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SUMMARY
A new formulation for wave-propagation simulation in a transversely isotropic

material is presented. A pseudospectral time-integration technique to solve the
equation of motion is used, where the propagation is done by a direct expansion of
the evolution operator by a Chebycheff polynomial series. Examples of wave
propagation in different homogeneous materials and comparison with analytical
solutions in the symmetry axis, show that the new method is highly accurate. The
present numerical simulation can be very important in determining the solution of
elastodynamic problems when the analytical solutions are either very complicated or
unknown.

1. Introduction

THE problem of wave propagation through anisotropic solids has been
extensively studied by many researchers (see, for example, Musgrave (1) and
Payton (2)), but exact analytical solutions of the wave field are very difficult
to obtain, even in the most simple cases. The equations of motion for solids
of low symmetry are extremely complicated. The velocity and wave-front
curves have only been determinated in detail for hexagonal ^nd cubic
materials. The simplest is the hexagonal system which belongs to the class of
transversely isotropic solids, due to the circular symmetry around the
hexagonal axis. For this type of anisotropy exact analytical solutions of the
wave field have been calculated for homogeneous media only along the
symmetry axis (3), and for the surface wave-motion problem of a point-
loaded half-space (4) (Lamb's problem).

As mentioned before the type of transversely isotropic materials includes
hexagonal crystals and also may be a very good representation of the earth's
structure. The real earth is generally stratified with elastic properties and
density which vary stepwise with increasing depth. If the dominant
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320 J. M. CARCIONE ET AL.

wavelength of the wave field is long enough compared to the dimensions of
these varying strata, an averaging effect takes place which leads to
transverse isotropy. In the first case measurements of ultrasonic wave
propagation are performed in order to determine the elasticities of crystals,
and in the latter case information about the lithology of formations is
extracted through the inversion of the seismograms.

Wave-propagation simulation has been advancing considerably in recent
years (see, for example, Aboudi (5)). With the progress in new methods and
new computer technology, it has become possible to solve the governing
wave equation with a high degree of precision. This combined with
significant advances in data quality suggests a strong need to develop an
accurate algorithm for wave-propagation calculations in anisotropic media.

This paper considers two-dimensional wave propagation through a general
heterogeneous transversely isotropic medium. To solve the equation of
motion, a new time-integration technique is used. The method is very
accurate and yet involves the same amount of computational effort as
second-order finite differences in time. This new pseudospectral numerical
scheme (6) has already been successfully applied to solving the acoustic (7)
and SchrOdinger (8) wave equations, and to the viscoacoustic (9) and
viscoelastic (10) equations of motion.

The first section presents the constitutive relation of the transversely
isotropic solid. Then the equation of motion for the two-dimensional case is
derived, and the numerical algorithm is developed. The next section reviews
some basic concepts about the velocity and wave-front curves in transversely
isotropic materials, and finally examples of wave propagation are presented.

The numerical algorithm is tested against the problem of wave propaga-
tion in a homogeneous class IV transversely isotropic media.

2. Constitutive relations of the transversely isotropic medium
The constitutive relation of a heterogeneous anisotropic and elastic solid

is expressed by the generalized Hooke's law, which can be written as

Oij = cijkleu, i, j , k, I = 1,... , 3, (2.1)

where t is the time, x is the position vector, a,y(x, t) and %(x, t) are the
Cartesian components of the stress and strain tensors respectively, and
CjjU(x) are the components of a fourth-order tensor called the elasticities of
the medium. The Einstein convention for repeated indices is used.

To express the stress-strain relation for a transversely isotropic medium
we introduce a shortened matrix notation commonly used in the literature.
With this convention, pairs of subscripts concerning the elasticities are
replaced by a single number according to the following correspondence:

(11)->1, (22)->2, (33)-* 3, (23) = ( 3 2 ) - 4 ,

(31) = (13)-* 5, (12) = (21)-* 6.
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SIMULATED ELASTIC-WAVE PROPAGATION 321

Using this convention, the constitutive relation for a transversely isotropic
solid with symmetry axis coincident with the z-axis can be expressed as
(2, p. 3),

31
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(2.2)

where cM = \{cn — c12). The algorithm to solve the equation of motion of
the anisotropic solid which is presented in the following section allows
complete material variability. This means that the five independent elas-
ticities in equation (2.2) can be space-dependent.

