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Abstract—We first compare two apparently dissimilar expressions for the quality factor Q of inhomogeneous
plane waves in isotropic viscoelastic media, where Q is defined as the result of an energy-balance relation. In
this case, it is the ratio of twice the strain energy to the dissipated energy. Both expressions give the same Q
for P-waves and Q for S-waves is independent of the inhomogeneity angle γ (isotropic media). Then, we con-
sider the more general balance equation, which holds for anisotropic viscoelastic media, where anomalous
behaviors are observed when γ exceeds some critical value (forbidden directions of propagation). This prob-
lem has already been solved analytically for SH-waves. Here, we consider the qP–qS case, which requires a
numerical solution of the dispersion equation to obtain the wavenumber and attenuation factor, i.e., the real
and imaginary parts of the wave vector, respectively. The forbidden directions appear when the phase velocity
approaches a zero value. Generally, the phase velocity of homogeneous waves (γ = 0) exceeds that of inho-
mogeneous waves, while the latter show stronger attenuation (lower quality factor). In the vicinity of the for-
bidden directions, the opposite behavior may occur.
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1. INTRODUCTION
There are several works in the literature dealing

with anisotropy and viscoelasticity on various aspects.
For instance, Zaĭtsev and Kuznetsova [1] and Zaĭtsev
et al. [2] analyze the energy density and power f low of
waves propagating in unbounded piezoelectric media
and provide an alternative definition of potential
energy, respectively. Djeran-Maigre and Kuznetsov
[3] study wave dispersion in plates. These works con-
sider anisotropy but not intrinsic absorption (visco-
elasticity). On the other hand, Moradi and Innanen
[4] analyze the reflection of inhomogeneous plane
waves in viscoelastic media, whereas Morozov et al.
[5] and Liu et al. [6] consider the effects viscoelasticity
on wave propagation and how to approximate a con-
stant Q with Zener mechanical models, respectively.

Generally, plane waves in anelastic media are inho-
mogeneous, i.e., equiphase planes do not coincide
with equi-amplitude planes, which means that the
attenuation vector does not point in the same direc-
tion as the wave vector) (Buchen [7], Carcione [8]).
There is a distinct difference between the inhomoge-
neous waves of lossless media (interface or guided

waves) and those of viscoelastic media (body waves).
In the former case, the direction of attenuation is nor-
mal to the direction of propagation, whereas for inho-
mogeneous viscoelastic waves that angle must be less
than π/2, and this is valid in 2D and 3D spaces. Fur-
thermore, for viscoelastic inhomogeneous waves the
energy does not propagate in the direction of the slow-
ness vector and the particle motion is elliptical in gen-
eral (Carcione [8]).

There are two apparent dissimilar expressions for
the quality factor Q reported in Carcione [8]. Eqs.
(3.133) in this book summarize the average energies
corresponding to the P- and S-waves, used to define
the quality factors. These equations are based on the
work of Buchen [7] and hold for isotropic media. On
the other hand, Eq. (4.198) in Carcione [8] provides
an expression of the quality factor for anisotropic and
viscoelastic media obtained from a general energy bal-
ance developed by Carcione and Cavallini [9]. For
completeness, all the equations related to this expres-
sion are given in Appendix A. Since it is not clear if the
two approaches give the same quality factor for isotro-
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pic media, we compare the two expressions for Q as a
function of the inhomogeneity angle.

In addition, we study the anisotropic case for qP–
qS waves in the symmetry plane of an orthorhombic
medium. In a medium with anisotropy and attenua-
tion, beyond a given degree of wave inhomogeneity,
the theory predicts forbidden directions (forbidden
solutions) (Carcione and Cavallini [10, 11]). Červený
and Pšenčík [12] have used a form of the sextic Stroh
formalism to re-interpret the forbidden-directions
phenomenon by using a different inhomogeneity
parameter, instead of the angle between the propaga-
tion and attenuation directions

2. THEORY
2.1. Expressions for the Quality Factors

Following the notation of Buchen [7] and Chapter
3 of Carcione [8], we consider the viscoelastic plane-
wave solution of the particle velocity

(1)
where t is time, x is the position vector, ω is the angular
frequency, k = ωs is the wave vector, s is the slowness
vector, V is a complex vector and . The relevant
quantity is the complex wave vector

(2)
with κ being the real wave vector and α the attenuation
vector. They express the magnitudes of both the wave-
number κ and the attenuation factor α, and the direc-
tions of the normals to planes of constant phase and
planes of constant amplitude (vectors with a hat are
unit vectors). If γ is the (inhomogeneity) angle
between κ and α, the wave is homogeneous for γ = 0,
i.e, k = (κ − iα)  ≡ k .

