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ABSTRACT
The classical Zener model of thermoelasticity can be represented by a
mechanical (or viscoelastic) model based on two springs and a dashpot,
commonly called standard-linear solid, whose parameters depend on the
thermal properties and a relaxation time, and yield the isothermal and
adiabatic velocities at the low- and high-frequency limits. This model dif-
fers from the more general Lord-Shulman theory of thermoelasticity, whose
low-frequency velocity is the adiabatic one. These theories are the basis of
thermoelastic attenuation in inhomogeneous media, with heterogeneities
much smaller than the wavelength, such as Savage’s theory of thermoelas-
tic dissipation in a medium with spherical pores. In this case, the shape of
the relaxation peak differs from that of the Zener and Lord-Shulman mod-
els. In these effective homogeneous media, the anelastic behavior of real
materials can better be described by using a stress-strain relation based on
fractional derivatives. In particular, wave propagation (dispersion and
attenuation) is well described by a Cole-Cole stress-strain equation, as illus-
trated by the agreement with Savage’s theory. We propose a time-domain
algorithm based on the Gr€unwald-Letnikov numerical approximation of the
fractional time derivative involved in the time-domain representation of
the Cole-Cole model. The spatial derivatives are computed with the Fourier
pseudospectral method. We verify the results by comparison with the ana-
lytical solution, based on the Green function. The numerical example illus-
trates wave propagation at an interface separating a porous medium and
a purely solid phase.
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1. Introduction

Heat diffusion is one of the loss mechanism to explain the behavior of anelastic wave propaga-
tion. The theory to describe this behavior is thermoelasticity, i.e., the heat equation coupled with
the theory of dynamic elasticity, based on the relation between the fields of stress-strain and tem-
perature [1–6]. Basically, mechanical and/or heat sources induce a temperature field and the heat
current equalizes the temperature difference with the surroundings giving rise to energy dissipa-
tion. An analysis of the physics of plane waves has been developed by [7], which is a generaliza-
tion of the energy balance for the isothermal case [e.g., 8]. P and S wave energies are lost because
of thermal diffusion. In inhomogeneous media, the existence of a thermal mode, diffusive at low
frequencies and wave-like at high frequencies, induces more dissipation [3, 9, 10]. For instance, if
the matrix porosity varies significantly from point to point, there is additional loss due to P wave
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to thermal-wave conversion, which can be termed wave-induced thermoelastic attenuation in ana-
logy with wave-induced fluid-flow attenuation caused by the Biot slow mode in porous media
[e.g., 8, 11].

Ref. [12] developed a theory based on the standard-linear-solid mechanical model (or Zener
model in viscoelasticity) by introducing a relaxation time into the equations of thermoelasticity.
This approach describes the attenuation of the P waves. On the other hand, [13] considered a
more general (physical) system of equations (compared to those of [1, 14] and [2]), based on a
hyperbolic heat-transfer equation, which also contains a relaxation term (LS theory), that can
basically be related to the Maxwell mechanical model. A physical justification is given by [15–18].
Ref. [9] implemented this theory in numerical modeling of wave propagation, whereas [10] solved
the poro-thermoelastic case. The differential equations include as solution the thermal wave hav-
ing similar characteristics to the fast and slow P waves of poroelasticity [19]. Ref. [20] considers
the LS lattice model, based on the Debye theory [21], by which heat is transported by elastic
waves (phonons) in a crystal lattice (it holds for dielectrics, not metals). It follows that the vel-
ocity of the thermal wave must be less or equal to the isothermal P-wave velocity [9, 22].

Many authors have used fractional calculus as an empirical tool to describe the properties of
linear viscoelastic materials [e.g., 23–25]. A wide bibliography up to nowadays is contained in the
recent book by [26] including an historical perspective up to the 1980’s. Ref. [27] reviews meth-
ods for fractional-order problems and provides a set of MATLAB routines. Fractional derivatives
have been used in thermoelasticity, mostly based on the Caputo derivative [e.g., 28–30]. This
derivative [31, 32] is an analytical tool to solve fractional differential equations, and is approxi-
mated here with the numerical Gr€unwald-Letnikov (GL) derivative. The book by [33] reviews the
theoretical aspects in the field of fractional thermoelasticity. The Cole-Cole model has been used
to describe attenuation by [34] who performed experiments at frequencies from 4 to 400Hz in
fluid-saturated sandstones and limestones, implying a stress-relaxation mechanism in the presence
of pore fluids. Ref. [35] simulated wave propagation in viscoelastic media using the Cole-Cole
model and fractional time derivatives. An optimal fit of electromagnetic experimental data has
been obtained with the Cole-Cole model [8, 36; eq. (8.138)]. Refs. [37, 38] and [39] solved the
electromagnetic equations using dissimilar techniques to compute the fractional derivative. Ref.
[40] suggest the use of the Cole-Cole model to propagate waves in blood in the context of ther-
moelasticity and homogeneous media. Here, we show that the model can be linked to a physical
process such as wave-induced thermal flow.

Following [41] [Eq. (24)], the heat equation can be generalized so that the relaxation due to
the heat diffusion is governed by a fractional differential equation [see also [26], Eq. (3.48)]. We
propose to solve the [12] time-domain differential equations based on the Cole-Cole model with
a direct method, where the spatial derivatives are computed by using the staggered Fourier pseu-
dospectral method [e.g., 8]. Fractional time derivatives are computed with the GL approximation
[42, 43], which is an extension of the standard finite-difference approximation for derivatives of
integer order. Moreover, we show that the Q factor of the P wave in [13] theory can be well
approximated by the Zener mechanical model [12].

