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SUMMARY 
A new formulation for wave propagation in an anelastic medium is developed. The 
phenomenological theory of linear viscoelasticity provides the basis for describing the 
attenuation and dispersion of seismic waves. The concept of a spectrum of relaxation 
mechanisms represents a convenient description of the constitutive relation of linear 
viscoelastic solids; however, Boltzmann's superposition principle does not have a straightfor- 
ward implementation in time-domain wave propagation methods. This problem is avoided by 
the introduction of memory variables which circumvent the convolutional relation between 
stress and strain. 

The formulae governing wave propagation are recast as a first-order differential equation in 
time, in the vector represented by the displacements and memory variables. The problem is 
solved numerically and tested against. the solution of wave propagation in a homogeneous 
viscoelastic medium, obtained by using the correspondence principle. 
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1 INTRODUCTION 

Until recently, the interpretation of seismic data obtained 
from geophysical surveys has been based on comparatively 
simple representations of the earth structure. The existing 
algorithms that simulate the process of wave propagation 
are mainly based on the acoustic wave equation, which 
considers the medium to behave as an ideal fluid. This 
approximation does not account for all arrivals and does not 
predict wave amplitudes correctly. The next step in 
improving upon the acoustic assumption is the use of an 
isotropic elastic material to approximate the earth structure 
(e.g. Blake, Bond & Downie 1982; Kosloff, Reshef & 
Loewenthal 1984). This type of description yields better 
accuracy than the acoustic one for the determination of 
wave amplitudes and distinguishes between P- and S-waves. 

However, wave propagation in the Earth has always been 
known to be anelastic. Consequently, simulations which 
attempt at accurate amplitude reconstruction must be able 
to account for the effects of attenuation and dispersion. 
Moreover, the physical characteristics of the wave field that 
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propagates in anelastic media differ from those of elastic 
media. A simple model like a plane interface separating two 
different materials is enough to show that in the anelastic 
case several physical phenomena exist that are not 
encountered for elastic waves. 

Just to see the importance of considering the anelastic 
effects in seismic wave propagation, we show some of the 
differences between viscoelastic and elastic wave propaga- 
tion. Several authors (Lockett 1962; Cooper & Reiss 1966; 
Cooper 1967; Buchen 1971), and more recently Borcherdt 
(Borcherdt 1973, 1977, 1982; Borcherdt & Wenneberg 
1985), dedicated effort to the study of the physical 
characteristics of plane waves in anelastic media, and mainly 
to their behaviour on plane boundaries separating two linear 
viscoelastic materials. They found that a special type of 
wave, termed a generalized inhomogeneous wave, can be 
generated there. There is a distinct difference between the 
inhomogeneous wave of elastic media (interface waves) and 
that of viscoelastic media. In the former case the direction 
of attenuation is normal to the direction of propagation, 
whereas for inhomogeneous viscoelastic waves the angle 
between these two directions must be less than n/2. 
Furthermore, for viscoelastic inhomogeneous waves the 
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energy does not propagate normal to the wavefront and the 
particle motions are elliptical. The phase velocity is less than 
that of a corresponding homogeneous wave; critical angles 
do not exist in general, only under particular circumstances 
(special value of the angle between the directions of 
propagation and attenuation); and the phase velocity and 
attenuation depend on the angle of incidence. The latter 
physical property implies that the velocity and attributes of 
the wave field are raypath dependent. It was proved by 
Borcherdt (1982) that, in general, a wave travelling through 
a layered media has angular dependence of attenuation and 
dispersion, where the more oblique direction has more 
energy dissipation and lower velocity. 

This paper considers wave propagation simulation in a 
general heterogeneous anelastic medium within the 
framework of the theory of linear viscoelasticity, and 
represent a further step in improving upon the viscoacoustic 
description of wave propagation (Carcione, Kosloff & 
Kosloff 1988a,b). Growing evidence suggests a linear 
attenuation mechanism (with or without constant Q) for 
seismic strains and upper crustal conditions (Jones 1986). 
The phenomenological theory of linear viscoelasticity 
provides a general framework for such behaviour. 

The concept of a spectrum of relaxation mechanisms is 
used to define the constitutive relation (Liu, Anderson & 
Kanamori 1976). A wave propagating in a real material 
induces a non-instantaneous deformation, but not all of the 
energy can be recovered, as in the case of a purely elastic 
solid. Also, the energy that is not dissipated is delivered in a 
finite time. This relaxation time may be a consequence of 
many processes such as grain boundary relaxation, 
thermoelasticity, diffusional motion of dislocations and point 
defects, etc. The standard linear solid element explains 
these processes very well (Zener 1948). Some of them can 
be modelled with one mechanism and others using a 
spectrum of relaxation mechanisms. 

While the viscoacoustic constitutive relation can be 
expressed in a simple equation through the relation between 
the pressure and dilatation fields and one relaxation 
function, in the viscoelastic case two relaxation functions are 
needed which describe the dilatational and shear behaviour 
of the medium. The constitutive equations for the 
viscoelastic medium relates the traces and the deviatoric 
components of the stress and strain tensors corresponding to 
dilatational and shear deformations (respectively). 