Let us consider the quality factor as given by Buchen
[7]. The rate of energy dissipated in one cycle is

(3)

or (since ), the dissipated energy is

(4)

where Φ0 is a constant amplitude. An alternative
option to avoid real and imaginary parts in these
expressions is to use complex conjugate quantities
(e.g., Djeran-Maigre and Kuznetsov [3]). There are
some sign differences between the expressions in
Buchen [7]) and Carcione [8]. Buchen defines G =
G1 − iG2 = µR + iµI (the complex shear modulus) and
uses the opposite convention for the time Fourier
transform so that ω → −ω. Also, Buchen defines the
complex wave vector as κ + iα and not as κ − iα (more
precisely, Eq. (3.94) in Carcione [8] is the same as
Eq. (36) in Buchen [7], but Eq. (3.98) in Carcione [8],
if obtained from Eq. (35) of Buchen [7], leads to equa-
tion (3)).

Since

(5)

and

(6)

we have

(7)

Similarly, Eqs. (3.94) and (3.97) of Carcione [8]
give the averaged strain energy,

(8)

or

(9)

which coincides with that of Buchen [7]. The Q factor
qP or qS waves is then

(10)

It is shown in Appendix B that Q for qS waves does
not depend on γ.

On the other hand, the energy balance obtained by
Carcione and Cavallini [9] yields

(11)
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where the quantities involved in this expression are
given in Appendix A (the superscript “∗” denotes
complex conjugate). This quality factor is more gen-
eral than QB, since it holds for anisotropic media (see
Carcione [8], Eq. (4.198)].

2.2. Wavenumber Components

The wavenumber components can be written as

(12)

where  and
 are unit vec-

tors in equation (2) defining the propagation and
attenuation directions, with θ the propagation angle.

2.2.1. Isotropic case. In the isotropic case, we sim-
ply have

(13)

where p11 and p44 are the P- and S-wave complex and
frequency-dependent stiffnesses, with

(14)

(see Eqs (3.34) in Carcione [8]].
2.2.2. Anisotropic case. The procedure to obtain

the equations in this case follows that of the SH-wave
(Carcione and Cavallini [10, 11]), but the problem has
to be solved numerically (Carcione and Ursin [13]).
The dispersion relation for qP–qS waves (leading to
equation (A.1)) is

(15)

We then use equation (12) and solve for κ and α
from

(16)

Equations (16) are solved using the Newton–
Raphson method for a nonlinear systems of equations.

The phase velocity and attenuation factors are
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respectively.
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3. EXAMPLES
Let us first consider an isotropic medium defined by

and a density ρ = 2500 kg/m3.
We define the quality factors

(18)

For the above medium, the quality factors of
homogeneous waves are QP = Q11 = 8 and QS = Q44 = 3.
Figure 1 shows the quality factors, where the solid
black line corresponds to QB and the solid dots to QCV.
In isotropic media, any value of θ yields the same
result, and ρω2 = pIIk2, independent of frequency in
this example (II = 11 for P-waves and II = 44 for qS-
waves). As it can be seen, the two approaches are
equivalent, with the S-wave Q factors independent of
γ. Since α = −Im(k), and k does not depend on γ, the
attenuation factor is also independent of the inhomo-
geneity angle. It can be shown that the S-wave quality
factor for inhomogeneous waves is also independent of
the inhomogeneity angle in the isotropic poro-visco-
elastic case. Equation (7.613) in Carcione [8] gives the
general quality factor for qP- and qS-waves in the
anisotropic poro-viscoelastic case, and the corre-
sponding energy balance is given in Carcione [14].

The advantage of the energy balance developed by
Carcione and Cavallini [9] is that it holds for anisotro-
pic viscoelastic media (see also Carcione and Cavallini
[10, 11]), and poro-viscoelastic anisotropic media
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Fig. 1. Quality factor as a function of the inhomogeneity
angle, based on Buchen’s energy balance [7] (B) and Car-
cione and Cavallini’s energy balance [9] (CV).
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(Carcione [14]). We now consider the anisotropic vis-
coelastic case, with the following components:

Figures 2 and 3 shows the phase velocity (Fig. 1a)
and quality factor (Fig. 1b) (QCV) of the qP- and qS-
waves as a function of the propagation angle for differ-
ent values of the inhomogeneity angle. The last five γ
values are close to the critical inhomogeneity angle,
where the forbidden directions start to appear and the
curves show an anomalous behavior, because the
phase velocity is decreasing remarkably (Carcione and
Cavallini [10]). For P-waves, the anomalous propaga-
tion angle is approximately θ = 70°, while for the
S-waves this behavior appears between 5° and 10°. The

11 11

44 44

33 33

13 

 = (40 + 5 ) GPa,  = 8,
 = (21 + 7 ) GPa,  = 3,
 =  (30 + 6 ) GPa,  = 5,

= (1 + ) GPa.