3. The equation of motion for a two-dimensional solid
In this work we consider wave propagation in a two-dimensional medium.

Denoting x and z as the horizontal and vertical coordinates respectively, the
stress-strain relation (2.2) can be written as

Ozz

Cll

Cl3

0

Cl3

C33

0

0 "
0

C 4 4 _

Exx

Mxz.

(3.1)

where the number of independent elasticities has been reduced from five in
the three-dimensional solid to four in this case. Note that the constitutive
relation for a medium with cubic symmetry is obtained as a special case by
putting c33 = cn, that is, only three independent elasticities remain.

The description of wave propagation is based on momentum conservation
combined with the constitutive relation. The linearized equation of motion
for a continuous medium is given by

pu = V . 2 + f, (3.2)

where u(x, t) is the displacement field, 2(x, t) is the stress tensor, f(x, t)
represents the body forces, and p(x) is the density. In equation (3.2) as in
the remainder of the article, a dot above a variable denotes time
differentiation.

For a two-dimensional solid, equation (3.2) can be expressed as

dx dz
puz =

do^

dx dz
(3.3)

where ux and uz, zndfx and/j are the components of the displacements and

 at R
ussian A

rchive on N
ovem

ber 14, 2013
http://qjm

am
.oxfordjournals.org/

D
ow

nloaded from
 

http://qjmam.oxfordjournals.org/
http://qjmam.oxfordjournals.org/


322 J. M. CARCIONE ET AL.

body forces respectively. By replacing the constitutive relation (3.1) in the
equations of motion (3.3), and making use of the strain-displacement
relations (11, p. 13), we obtain

3

3

3

(3.4)

The equations of motion for an isotropic solid are a special case of
equations (3.4) when cn = c33 = k + 2fi, cu = A, and c^ = /z, where X and p
are the Lame" constants.

4. Numerical algorithm
In order to solve the problem numerically we recast equations (3.4) as a

coupled first-order equation in time as follows:

U = MU + F, (4.1)

where M is a spatial operator matrix of dimension 4 given by

" 0 0 1 0 "
0 0 0 1

M31 A/32 0 0
M42 0 0 .

M =

with its components denned by

i / a
M

(4.2)

l / a dd d\
32 = - I — C 1 3 — + — C 4 4 — ,

p \dx dz dz dx)
1/3 3 3 3\

*41 = - I — C44 — + — C13 — ,

p\3x 3z dz 3x)
1 13 3 3 3
p \3x dx dz dz

(4.3)

and

with the source vector,

U r = [ux, uz, ux, uz],

FT = [0,O,/x/p,/ r/p].

(4.4)

(4.5)

After a spatial discretization in x and 2 and a suitable approximation for the
spatial derivatives, equation (4.1) becomes a coupled system of
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SIMULATED ELASTIC-WAVE PROPAGATION 323

4N^4NZNZ ordinary differential equations in the unknowns ux, uz, ux and
uz at the grid points. The numbers of grid points in the x- and z-directions
are denoted by Nx and Nz respectively.

In this work we calculate the spatial-derivative terms by the Fourier
pseudospectral method (12,13), which consists of a spatial discretization
and calculation of spatial derivatives using the fast Fourier transform (FFT).
For instance, the quantity (3/3x)c1 3(3u I /3z) in equation (3.4)x is calculated
in the following way. First, along each z-line a spatial FFT on uz is
performed. The result is then multiplied by the complex spatial-wave-
number vector,

UCv= ^ N ^ NNDZ' V = ^N"->^N"

where DZ is the grid spacing in the z-direction and i2 = —1. This operation
is followed by an inverse FFT into the spatial domain yielding duz/dz,
which is then multiplied by c i 3 . Then forward and inverse FFTs along each
x-line are performed to calculate (9/dx)cl3(duz/dz).