As in the case of viscoacoustic wave propagation 
(Carcione et al. 1988a), Boltzmann’s superposition principle 
is implemented by the introduction of memory variables 
which circumvent the convolutional relation between the 
stress and strain tensors. The solution of the two- 
dimensional wave propagation problem implies the intro- 
duction of three memory variables, one for each dilatational 
relaxation mechanism and two for each shear relaxation 
mechanism, unlike the viscoacoustic problem where only 
one is needed for each mechanism. 

The new theory explains, within the framework of the 
most general linear relation between stress and strain, the 
correct changes in the phase and spectrum of the wave field. 
Any type of frequency-dependent complex modulus 
function can be incorporated. The theory includes, as 
special cases, linear models which describe elastic wave 
propagation through porous media (Murphy, Winkler & 

Kleimberg 1986; Biot 1956a,b; Burridge & Keller 1981; de 
la Cruz & Spanos 1986). 

The first section presents the constitutive relation of the 
linear viscoelastic medium. In the following two sections, 
the dilatational and shear relaxation functions are 
introduced, and the quality factor and phase and group 
velocities are calculated. Then the equation of motion is 
derived and solved by using a new pseudo-spectral time 
integration scheme based on the work of Tal-Ezer (1986), 
which was successfully applied to solve the viscoacoustic 
equations of motion (Carcione et al. 1988a). Finally, wave 
propagation simulation in a homogeneous 2-D medium is 
performed, and the numerical algorithm is tested against the 
analytical solution. This is based on a two-dimensional 
viscoelastic Green’s function which is derived from the 
correspondence principle. 

2 CONSTITUTIVE RELATIONS OF THE 
LINEAR VISCOELASTIC MEDIUM 

A realistic representation of the Earth may be achieved by 
combining the mechanical properties of elastic solids and of 
viscous fluids. In the resulting material the stress depends 
both on the strain and the rate of strain together, as well as 
higher time derivatives of the strain. Such a medium which 
combines solid-like and liquid-like behaviour is called 
viscoelastic. For an anisotropic linear viscoelastic material, 
the most general relation between the components of the 
stress tensor uij and the components of the strain tensor ck, 
is (Christensen 1982) 

where t is time, x is the position vector, and qz.kl is a 
fourth-order tensorial relaxation function. The dot above a 
variable represents a time derivative. The usual Cartesian 
tensor notation is employed, with the Latin indices i and j 
lying in the range 1, . . . , n, where n is the dimension of 
space. Repeated indices imply summation. The time 
convolution of two functions f( t )  and g ( t )  is expressed by 

m 

f(t) * A t )  = I f(t)g(t - t) d t ,  
-m 

and the definition 

is used, where H ( t )  denotes the Heaviside function. 
Equation (1) is the formulation of Boltzmann’s superposi- 
tion principle, in which the current stress is determined by 
the superposition of the responses at previous times. The 
material is considered to have a memory because the current 
stress depends on the full strain history. 

The most general isotropic fourth-order tensor is given by 
(e.g. Christensen 1982) 

q ; k / ( t )  
1 
n 

=- [qt(t) - q; ( t )16 i j6k l  + f [ q ; ( t ) l ( s i k 6 j l  + 6 i I 6 j k ) ,  (2) 

where Vf(t) and q;(t) are relaxation functions and 6, is the 
Kronecker delta. Substituting (2) into (1) gives 

(3) 
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and 

are the deviatoric components of the stress and strain 
tensors, respectively. Hereafter, v = 1 defines variables 
related to states of dilatation, and v = 2 defines variables 
related to states of deviatoric deformation. From (3) we 
obtain the relation 

T k = V t * E i = E G * V ' , ,  v = l , 2 .  (6) 
We conclude, from (4) and (6), that V i ( t )  and V;(r) 
correspond to the relaxation function characteristics of the 
states of dilatation and shear, respectively. Equation (6) 
represents the convolutional form of the constitutive 
relation for the linear isotropic viscoelastic medium. 

3 RELAXATION FUNCTIONS 

Another way to establish the constitutive relation involves 
differential operators (Christensen 1982): 

(7) 

where c;, and d ;  are coefficients related to the material 
properties of the medium, subjected to the following 
constraints on the initial conditions: 
mv my c c:Tk('-"(O) = 2 d:EG(r-k)(0), (8) 

r = k  r = k  

with Ti(' -k)(0)  and EG(r-k)(0) indicating the ( r  - k)-order 
derivative of the stress and strain tensor components 
evaluated at t =O.  In the Laplace-transform domain the 
stress and strain components are related by a rational 
function as can easily be seen from equation (7). 
Decomposing this rational function in partial fractions and 
going back to the time domain, we obtain an explicit form 
for the relaxation functions V,,(t) (Fung 1965). These can be 
expressed as (Liu et 01 1976), 

(9) 

where t L f ( x )  and t : , (x ) ,  denote material relaxation times for 
the Ith mechanism, L, is the number of relaxation 
mechanisms, M,(x) is the elastic or relaxed modulus of the 
medium, corresponding to dilatational ( v  = 1) or shear 
(v  = 2) behaviour of the medium. 

The constitutive relation (6) is analogous to the purely 
elastic relation when viewed in the frequency domain. Then, 
the stress transform is merely a multiplication of the time 

Fourier transforms of the strain field and the time derivative 
of the relaxation function, respectively. The latter quantity 
is identified as the complex modulus, which is calculated in 
Appendix A together with the complex Lam6 constants, 
velocities*and wavenumbers. 