p i Q
p i Q
p  i Q

p i

respective critical inhomogeneities angles are approx-
imately 70.2° and 46.5°, respectively. The critical
angle depends on the propagation angle θ and the
medium properties, pIJ and a precise evaluation
requires a numerical solution of a complex-valued
sixth-degree polynomial equation (Červený and
Pšenčík [15]). The cause of these anomalous behaviors
in the curves of Figs. 2a and 3a at high inhomogeneity
angles and specific propagation angles is a combined
effect of anisotropy and viscoelasticity. Contrary to
the isotropic case, the quality factor of the S-wave is γ-
dependent. This dependence of attenuation on the
inhomogeneity angle can clearly be seen in the atten-
uation factors (α) shown in Fig. 4, where we have
assumed a frequency of 50 Hz. In general, the phase
velocity of homogeneous waves is greater than that of
inhomogeneous waves, while the latter are more
attenuated (see Fig. 4). Clearly, the critical inhomoge-
neity angle is different for P- and S-waves.

Fig. 2. (a)—Phase velocity and (b)—quality factor of the
qP waves as a function of the propagation angle for different
values of the inhomogeneity angle, based on Carcione and
Cavallini’s energy balance [9]. The medium is anisotropic.
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Fig. 3. (a)—Phase velocity and (b)—quality factor of the qS
waves as a function of the propagation angle for different
values of the inhomogeneity angle, based on Carcione and
Cavallini’s energy balance [9]. The medium is anisotropic.
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4. CONCLUSIONS

We have shown that for plane inhomogeneous
S-waves in isotropic media, the ratio of twice the aver-
age strain energy to the average dissipated energy are
equal and independent of the degree of inhomogeneity
of the waves. This has been verified for two apparent
dissimilar energy balances, which yield the same P-
wave quality factor as a function of the inhomogeneity
angle, ranging from the homogeneous Q (P) value at 0
degrees to the homogeneous Q (S) value at 90 degrees,
so that the attenuation related to the S-waves con-
strains that of the P waves. In anisotropic media, all
the properties depend on the inhomogeneity of the
waves, with the phase velocity of homogeneous waves
showing higher values, and the attenuation weaker val-
ues compared to that of the inhomogeneous waves.
This behavior may not be verified in the vicinity of for-

bidden directions, where anomalous behaviors occur
at certain propagation angles.

This work clarifies the fact that the two energy bal-
ances are equivalent, and while the first (older)
approach by Buchen holds only for isotropic media,
the second is valid for anisotropic viscoelastic media.

APPENDIX A
Quality Factor for qP–qS Waves in Anisotropic 

Viscoelastic Media
We report an expression of the quality factor for

anisotropic and viscoelastic media based on the energy
balance obtained by Carcione and Cavallini [9]. We
assume wave propagation in the (x, z)-symmetry plane
of an orthorhombic medium, with the positive z-axis
pointing downwards. The medium complex and fre-
quency-dependent stiffness components are pIJ, I, J =
1, …, 6 and the mass density is ρ. We consider the gen-
eral plane-wave solution (1), where the wave vector is
k = (k1, k3) = ω(s1, s3), where si are slowness compo-
nents. The k3-component in terms of the horizontal
wavenumber k1 is

(A.1)

where

The signs in k3 correspond to (+, −): downward
propagating qP wave; (+, +): downward propagating
qS wave; (−, −): upward propagating qP wave; and
(−, +): upward propagating qS wave. The plane-wave
eigenvectors (polarizations) are

(A.2)

where V0 is the plane-wave amplitude and

(A.3)

and

(A.4)

In general, the + and − signs correspond to the qP-
and qS-waves, respectively. However one must choose
the signs such that ξ varies smoothly with the propaga-
tion angle.
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Fig. 4. Attenuation factor of the (a)—qP- and (b)—qS-
waves as a function of the propagation angle for different
values of the inhomogeneity angle, based on Carcione and
Cavallini’s energy balance [9]. The medium is anisotropic.
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Then, the quality factor for anisotropic media is
given by equation (11), where

(A.5)

In the isotropic case the above components k1 and
k3 are equivalent to equation (12). In the anisotropic
case, a numerical solution is required to obtain k1 and
k3, i.e., the calculation of κ and α, but in this case,
equation (A.1) is the analytical solution for homoge-
neous waves.

APPENDIX B
Quality Factor of S-waves for Inhomogeneous Waves

For S-waves (isotropic media),

(B.1)

Since µ = µR + iµI and taking real and imaginary
parts, we obtain

(B.2)

Substituting equations (B.2) into equation (10), we
obtain

(B.3)

which is the S-wave Q factor of homogeneous plane
waves, independent of the inhomogeneity angle γ (see

Eqs. (3.32) in Carcione [8]). This result is also valid for
SH-waves.
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