Equation (4.1) can be expressed in compact notation as

UA, = MAfUiV + FA,, (4.6)

subject to the initial conditions

U*(0) = US,, (4.7)

where I V , M^ and ¥N are the discrete representations of U, M and F
respectively. The solution to equation (4.6) subject to (4.7) is formally given
by

[ eM»zVN(t -+ [ eM»zVN(t - T) dx. (4.8)

We consider a separable source term ¥N(t) = \Nh(t), where AN is the
spatial distribution of the source, usually chosen to be a delta or a highly
localized function. The function h(t) is the source-time history. Considering
zero initial condition and replacing the source term, equation (4.8) becomes

VN = [fe^hit - T) dx^\N. (4.9)

To solve this equation we use a new time-integration technique based on the
well-known Chebycheff expansion of the function ez (6),

l , (4.10)

where \z\ =£ zR and z lies close to the imaginary axis. Now Co = 1 and Ck = 2
for k 5s 1, Jk is the Bessel function of order k and Qk are the modified
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324 J. M. CARCIONE ET AL.

Chebycheff polynomials which satisfy the recurrence relation

Qk+1(s) = 2sQk(s) + Qk-!(s), (4.11)

with
Co = l and £>!=.$. (4.12)

Substituting T M ^ for z in (4.10), equation (4.9) becomes

VN(t) ~ U* = £ Ckbk(tR)Qk\y*]AN, (4.13)

where the coefficients fct are given by

bk=fjk(zR)h(t-r)dT. (4.14)
Jo

The variable R must be chosen larger than the region spanned by the
eigenvalues of MN, which should be in the vicinity of the imaginary axis
(this is shown in Appendix A together with the determination of R).
Tal-Ezer (6) showed that the largest k = K in equation (4.13) should be
greater than tR to ensure convergence. The actual value of K can be
determined by finding the range in which the coefficients bk are significantly
different from zero.

The starting values for the recursion are given by

QO[^]AN = AN and Q ^ A ^ ^ A * , (4.15)

according to equation (4.12). Additional terms are generated by (4.11) with
MN/R replacing s, while U£ is cumulated by (4.13). The final value of U£ is
obtained after cumulating K terms.

The solution can be propagated in time again by considering U%(t0) as an
initial condition, by means of the homogeneous solution in equation (4.8).
This yields

VN(t) - U£ = f CkJk{tR)QJ^Wa (4.16)
= 0

where tQ is the size of the first time increment which should be larger than
the duration of the source time history. The calculation of time histories at a
given point of the material does not require significant additional computa-
tional effort since the terms Qk(MN/R)UN are calculated in any case; only
additional sets of Bessel functions need to be generated. The intermediate
results are calculated according to

VN(t') ~ U£ = £ CkJk{fR)QJ^Wo) (4.17)
*-o L K J

for t' < t.
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SIMULATED ELASTIC-WAVE PROPAGATION 325

Because the Fourier pseudospectral method considers the discretized
variables on the grid as periodic functions, absorbing boundaries are
implemented to prevent wrap-around, the phenomenon in which a pulse
which leaves the grid on one side re-enters it on the opposite side. To
eliminate this effect from the boundaries of the numerical grid, we use a
method developed by Kosloff and Kosloff (14). The absorbing boundary is
performed through a systematic elimination of the wave amplitude in a strip
along the boundary of the grid. This is achieved by replacing the operator M
in equation (4.1) by the operator (M — al), where I is the identity matrix
and a, which determines the absorption, is given by

a =UQ/cosh2 (6m), (4.18)

where C/o is a constant and 6 is a decay factor. The parameter a(x, z) is
chosen in order that it differs from zero only in a strip of nodes (m)
surrounding the numerical mesh.

Equation (4.18) has the functional form of the complex potentials used in
quantum mechanics, where with an appropriate choice of the parameters it
is possible to eliminate reflected or transmitted energy from the absorbing
region. The spatial dependence of a(x, z) is chosen to give the best
amplitude elimination.