Basically, the relaxation functions given by (9) represent 
L, numbers of standard linear elements connected in 
parallel for each deformation state (dilatational and shear), 
and also include as special cases the Maxwell and 
Kelvin-Voigt behaviour of the material. 

4 QUALITY FACTORS A N D  VELOCITY 
DISPERSION FOR THE VISCOELASTIC 
SOLID 

To calculate the quality factors and phase velocity of the 
linear viscoelastic medium, we first review some of the main 
concepts of general viscoelasticity (see Buchen 1971, and 
Borcherdt 1973). Using the same notation as Buchen, we 
define the complex quantities 

sZ,(w) = e+ isz, = kt ,  v = 1,2, (10) 

where k, is defined by (A28) and e and d, are real 
numbers. Let 

4. = 4 - ia,,, (11) 

with 4 and a,, real vectors, indicating the direction and 
magnitude of propagation and attenuation, respectively. 
From (11) and (A28) we obtain 

ox 
v: K', - a:-2i~,, - a,, = k2  =-. 

Because V, is a complex quantity, K,, - a,, must be different 
from zero for a viscoelastic medium. Only for the elastic 
case, in which the velocity is real, can the angle between the 
direction of propagation and attenuation be equal to n/2; 
this is the case of interface inhomogeneous waves. If we call 
y, the angle between K,, and a,,, it must hold that 
0 5 y, < n /2  for a general viscoelastic wave [if y, = n/2, 
from (10) and (12), - 2 4  * a,, = @, = 0, which is the elastic 
case, see also Buchen (1971)J. This means that the 
amplitude of the wave does not increase in the direction of 
propagation and, from (10) and (12), that Q,<O. This 
condition can be deduced from (A6), (A28) and (10) if we 
consider that the dissipation of energy by a travelling wave 
implies that the imaginary part of M: must be greater than 
zero (Flugge 1960, p. 58). 

From equations (10) and (11) we have 

and 

Without loss of generality, we consider the x,-axis 
perpendicular to the plane formed by the vectors and a,,. 
Then the phase of the plane wave is independent of the 
variable x,. We consider now a viscoelastic plane wave for 
the potential field: 

+ '=+~exp( i (wt-k , , -x)} ,  (15) 
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where 40’ is a constant complex quantity, and the condition 

v . e2#(2) = o (16) 

must hold because $ ( 2 )  is a purely rotational field. e2 is the 
unit vector in the x2 direction. Defining the vector 

vv = k , & i  + (ezXk2)&2, (17) 

where ‘X ’  denotes vectorial product, the displacement field 
is then obtained by using the Helmholtz decomposition 
theorem, 

Substitution of (11) into (15) yields 

4”= 4 iexp  (-4. * x} exp {i(wt - 4 x)} (19) 

Alternatively, we can express (19) as 

4, = +gexp { - a ; ( x ,  sin By + x j  cos B,)} 
x exp {iwt - iK,(xl sin 6, + x3 cos O,)}, (20) 

where 6, and 6, are the angles between the direction of 
propagation and the direction of attenuation with the 
x,-axis, respectively. Let us introduce the angle 

Y,  = 6, - B v  (21) 

The wave defined by (20) is called an inhomogeneous or 
general plane wave since, as y, is different from zero, the 
amplitude along the wavefront is variable. These kinds of 
waves are necessary to describe the reflection and refraction 
of viscoelastic waves in stratified media. In the special case 
y, = 0, the waves are called homogeneous or simple plane 
waves; in this case, the amplitude is constant along the 
wavefront. 

From (19) we identify the real phase velocity c,(w) of the 
viscoelastic plane wave 

(22) 
s c,(w) = w - ,  
K: 

where K,,(o) is defined by (13). To describe the energy loss 
of a wave travelling through the medium, we use the 
definition of the quality factor given by Borcherdt (1973); 
that is, the ratio of the peak energy density stored per cycle 
of forced oscillation to the loss in energy density during the 
cycle. Borcherdt derived expressions for the dissipated and 
stored energy densities from an explicit energy conservation 
relation, valid for an arbitrary steady-state viscoelastic 
radiation field. The energy loss per cycle is given by 

AE, = 2n exp { -2% - x} 

x w24 * a, + 2Pf Is x Ccl’l. (23) 

The peak energy density stored per cycle is the maximum 
value of the potential energy density, and is expressed by 

P? = f 140’1’ exp { -2% * x} 

x [pW2(K: - m:) + 2pR 14 x 4.1”. (24) 

Then the quality factor is 

where p R  and p’ are the real and imaginary parts of p. As 
can be seen from (25), the quality factor for inhomogeneous 
viscoelastic waves is not an intrinsic property of the medium 
because of its dependence on the angle between the 
direction of propagation and the direction of attenuation. 
For homogeneous waves 4 X a, = 0 and, by (10) and (12), 
the expression (25) takes the simple form 

nR 
@,’ (26) Q =-? 

which can be expressed in terms of the dilatational and 
shear complex moduli. From (10) and (26) the quality factor 
can be written as 

