -0 

F R E Q U E N C Y  ( H Z 1  

Figure 1. (a) Temporal quality factor versus frequency. (b) Phase velocity versus frequency. The medium is defined by a relaxed modulus 
MR = 8 GPa, a density p = 2000 kg W 3 ,  and the five sets of relaxation times given in Table 1. 
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Figpre 2. Theoretical and numerical time histories at three stations 
located at distances of (a) 200m, (b) 500m and (c) 800m, 
respectively, from the source pit ion.  
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Figure 3. Time history comparison between the viscoacoustic and 
acoustic forward-modelling algorithms at three stations located at 
distances of (a) 200 m, (b) 500 m and (c) 800 m, respectively, from 
the source position. 
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linear solid material rheology. This rheology is the most 
general within the class of linear constitutive relations. In 
the case of wave propagation the model is able to fit 
experimental data, in particular the constant Q and linear 
dispersion relation which has often been observed in the 
laboratory (Wuenschel 1965), and field experiments (Liu et 
al. 1976). Moreover non-constant Q values can also fit the 
theory. 

For the study of viscoacoustic wave propagation a new 
formulation of the material rheology was introduced. This 
formulation is based on the introduction of memory 
variables, and is equivalent to the convolutional or 
differential formulations which are known in the literature. 
However, the memory variable approach seems more 
suitable for numerical calculations because it does require 
knowledge of the complete history of the material or the 
solution of high-order differential equations. 

The numerical implementation in this study was based on 
the approach introduced by Tal-Ezer (1986), in which the 
evolution operator is expanded in a Chebycheff polynomial 
series. Because this approach gives very accurate time 
integration the problem of numerical dispersion is therefore 
avoided. This is very important in viscoacoustic propagation 
where numerical dispersion could be confused with the real 
physical dispersion. The accuracy of the numerical 
simulations was verified in the comparisons with theoretical 
solutions obtained with the correspondence principle. 
Moreover, comparison between the viscoacoustic and 
acoustic wavefields illustrates the differences in a typical 
Earth material. The theory in this work can be extended to 
viscoelastic wave propagation. Possible applications include 
realistic simulations of wave propagation through the Earth 
and also in the field of material science. 
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APPENDIX A 

Eigenvalues of the propagation matrix M 

To simplify the procedure, one mechanism with relaxation 
times z, and rE is considered. A plane wave solution to 
equation (29) is assumed of the form 

where w is the complex angular frequency, k is the real 
wave-number vector and x is the position vector. 
Considerin'g constant material properties and a zero source 
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term, a substitution of (Al) in (29) yields 

where 

Equation (A2) is an eigenvalue equation for the eigenvalues 
A. = iw. 

The characteristic equation of (A2) is given by 

A2 re 0'0 
a3 +- + a- + - = 0, 

=a ra rL7 
with oo = c,k, and c, the relaxed wave velocity defined by 

lL2 
c , = [ $ ]  . 

For instance, for re = 0.0016009 s, ra = O.OO15823 s, 
c, = 2000 m s-l and k = n / D X ,  DX = 10 m, the Nyquist 
(maximum) wave number, the eigenvalues are I ,  = 
(-1.85 + 630.15i)/s, )c2 = A:, and A, = -628.30i/s. The 
first two eigenvalues correspond to propagating waves, and 
the third corresponds to a static mode that attenuates with 
time. When rE is close in value to ra(Q, >> l), it holds that 
1, = -l/ra approximately. 

APPENDIX B 

Calculation of the 2-D Green's $nction using the 
correspondence principle 

To find the Green's function G(x, z,  x,, z,, t )  for a 2-D 
acoustic medium, we solve the inhomogeneous scalar wave 
equation 

where x ,  z are the observer coordinates, x,, zo are the 
source coordinates, t is the time and c, is the acoustic-wave 
velocity of the medium. The solution to equation (B1) is 
given by (Morse & Feshbach 1953), 

G(x, Z ,  x O ,  z,, t )  = 2H 

with 

r = [(x - x , ) ~  + (z - zO)]ln, 033) 
and H is the Heaviside function. Taking Fourier transform 
with respect to time in equation (B2) gives 

m r2 -1n 

G(x, 2, x,, z,, 0)  = 2 llcn(t2 -2) e-'"'dt, 034) 

with o real. By making a change of variable t = c , ( t / r ) ,  
equation (B4) reads 

G ( x ,  z, x,, z,, 0)  = 2 (t /c,)rdr.  035) b 
This expression is merely the integral representation of the 
zero-order Hankel function of the second kind (Morse & 
Feshbach 1953): 

Using the correspondence principle, we replace the real 
wave number in equation (B6) by the complex wave 
number: 

where v ( o )  is the complex velocity of the medium given by 
equation (18). 

With the wave number defined by equation (B7) we 
express the 2-D viscoacoustic Green's function in w-space as 

for o S O  and 

G;(x, 2, xo ,  zo, w) = G:(x ,  z, x,, zo, -w) .  (B8b) 

Equation (B8) ensures that the Fourier transform of the 
viscoacoustic Green's function is real. 

Because the Hankel function in equation (B8) has a 
singularity at w = 0, we multiply G,,(x, z, no, z,, w )  by the 
Fourier transform of a shifted zero-phase Ricker wavelet 
defined by 

~ ( t )  = e-tlfa(r-ro)z cos EnfO(t - to), 039) 
where fo = 2nQ0 is the cut-off frequency, to is the time shift 
and q and E are constants. The Fourier transform of F(t )  is 

avoiding with this definition, the singularity (actually this is 
an approximation because stcctly is E(0) = 0). Because the 
inverse Fourier transform of @(r, o) has no exact analytical 
expression, we invert it numerically by using the discrete 
fast Fourier transform, obtaining the time function @(r, t ) .  