To clarify the method we consider the one-dimensional version of
equation (4.1) with constant material properties and zero source term,

1? -" [";]•
where c is the wave velocity. When a = 0, the first equation in (4.19)
expresses the relation V = dujdt, whereas the second one is the acoustic
wave equation. With the inclusion of the parameter a and eliminating the
variable V, equation (4.19) reads

y - 2auz - o?ux. (4.20)
dx

This equation has a general solution of the form

ux(x, t) = Afr(x - ct)e-(°"c)z + Bf2{x + c^"1^, (4.21)

with A and B arbitrary constants and fx and f2 arbitrary twice-differentiable
functions. The solution represents attenuating waves in space, where all
frequency components are equally attenuated. This means that the absorb-
ing boundary will gradually attenuate the wave field without changing its shape
or producing dispersion.
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326 J. M. CARCIONE ET AL.

5. The velocity and wave-firont corves in a homogeneous medinni

The normal curve for a transversely isotropic solid is defined by the
following parametric form (2, p. 17):

p = R±(6) cos 0 and q = R±(6) sin 0, (5.1)

where

2MB)
with

_
R±(6) - I 2MB) J

} (5-3)A(d) = a cos" 0 + y cos2 0 sin2 0 + 0 sin4 0,

5(0) = (a- +1) cos2 0 + 03 + 1) sin2 0.

The parameters a, /3 and y in equations (5.3) are given by

The velocity curve is the inverse of the normal curve and is defined
parametrically by

vx± = V±(6)sind and vz± = V±(0) cos 0, (5.5)

with

V±(6) = Vs/R±(d), (5.6)

and

(5.7)

is a reference wave velocity of the medium, which in a transversely isotropic
medium corresponds to the vertical and to the horizontal pure transverse
wave velocity (15).

The velocity curve consists of two branches differentiated by the sign in
(5.5). Under the condition of strict hyperbolicity (2, p. 18) we must have

V+(0) < V.ifi). (5.8)

The velocity curve defined by the minus sign in (5.5) corresponds to the
quasilongitudinal mode, and that defined by the plus sign to the quasi-
transverse mode. The displacement amplitudes corresponding to these
modes are always orthogonal, but not perpendicular or coincident with the
wave front as in the isotropic solid. In seismology these modes represent the
P and SV wave fronts, but actually the waves are purely compressional
or shear only when the direction of propagation is perpendicular to
(VP= (cn/p)i), or coincident with (VP = (c33/pp) the symmetry axis of the
transversely isotropic solid (15).

The wave-front curve, which is constructed as the envelope of plane
waves at a given time t, consists also of two branches defined parametrically
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SIMULATED ELASTIC-WAVE PROPAGATION 327

by (2, p. 35),

V± /cos0r 2a . 2a sin2Ofacos2 6 - k2sin2 6)
Z± = ' 1A

" v~ ""' " \ (5 9)
V±tsind[ O . 2n 2n cos20(A:1cos20-A:2sin20)- '

x+ =——— 2psin 0 + ycos 0 T j—^— i
2/4. L (B ~ 4/l)i

where fc, = 2or(/3 + 1) + y(ar + 1) and )k2 = 2/3(o- + 1) - y()3 + 1).
The normal and wave-front curves in transversely isotropic materials are

classified according to the existence and location of inflexion points and
cusps respectively (2, pp. 26, 38). The existence of inflexion points in the
normal curve gives rise to lacunae or cusps in the wave-front curve.

It is important to point out that there is no simple correspondence
between the velocity and wave-front curves. The velocity V±(d) measures
the velocity of advance of the wave front along the wave-number vector
k(0), which is normal to the wave-front curve. Given a point P = (x0, ZQ) on
this curve, the corresponding point Q = (vZo, v^ is obtained by passing
through the origin a line parallel to the direction of the vector k and
intersecting the velocity curve (15). Only for spherical wave fronts (isotropic
case) will the points P and Q lie on the same radial line.

6. Wave-propagation simulation
Now we examine wave propagation through different materials (homoge-

neous and heterogeneous), and test the numerical algorithm against the
analytical solution along the symmetry axis.