Replacing equation (A20a) in (27) results in 

Re (V;’) Re (V2,’) Re (V:) 
Im(v;’) Im(V2,’) Im(Vt ) ’  

-- - Q = -  

Finally, substituting equations (A20a) and (A20b) in (28) 
and using (A7) and (AS), we obtain 

Re [Mf + (n - 1)M;I 
= Im (Mf + (n - 1)M$] 

for P-waves and 

for S-waves. 

same way as the previous ones. This yields 
The quality factor in bulk Qk is obtained from (A9) in the 

The homogeneous phase velocities are given by (22) 
considering that for y, = 0 in (12) it holds that K ,  = Re [ k , ] .  
Replacing (A20a) and (A20b) in (A28), the homogeneous 
phase velocities are expressed in terms of the complex 
moduli as 

c1 = Re-’ 

and 

c2=Re-’ [($z)’”], 
with E given by (A22). At zero frequency (32a) and (32b) 
become the elastic velocities given by (A25a) and (A25b). 
Having the phase velocities, the group velocities of the wave 
field are obtained as the derivative of the frequency with 
respect to the real wavenumber, K, = w/c,(w) ,  

(33) 

Replacing the phase velocities in equation (33) we obtain 
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for P-waves and and 

for S-waves. The derivatives in (34a) and (34b) are given by 

-- d M ; ( w )  - M, 2 Ff rut ) 
When tuf = tEf or at the zero-frequency limit, the phase and 
group velocities are constant and equal to the relaxed or L z  i ( p )  - (2 )  

d o  1 = 1 ( 1 +  iotgy elastic velocities. 

5 

The description of wave propagation in a general medium is based on the equation of momentum conservation combined with 
the constitutive relations, which contain complete information about the rheology of the material. However, implementation of 
Boltzmann's superposition principle in the time domain is not straightforward because of the presence of convolutional kernels 
in the stress-strain relation (3). Consequently, in this section the rheological relations are reformulated to yield a more 
convenient description. 

EQUATIONS OF MOTION A N D  MEMORY VARIABLES 

In an n-dimensional continuous medium, the linearized equation of momentum conservation is given by 

pii(x, t )  = v - q x ,  t )  + f(x, t ) ,  (35) 

where u(x, t )  is the displacement field, P(x, t )  is the stress tensor, f(x, t) represents the body forces, p(x)  is the density and 
'V .' is the divergence operator. 

As in the viscoacoustic case (Carcione et al. 1988a) we will now see that by the introduction of memory variables, the 
convolutional integral in the constitutive relation (3) can be avoided. This equation can also be expressed as 

Performing the time derivatives in (36), and using (9), yields 

where 

M , = ~ : ( O ) = M , [ I -  c L" (1-s)] tv 

I = 1  0, 

is the unrelaxed modulus and 
L" 

I=1 
@ V W  = iv(4 = c 4Vl( f )  

is called the response function of the medium, with 

We now define the memory variables 

(38) 

(39) 

eijl = 4;, * E$, I = 1, . . . , L, (42) 
Because the strain tensor is symmetric and considering that eiil = 0, the number of independent memory variables for the 
n-dimensional viscoelastic solid is one for each relaxation mechanism corresponding to states of dilatational deformation and 
ls = [n(n + 1)/2] - 1 for each relaxation mechanism corresponding to states of shear deformation. The total number of memory 
variables for L,  dilatational mechanisms and L, shear mechanisms is then rn = L, + lsL2. Replacing the memory variables in 
(37) we obtain 

Taking derivatives with respect to time in (41) and (42) gives 
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0 -  
D"" 
0 
0 
0 

0 

T" ~ 

and 

(Ub) 
e.. ( t )  

e,, = E;(f)+; , (O) - * , 1 = 1, . . . , L, 
01 

Equations (35), (43), (Ma) and (44b) fully describe the response of the viscoelastic solid and will be the basis for the numerical 
solution algorithm. After substitution of (43) in (35), considering the definition of the strain tensor as a function of the 
displacement field (Aki & Richards 1981, p. 13) and using (44a) and (44b), we obtain a first-order differential equation in time, 

U=MU+F, (45) 

where M is a spatial operator matrix of dimension M = 2n + m given by 

n 
n 
Ll 
L2 

L2 
M =  

L2 

L2 

with 

n 
0 

D" 
R 

R' ' 
RI2 

R" 

R"" 

0 0 TI' 0 - * .  0 ... 
0 0 0 TI2 . . .  0 . . .  
. .  . . .  . . .  . 
0 0  0 0 . . .  p . . .  

0 0 0 0 . . .  0 . . .  
. .  . . .  . . .  . 

wherek , l= l ,  . . . ,  n , s , t = l ,  . . . ,  L , , r , v = l ,  . . . ,  L2,and 

and 

(48) 

(49) 

are the unrelaxed Lam6 constants of the n-dimensional solid, with Mu, and Mu, defined by equation (38). 
The vector U is given by 

uT = [u, u, (el,, 1 = 1, . . . , Ll), (eij,, I = 1, . . . , L2)J, 

FT = [O, f l p ,  0,OI. 