6.1 Wave fronts in three different hexagonal crystals
The motion is initiated by a z-directional point force located at the centre

of a 165 X 165 grid with spacing DX = DZ = 0-2 cm. The source is a shifted
zero-phase pulse defined by

F(t) = e-°-5^-^ cos nfo(t- t0), (6.1)

with to = 6fis and a high cut-off frequency f0 = 5 x 10s Hz. No absorbing
boundaries are used in this case because the perturbation does not exceed
the grid limits.

Table 1 shows the elasticity constants and densities of the three materials.
The last column presents the time at which the snapshots are calculated.
The materials are classified according to the existence and location of
inflexion points in the normal curve or, equivalently, of cusps in the
wave-front curve.

Figures 1 and 2, and 3 and 4 show the velocity curves, wave-front curves
and snapshots of the three crystals, respectively (a) for apatite, (b) for zinc,
and (c) for cobalt. Figures 3 represent the ux-components of the wave front
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328 J. M. CARCIONE ET AL.

TABLE 1. Material properties of the hexagonal crystals

Density Time
ci3 c33 c« (grcm"') (us)Crystal Oass c,

Apatite
Zinc
Cobalt

IV
IV
V

16-7
16-5
30-7

6-6
50

10-3

14-0
6-2

35-8

6-63
3-96
7-55

3-2
71
8-9

20
32
24

The elasticities should be multiplied by 10u dyne cm"

and Figs 4, the uz-components. The velocity and wave-front curves have the
corresponding inflexion points and cusps, respectively, according to the
classification given by Payton (2, pp. 26, 38). The cuspidal triangles around
z+ = 0 in zinc cannot be seen because they are too small.

All the wave fronts show the characteristics predicted by the respective
wave-front curves, with the quasilongitudinal mode weaker than the
quasitransverse mode. It can be seen also that the ux-component along the
symmetry axis is zero, in agreement with the theoretical solution given by
equation (B.3).

Due to symmetry considerations, the ux wave fronts should show

FIG. 1. Velocity curves for (a) apatite, (b) zinc, and (c) cobalt. The minus
sign corresponds to the quasilongitudinal mode, and the plus sign to the

quasitransverse mode
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- 8 - 6 - 4 - 2 0
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FIG. 1. (Continued)
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-16 -12 - 8 - 4 0

-12

-16
-16

FIG. 2. Wave-front curves for (a) apatite, (b) zinc, and (c) cobalt. The
minus sign corresponds to the quasilongitudinal mode, and the plus sign to

the quasitransverse mode
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SIMULATED ELASTIC-WAVE PROPAGATION 331

12 16

FIG. 2. (Continued)

antisymmetric behaviour across x = 0 and z = 0, and the uz wave fronts
show symmetric behaviour across the same lines. The effects can be
visualized for both components across z = 0, but because of the nature of
the display, these are not evident across x = 0. A careful analysis reveals
that equidistant points at both sides of the line x = 0 for the ux wave fronts
have the same amplitude but opposite sign (antisymmetry). The same
analysis shows that the uz wave fronts are symmetric across x = 0.

6.2 Wave propagation in a heterogeneous material
This example considers wave propagation in a region consisting of two

materials (Fig. 5). The left half-space is zinc and the right half-space is an
isotropic solid with the following properties:

c n = 16-5, c33 = 16-5, c,3 = 8-58, 044 = 3-%, p = 7-lgrcm"3,

where the elasticities should be multiplied by 1011 dyne cm"2. This solid can
be considered as an isotropic zinc, because the compressional and shear-
wave velocities corresponds to the pure longitudinal (horizontal direction)
and pure transverse wave velocities in zinc.

The simulation uses the grid parameters and pulse function of the
previous example, but the source position is shifted from the centre of the
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16

12

12 16

i) x (cm)

FIG. 3. ^-components of the wave front for (a) apatite, (b) zinc, and (c)
cobalt, due to a z-directional point force

grid (it is indicated by S in Fig. 5b). Snapshots of the wave field at t = 32 fxs
after the excitation of the source are shown in Figs 5a (ux-component) and
5b (uz-component). The main wave fronts present the expected characteris-
tics of zinc (see Figs 3b and 4b) in the left half-space, and of an isotropic
solid (concentric circles) in the right half-space.

A detailed interpretation of the snapshots allows the identification of the
following events.

(A) Primary quasilongirudinal wave.
(B) Primary quasitransverse wave.
(C) Reflected quasitransverse wave.
(D) Converted quasitransverse wave generated by reflection of A.
(E) Head wave which connects A with the transmitted longitudinal wave

H.
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£ 0

- 4 -

- 8 -

- 1 2 -

- 1 6

-

(b)

16 - 1 2 - 8

FIG.

—

3

4 0

v (cm)

. (Continued)

(F) Reflected quasilongitudinal wave.
(G) Converted quasilongitudinal wave generated by reflection of B.
(H) Transmitted longitudinal wave.
(I) Transmitted transverse wave.
(J) Transmitted transverse wave generated by the cusps.

(K) Converted transverse wave generated by transmission of A.
The application shows how the model can handle the large number of

phenomena present in heterogeneous materials, even the small-amplitude
head-wave fronts.

6.3 Comparison with analytical results
In class IV transversely isotropic media the wave-front curve has four

cuspidal triangles, two centred on the z+-axis, and two centred on the
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- 1 2 -

- 1 6 -

- 1 6

(c)

-12 - 8 - 4 0

x (cm)

Fio. 3. (Continued)

16

x+-axis. In the apatite, as can be seen from Fig. 2a, a line drawn very close
to the axis of symmetry, for example, intersects the wave-front curve in four
points. This means that a single pulse at the origin will produce four
separated pulses of energy.

The analytical solution in the symmetry axis for an homogeneous solid is
given in Appendix B. In Fig. 6 is represented the apatite free-space Green's
function (equation (B.5)) at a distance of z = 8 cm from the source position.
The singularities are located at times tP and tx respectively and the lacuna
can be seen between times the ts and tx (the times are denned by equations
(B.6)). The last singularity is not present in an isotropic medium because
substitution of equations (5.4) in (B.7) gives zx = 0, which by (B.6) implies
that *!-»<».

The numerical model uses a 99 x 99 grid with a spacing of DX = DZ =
0-2 cm. The source time history of the previous examples is used.
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16-

12

16

Fia. 4. M,-components of the wave front for (a) apatite, (b) zinc, and (c)
cobalt, due to a z-directional point force

Figures 7a and 7b compare numerical and analytical solutions at distances
of 2-6 and 8 cm from the source position respectively. As the figures show,
the comparison between numerical and analytical solutions is excellent.

7. Conclusions

This work has dealt with wave-propagation simulation in a two-
dimensional transversely isotropic solid. The equations of motion are solved
using a new pseudospectral numerical scheme in time. The method is based
on the approach introduced by Tal-Ezer (6), in which the evolution
operator is expanded in a Chebycheff polynomial series. Wave fronts
calculated by the simulation algorithm show the characteristics predicted by
the respective wave-front curves. The theory has been tested successfully
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FIG. 4. (Continued)
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FIG. 4. (Continued)
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FIG. 5. Snapshots at f = 32/*s for a heterogeneous material composed of
zinc (left half-space) and an isotropic solid (right half-space); (a) ux-

component, (b) uz-component
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16

Fio. 5. (Continued)
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FIG. 6. Free-space Green's function (uzz(x, t)) due to a z-directional point
force versus time in apatite, at a distance of 8 cm from the source position
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FIG. 7. Time-history comparison between the numerical and analytical
solutions in the symmetry axis (time convolution of uXI(t) with F(t)) at
distances of (a) 2-6 cm and (b) 8 cm from the source position, due to a

z-directional point force. The medium is apatite
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also when the medium is heterogeneous. The accuracy of the algorithm was
verified in the comparison with the analytical solution in the symmetry axis
of the material. The present numerical simulation can be very important in
determining the solution of elastodynamic problems when the analytical
solutions are either very complicated or unknown. Possible applications
include realistic simulation of wave propagation through the earth, as well
as in the field of material science. Extension of the algorithm to problems
involving wave propagation in materials of different symmetry will be
carried out in a future work.
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APPENDIX A
Eigenvalues of the propagation matrix and determination of R