(50) 

(51) 

and the body force vector is expressed by 

Equation (45) represents the equation of motion governing the viscoelastic response of the medium. It correctly describes the 
anelastic effects observed in wave propagation, namely attenuation and dispersion, within the framework of the linear response 
theory. The model can describe wave propagation through any kind of linear viscoelastic material, for example porous rocks 
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(waves of the first kind can be approximated by standard linear solid rheology (Geertsma & Smit, 1961)), provided the 
complex moduli of the porous media are given as a function of frequency. By fitting the observed to the viscoelastic complex 
moduli given by equation (A6), the corresponding relaxation times and relaxed moduli can be obtained for any frequency 
range. 

Storage requirements increase with the number of memory variables, i.e. with the number of relaxation mechanisms. 
Depending on the accuracy required, constant-Q materials in the seismic exploration band (say between 5 and 100 Hz) can be 
obtained by using two or more sets of relaxation times for each mode. Besides the curve-fitting procedure, which is used in this 
work, optimal relaxation times can be obtained using the Pad6 approximant method derived by Day & Minster (1984). 

For the spatial derivative operators in equation (45) we use the Fourier pseudo-spectral method (Kosloff & Baysal, 1982), 
which consists of a discretization of space and calculation of spatial derivatives using the Fast Fourier Transform (FFT). 

The propagation in time is done by a new pseudo-spectral time integration technique (Tal-Ezer 1986). A detailed 
description can also be found in Carcione et af. (1988a), where a modification was introduced to apply the method to the 
viscoacoustic equation of motion. The same considerations on convergence, resolution and stability given in that paper apply 
here, because the method is completely general for equations of the type given in (45). In virtue of the complete accuracy both 
in time and space for band-limited functions, it can be concluded that numerical dispersion is not present in this numerical 
algorithm. This is very important in anelastic wave propagation, where numerical dispersion can be confused as physical 
dispersion. 

6 2-D W A V E  PROPAGATION unrelaxed constants A, and E, approach the relaxed or 
elastic ones (see (A24) and (38)), and the memory variables 
are identically zero (this can be deduced from (40), (41) and For the 2-D it can be Seen from (41) and (42) that three 

sets of independent memory variables are obtained. These 
are given by (42)). 

e l ,  = @f,* ( e l l  + E , , ) ,  

e l l /  = -e2,, = $ @ ~ , * ( c I l  - e2,), 

and 

1 = 1, . . . , Ll 

f = 1, . . . , L, (52b) 

elZl = @;,* eI2, I = 1, . . . , L,. (52c) 

The equations of motion can be obtained from (45) with 
n = 2, to yield 

Lz dU du 1 Li  

P $ = q  d2U [ E,- dx,+A,--'+-c ax ,  2/=1 e l ,+  I =  c I e,,,] 

d 

and 

where E, is given by 

E, = A, + 2p,. (54) 

To complete the scheme we need the equivalent expressions 
to equations (44a) and (44b), which are 

and 

e,,, = - -+ el,, - 1 @:,(o)[ - au1 + ""1. 
r!' 2 ax,  ax, 

The equations of motion for an isotropic elastic solid are a 
special case of (53a) and (53b). In the limit t:,= t:,, the 

6.1 Wave propagation in a homogeneous medium 

The example that we choose involves wave propagation in a 
two-dimensional viscoelastic medium, which may represent 
a near-surface unconsolidated material or a strongly 
anelastic porous rock. The calculation uses a 99 x 99 grid 
with a grid spacing DX = DZ = 20m. The motion is 
initiated by a vertical force located in the centre of the 
homogeneous region. For the directional force we use the 
source time history defined by (B6) with q = 0.5, E = 1, 
f, = 0.06 s and a cutoff frequency fo = 50 Hz. The material is 
defined by the relaxed moduli, denisty and relaxation times 
given in Table 1, which yield the relaxed or elastic velocities 
v ,  = 3000 and v2 = 2000 m s-', and the unrelaxed velocities 
V,, = 3190 and VU2 = 2175 m s-I; therefore, we expect 
considerable velocity dispersion. 

Fig. 1 shows the P-wave, S-wave and bulk quality factors, 
for the material defined in Table 1. The dashed line in Fig. 1 
indicates the amplitude spectrum of the source. It is clear 
that the relaxation times give almost constant-Q values in 
the source frequency band, with the shear mode attenuating 
more than the dilatational mode. Fig. 2(a) and (b) shows the 
phase and group velocity dispersion for the P- and S-waves, 
respectively. As mentioned previously, the velocity disper- 
sion is strong, ranging from the relaxed velocities 
(low-frequency limit) to the unrelaxed velocities (high- 
frequency limit). The shear mode presents more dispersion, 
as a consequence of the lower Q value, than for the 
dilatational mode. This fact can also be deduced from the 
Kramers-Kronig dispersion relations which are completely 
valid for linear viscoelastic solids. Ben-Menahem & Singh 
(1981, p. 892) used these relations to show that for a 
constant-Q solid the quality factor is inversely proportional 
to the phase velocity. 

Figures 3 and 5 (elastic), and 4 and 6 (viscoelastic) dis- 
play the u ,  component (a) and u2 component (b) for two 
different times. At t = 0.22 s the S-wave (inner wavefront) in 
the viscoelastic snapshot still appears stronger than the 
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Table 1. Material properties. 