A plane-wave solution to equation (4.1) is assumed of the form

V = Voe'ia'-^\ (A.I)

where a) is the angular frequency, k is the wave-number vector given by k = (kx, kx),
and x is the position vector. Considering constant elasticities and density and a zero
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source term, substitution of (A.I) in equation (4.1) yields

" 0 0 1 0 "
0 0 0 1

M31 Mx 0 0
M41 Mn 0 0

U, (A.2)

where the spatial double Fourier transform of the components of M are given by
L _ K2

(c13 + cM)kxkz (A.3)

Equation (A.2) forms an eigenvalue equation for the eigenvalues A, = ico, i = 1.....4.
The characteristic equation of (A.2) is given by

A? - (M3 1 = 0. (A.4)

For a transversely isotropic solid the constraints on the elasticities are as follows:
Cii,c33ic«>0; \c^ + cu\<[(cncyi)

}i + c»] (2, p. 11). Thus B = -(Af3I + A£«)>0,
Co(M31M«-M ( lM32)>fl and B 2 - 4 C > 0 . With these conditions the roots of
equation (A.4) lie on the imaginary axis. The eigenvalues are

*>i + Mn\ - [(M31 - \U2

For an isotropic solid, equations (A.3) become

A2 = -A,,

A4=-A3.
(A.5)

= "*41 ^

P

(A.6)

Substitution of these expressions in equations (A.5) yields

(A.7)

The first and second eigenvalues correspond to longitudinal wave propagation, and
the third and fourth to shear wave propagation. They define the dispersion relations

and w = vs(k
2

x (A.8)
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for longitudinal and shear waves respectively, where vP = ((A + 2/i)/p)i, and
f s f

Similarly, for a transversely isotropic solid, A, = ica and A3 = i(o define the
dispersion relations. Note that substitution of the parametric form

kx=k(d) sin 6, kL = k(d) cos 0 (A.9)

in the dispersion relations yields k±(0) = co/V±(6), where V±(0) is the phase
velocity (5.6). A numerical evaluation of the dispersion relations reveals that
W ) l = V-(6) (quasilongitudinal mode), and |A3(0)| = V+(8) (quasitransverse
mode). This can also be deduced from the isotropic limit, equations (A.7).

The range of the eigenvalues of the propagation matrix, R, is obtained by
substitution of k% = n/DX and A^ = n/DZ (the Nyquist wave numbers give the
highest eigenvalues) in equations (A.5). For the isotropic case we obtain

( A 1 0 )

using the fact that vP > vs, while for a transversely isotropic solid, R is given by

R = IW, O, (A.ii)
where the condition of strict hyperbolicity (5.8) was used. In the heterogeneous
case, the elasticities which give t ie maximum R should be chosen.

APPENDIX B
Free-space Green's function along the symmetry axis for the transversely isotropic
solid

The two-dimensional anisotropic Green's function u^ix, t) satisfies the following
equation of motion:

= P Hi*' '"';"' k>l'p = h 2' (B1)

where /^ is the impulsive body force given by

/„ = 8lp8(x)6(z)d(t). (B.2)

Denning the dimensionless variable

Z=Z/T,

with

T=Vst,

where Vs is given by equation (5.7), the solution to equation (B.I) for class IV
transversely isotropic materials along the symmetry axis z is (2, p. 78)

(B.3)

t>tu
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with

m ) h [&(frF? ] [ { y 0 ) >^( f f ^o ^ r *.
and

tf<t<ts,
r s « /« / l f (B-5)

with
1 r i 2(1 - f2) - {y - (ft + l)f2} If - {y - tf + l)z2} + Dhh

l(2)~^rU Wl JL -2(a--z2)(l-f2) J '

where

ts = z/(cjp)i, <p = z/(c33/p)i, f, = fs/z,. (B.6)

The quantity D(f) is given by

and

+ 1) - 2/5(ar + 1) + 2{P(1 + «{}- y)(cr + /S - y)}i]i/(/S - 1). (B.7)

To perform the comparison with the numerical solution we convolve the free-space
Green's function with the shifted zero-phase pulse function given by (6.1).
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