M, M2 density I r?,) 

20 16 2000 1 0.0325305 0.031 1465 0.0332577 0.0304655 
2 0.0032530 0.0031146 0.0033257 0.0030465 

t ( l )  p )  p 
(GPa) (GPa) (kgm ’) (s) (3 csil ($ 

2 0 .  .0. - 0 .  

F R E Q U E N C Y  ( H Z 1  ~~ ~ 

Figure 1. P-wave, S-wave and bulk quality factors versus frequency 
for the medium defined in Table I .  The dashed line represents the 
amplitude spectrum of the source. 

P-wave, but at t = 0 . 3 2 s  the amplitudes are  almost 
comparable, due to the higher attenuation acting on  the 
shear mode. Comparison between the elastic and viscoelas- 
tic wavefronts reveals the strong wave attenuation at 
relatively small propagation time. 

Fig 7(a) and 7(b) shows the comparison between the 
elastic and viscoelastic time histories a t  station 1 of Table 2. 
The coordinates indicate horizontal and vertical distances 
from the source position. Several physical effects can be 
observed. First, the viscoelastic wave field arrives earlier 
than the elastic one. This is a consequence of the velocity 

dispersion curves in which the elastic or  non-dispersive 
behaviour is defined at  zero frequency. Second, the shear 
mode is relatively faster than the dilatational mode; another 
consequence of the velocity dispersion function. Finally, as 
was mentioned above, the amplitudes of the shear and 
dilatational modes are comparable, in contrast to  the elastic 
wave field where the S-wave has more amplitude (see also 
Figs 5 and 6). 

The analytical solution of the problem is obtained 
in Appendix B. The approximations carried out to 
obtain the viscoelastic wave field, i.e. considering 
&(r,  0) = &(r, 0) = 0, and the numerical inverse Fourier 
transform, can be tested in order t o  ensure that the solution 
is exact up to  a given number of digits. The evaluation is 
performed in the elastic case, where the exact solution is 
obtained as a convolution of the time-domain Green’s 
function with the source time history. Comparing the 
solution obtained through the frequency domain versus the 
time convolution for the P-wave peak amplitude gives an 
accuracy of at least four digits provided that a long operator 
is used for the inverse Fourier transform (at least 4000 
points). Greater accuracy can be  obtained by using double 
precision arithmetic. 

Figures 8-1 1 compare numerical and analytical time histor- 
ies at the stations indicated in Table 2; (a) u ,  components, and 
(b) u2 components. The time histories are normalized with 
respect to  the maximum peak amplitude recorded at station 
3. The u 1  components of the wave field are zero at stations 2 
and 3 (as evidenced by insignificant numbers in the 
numerical results), in agreement with equation (Bla) .  As 
the figures show, the comparison is excellent, with the shear 
and dilatationai modes having the correct polarities at the 

Figure 2. Phase and group velocities for the medium defined in Table 1. (a) P-wave. (b) S-wave. 
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Figure 3. Elastic u ,  component (a) and u2 component (b) at f = 0.22s due to a vertical force in the homogeneous medium defined in Table 1. 
The S-wave amplitude (inner wavefront) is stronger than the P-wave amplitude (outer wavefront). 

four stations. The deviations at long observation times are 
due to the approximations used to display the analytical 
results. The wave field presents similar characteristics to the 
elastic case. Due to symmetry considerations, the u1 
component should show antisymmetric behaviour across 
z = O ,  and the u2 component should show symmetric 
behaviour across the same line. These effects can be 
appreciated at stations 1 and 4, where u1 undergoes a 
polarity change, and u2 keeps the same sign at both sides of 
z = 0. Moreover, because station 2 lies in the direction of 

the force, the recorded wave field is mainly compressional. 
Conversely, station 3 records a shear behaviour. 

CONCLUSIONS 

We have presented a model for wave propagation 
simulation in a general heterogeneous anelastic medium 
within the framework of the theory of linear viscoelasticity. 
The formulation of the model is based on the introduction 
of memory variables and is a more suitable approach for the 

Figure 4. Viscoelastic u ,  component (a) and u2 component (b) at f = 0.22 s due to a vertical force in the homogeneous medium defined in 
Table 1. The S-wave (inner wavefront) still appears stronger than the P-wave (outer wavefront). 
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Figure 5. Elastic u ,  component (a) and u2 component (b) at 1 = 0.32 s due to a vertical force in the homogeneous medium defined in Table 1. 
The S-wave amplitude (inner wavefront) remains, as expected, stronger than the P-wave amplitude (outer wavefront). 

treatment of the convolutional form of Boltzmann’s 
superposition principle in the time domain. The constitutive 
relation is based on a spectrum of multiple relaxation 
mechanisms; a model which can explain the anelastic effects 
caused by any linear relaxation phenomena, particularly 
those which affect wave propagation in porous media. 

The equations of motion are solved using the same 
approach applied to the viscoacoustic equations of motion 
(Carcione ef al. 1987a). The method is very accurate, 
therefore the problem of numerical dispersion is avoided. 

This is very important in anelastic wave propagation where 
numerical dispersion could be confused with real physical 
dispersion. 

The validity of the theory is not restricted to any 
particular choice of the parameters (relaxed moduli, density 
and relaxation times). The examples shown in this work 
belong to the seismic exploration band, but problems in 
other frequency ranges, i.e. in the fields of global 
seismology, acoustic logging and material science for 
instance, can be solved with the same effectiveness. 

*re 6. Viscoelastic u,  component (a) and u2 component (b) at I = 0.32 s due to a vertical force in the homogeneous medium defined in 
Table 1. S- and P-wave amplitudes (inner and outer wavefronts, respectively) are almost comparable, due to the higher attenuation acting on 
the shear mode. 
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Figure 7. Time history comparison between the u ,  components (a) and u2 components (b) of the viscoelastic and elastic simulations at station 
1 of Table 2. The medium is defined in Table 1. Important differences in amplitudes and arrival times can be appreciated. 

Possible limitations are concerned with the numerical 
method used to solve equation (45). The pseudo-spectral 
method implemented here was originally designed to solve 
the elastic equation of motion and, although accurate, it is 
not very effective in terms of computer time. To overcome 
this problem, a new algorithm is being developed which will 
reduce the computer time to the same levels of the elastic 
case (Tal-Ezer et al., 1988). 

Wave propagation simulation in a 2-D homogeneous 
strongly anelastic medium has been performed. Com- 
parisons between elastic and viscoelastic simulations show 
important differences in the amplitudes of the wave field and 
in the arrival times. The accuracy of the numerical algorithm 
is verified in comparisons with the theoretical solution based 
on a 2-D viscoelastic Green's function. 

Table 2. Horizontal and vertical 
distances from the source position at 
4 stations. 

1 500 500 
2 0 500 
3 500 0 
4 -500 500 
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component (b) time histories at station 1 of Table 2, for the 
homogeneous medium defined in Table 1. 
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Table 1. 
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Figure 11. Theoretical and numerical u ,  component (a) and u2 
component (b) time histories at station 4 of Table 2, for the 
homogeneous medium defined in Table 1. 
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APPENDIX A: COMPLEX MODULI ,  LAME 
CONSTANTS, VELOCITIES A N D  
WAVENUMBER FOR THE VISCOELASTIC 
MEDIUM 

Applying the convolutional theorem to equation (6), the 
rheological relation in the frequency domain takes the form 

fG( w )  = E;( w)F[ &(t) ] ,  ( A l l  

where w is the angular frequency, the tilde means time 
Fourier transform and the operator F performs the time 
Fourier transform. From (A l )  we identify the dilatational 
and shear complex moduli of the medium as 

M: = F[ &,(t)]. (A21 

Using the derivative of V:(t) defined by (9), equation (A2) 
can be expressed as 

where 6( t )  is Dirac's function, and A,, is given by 

Taking the Fourier transform we find that 
m L" 

M : ( w )  = W J O )  + A,, I exp [ - (iw + l ) t }  dt. (AS) 
I =1  0 G, 

Performing the integration we obtain, after some calcula- 
tion, the complex moduli 

We define the complex LamC constants as 

1 
n A( W )  = - [ M f (  W )  - MF( w ) ]  ('47) 

and 

p ( w )  = fM,"(w). 

The complex bulk modulus of the medium is then 

2 1 
n n 

k ( w )  = A ( o )  + - p ( w )  = - M f ( w ) .  

We will now see that these complex LamC constants play an 
analogous role here to that in the elastic case concerning the 
dynamic behaviour of the medium. 

The equation of motion of the viscoelastic medium 
without body forces in the w-domain is (Borcherdt 1977), 

ejj i j (w) + W 2 P f i j ( W )  = 0, (A10) 

where f i j (x ,  w )  are the components of the displacement 
vector, p(x )  is the density and the notation aij,, = aGjj/ax, is 
used. 

Applying the convolutional theorem to equation (3) 
implies that 

1 
n 

eij = Zkkbjj- F[(& - $91 + CiJF[l&]. 

Substituting (A2) with v = 1, 2 into ( A l l )  gives 

1 
n 6,, = - [ M f  - MF]6,Jckk + MFC,,, ( A W  

or, in terms of the complex LamC constants defined by (A7) 
and (A8), 

61, = A6,ckk  + ~ ~ C I J .  (A13) 

We can see the complete analogy with the elastic case, in 
agreement with the correspondence principle which 
establishes that the solution for a dynamic problem in a 
viscoelastic medium can be obtained by replacing the elastic 
constants by the corresponding viscoelastic complex moduli 
in the frequency domain (Bland 1960, p. 96). 

Let us consider a viscoelastic plane wave of the form 

u,(t) = U, exp {i(w,t - k - x)}, ('414) 

where U,, i = 1,. . . , n are complex constants, k is the 
complex wavenumber vector and w0 is the angular 
frequency. Fourier transforming (A14) gives 

n1(w)=2nU,6(w- w,)exp{-ik-x}. (A15) 

Considering the definition of the strain tensor as a function 
of the displacement field (Aki & Richards 1981, p. 13) and 
replacing (A15) into (A13) results in 

el, = - 2 i n 6 ( ~  - w,)[Ak,U$,, + p(U,k, + q k , ) ]  

xexp { - k k - x } .  ('416) 
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Taking the divergence of (A16) and replacing it in (AlO), 
implies that 

[(A + p)kik,  + pbi[kjkj - p ~ ~ b ~ ~ ] U ,  = 0. (A171 
If we take U, = U,k,, then 

and t v I + O  (Ben-Menahem & Singh 1981, p. 856). This is 
equivalent to w - 0 ,  as can be seen from equation (A6); 
hence, the relaxed and elastic moduli coincide. In practice, 
however, we do not need to restrict the representation of 
real materials to mechanical models, therefore we can 
choose the acoustic or ‘non-dispersive’ behaviour in the 
high-frequency limit. This is the case discussed by 
Ben-Mehahem & Singh (1981, p. 873). 

When w+O, it is equivalent to take the limit re,,-, rUl. 
We obtain 

This defines the dilatational viscoelastic wave, where k, is 
the P-wavenumber. Letting U,K,=O results in the shear 
viscoelastic wave for which 1R 

v, -+ ul  = (;) (A25a) 

and 
with k, the S-wavenumber. From (AM) and (A19) we can 
define the complex P- and S-velocities: 

v*-v2=(zp )  M2 ‘I2 7 

(A25 b) 

(A20a) the relaxed or elastic wave velocities of the medium, where 

E, = 

is the relaxed value of E. The relaxed moduli M, and Mi are 
expressed as functions of the elastic wave velocities as 

(A26) 
M, + (n - 1)M, 

n 
and 

(A20b) 

where pu  means that we have to take the principal value of 
the square root, i.e., the solution with a positive real part. 
Replacing (A7) and (A8) in (A20a) and (A20b), we obtain 
the complex velocities in terms of the complex moduli: 

v, = ( ; ) ‘ I 2  (A21a) 

and 

M, = p(nu: - 2(n - 1)uf) 

M, = 2puf. 

(A27a) 

(A27b) 

The complex wavenumber is 

(A21b) 
APPENDIX B: CALCULATION OF THE 

CORRESPONDENCE PRINCIPLE 

The solution of the wave field propagation generated by an 
impulsive point force in an elastic medium is given by 
Eason, Fulton & Sneddon (1956) and Pilant (1979, p. 59). 
For an impulsive force acting in the positive x 2  direction, 
this solution can be expressed as 

2-D GREEN’S FUNCTION USING THE where 

E =  

As w + m, we have 

MF + (n - 1)Mg 
n 

112 

vl+ v,, = ($) (A23a) 

and 

(A23b) 
and 

the unrelaxed wave velocities, Eu being the unrelaxed value 
of E, F 1  

2np r2 
u2(r, t )  = - . - [xfG,(r,  t )  - x ; ~ , ( r ,  t ) ] ,  

where F is a constant which gives the magnitude of the 
force, r = (x:  + xf)”’ and with Mu, and Mu, given by (38). 

Real materials behave elastically at both very low and 
very high frequencies. The relaxation functions (9), which 
are based on general standard linear solid rheology, describe 
correctly this behaviour (Liu et al. 1976). In this work we 
choose the elastic behaviour in the low-frequency limit. For 
a standard linear solid mechanical model the elastic limit is 
reached when the dashpot is eliminated; that implies tel+ 0 

1 1 
+ 7 ( t2 - t : ) lnH(t  - t l )  - r (t2 - t f ) ’nH(t  - t2) 
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and 

Gz(r, t )  = - 1 2  (t - t$)-lnH(t - t2) 
u2 
1 1 + 7 (t2 - t y H ( t  - tl) - 1 ( t 2  - tZ)'"H(t - t2), r r 

where t,, = r/u,, v = 1,2, with u, and u2 the compressional 
and shear elastic wave velocities, and H represents the 
Heaviside function. In order to apply the correspondence 
principle we must take a time Fourier transform of (B2a), 
(B2b), and replace the elastic Lame constants by the 
corresponding viscoelastic Lame constants given by (A7) 
and (A8). This is equivalent to replacing the elastic wave 
velocities u1 and uz by the complex velocities given by 
(A20a) and (A20b). 

Using the transform pairs of the zero- and first-order 
Hankel functions of the second kind, 

we obtain the time Fourier transform of the wave field: 

4 ( r ,  w, u l ,  u2) 

and 

where 

and 

Using the correspondence principle we replace the elastic 
wave velocities in (B3a) and (B3b) by the viscoelastic 
velocities given by (A20a) and (A20b). The two-dimensional 
viscoelastic Green's function in w-space can be expressed as 

The definitions of (BSa) and (B5b) ensure that the time 
Fourier transform of the viscoelastic Green's function is 
real. Because the Hankel functions in (B5a) and (B5b) have 
singularities at w = 0, we multiply the viscoelastic Green's 
function by the time Fourier transform of a shifted 
zero-phase Ricker wavelet defined by 

~ ( t )  = exp {-&(I - t ; ) }  cos ellfo(t - to),  (B6) 
with fo = 2nQ0 the cutoff frequency, to is the time shift and 

and E are constants. The Fourier transform of F ( t )  is 

1 
~ ( w )  = n (:) - exp {iwto> 

QO 

Multiplying the transformed Green's function (Bsa), (B5b) 
by P ( w )  we obtain 

avoiding, with this definition, the singularities (actually, this 
is an approximation because strictly P(0) # 0). Because the 
inverse Fourier transforms of a1(rr w )  and a2(r ,  w )  do not 
have exact analytical expressions, we invert them numeri- 
cally by using the discrete Fast Fourier Transform. 