The paper is organized as follows. First, we establish the Zener and Lord-Shulman thermoelas-
ticty equations. Second, we present the Cole-Cole model in the frequency and time domains.
Then, we illustrate the numerical algorithm to discretize the differential equations. Finally, we test
the model with an analytical solution and present results for the case of a medium with empty
spherical pores.

2. Zener and Lord-Shulman thermoelasticity equations

Let us define by r the stress field, and by T the increment of temperature above a reference abso-
lute temperature T0 for the state of zero stress and strain. In a linear isotropic medium, the
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stress-strain relations of thermoelasticity describing P waves is given by [14, Eq. (2.2)]

r ¼ P0�� bT (1)

where � is the trace of the strain tensor, P0 is the isothermal P-wave modulus and b is the ther-
mal expansion [e.g., 9]. This quantity is usually expressed as b ¼ 3aK, where a is the coefficient
of linear thermal expansion (the volumetric one is 3a), and K is the isothermal bulk modulus.
Moreover P0 ¼ K þ 4l=3, where l is the isothermal shear modulus.

On the other hand, the law of heat conduction is

cr2T ¼ c _T þ bT0 _� (2)

[44, Eq. (32.2); 26, Eq. (3.43)], where c is the coefficient of heat conduction (or thermal conduct-
ivity), c is the volumetric specific heat coefficient, r2 is the Laplacian, and a dot above a variable
denotes time derivative.

2.1. Zener equations

Ref. (12) replaces the term containing the Laplacian in Eq. (2) by a relaxation term [see p. 77,
Eqs (117) and (122)]. His solutions satisfy

c
c
r2T þ sr

�1T ¼ 0, (3)

where sr is a relaxation time. It can be shown that with this assumption, the heat equation (2)
becomes a memory-variable equation equivalent to that of viscoelasticity [e.g., 8], with T being
the memory (or hidden) variable. Substituting Eq. (3) into (2) yields

_T ¼ �s�1
r T � b

c
T0 _�: (4)

Combining Eqs. (1) and (4), we obtain

rþ sr _r ¼ P0ð�þ s� _�Þ, (5)

which is the classical Zener model [e.g., 8], where

s� ¼
cA
cI

� �2

sr, (6)

cI ¼
ffiffiffiffiffi
P0
q

s
and cA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2I þ b2

q
(7)

are the isothermal and adiabatic velocities, respectively,

b ¼ b

ffiffiffiffiffi
T0

qc

s
(8)

and q is the mass density. The unrelaxed (adiabatic) P-wave modulus is

P1 ¼ cA
cI

� �2

P0: (9)

Neglecting inertial terms [14, Eq. (10.1)], the stress-equilibrium equation implies r � r ¼ 0,
and taking the gradient in Eq. (1) gives P0r2� ¼ br2T, which combined with Eq. (2) gives the
following diffusion equation

_T ¼ Dr2T , with T ¼ r2T: (10)
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where

D ¼ cI
cA

� �2

a2, with a2 ¼ c
c
, (11)

is the corresponding thermal diffusivity.
Appendix A presents a plane-wave analysis of the thermoelastic equations, where

Q0 ¼
2

ffiffiffiffiffiffiffiffiffiffiffi
P1P0

p

P1 � P0
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1=P0

p
P1=P0 � 1

¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c=ðcDÞ

p
c=ðcDÞ � 1

(12)

and

sr ¼ 1
2pf0

ffiffiffiffiffiffi
cD
c

s
¼ 1

2pf0
� cI
cA

: (13)

Hence, given the location of the thermoelastic peak, f0, the thermal properties, c, c and D and the
isothermal modulus, P0, the wave properties are fully defined.

2.2. Lord-Shulman equations

The LS thermoelasticity dispersion equation refers to [20, 45] and [9]. We outline in Appendix A
a plane-wave analysis based on the LS theory and implemented by [9] in numerical modeling of
wave propagation. Ref. [10] generalized this approach to the poro-thermoelastic case.

It is clear from the previous section and Appendix A that the low- and high-frequency veloc-
ities of the Zener theory are cI and cA, respectively, while those of the LS theory are cA and c1,
where

c1 ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2A þ c2I þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2A þ c2I Þ

2 � 4c4I

qr
(14)

[this velocity is based on Eq. (7), lattice model]. This also implies a different level of attenu-
ation as we shall see in the examples. The Zener and Cole-Cole models are adapted to match
these more realistic velocities, such that

s� ¼
c1
cA

� �2

sr and P1 ¼ c1
cA

� �2

P0, (15)

instead of Eqs. (6) and (9), respectively.

3. The Cole-Cole model

Effective attenuation can be described by means of power laws in the form of fractional deriva-
tives. A generalization of the thermoelastic equation can be achieved by using the Cole-Cole
model [8, 36, 41, 43, 46, 47], which involves derivatives of fractional order and is used to describe
dispersion and energy loss in dielectrics, anelastic media and electric networks. The complex
modulus of a Cole-Cole element generalizes Eq. (33) to

PðxÞ ¼ P0 �
1þ ðixs�Þq

1þ ðixsrÞq
(16)

Refs. [8, 41], where 0 � q < 2 is a real number, and the relaxation times are given by Eq. (34).
The quality factor has a minimum value located at f0, as in the Zener case. The unrelaxed modu-
lus is P1 ¼ P0ðs�=srÞq: The peak dissipation factor (Q�1) depends on q, and when q¼ 1, we
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obtain the Zener model. This additional parameter is closely related to the width of the relaxation
peak and allows us to fit realistic attenuation levels.

In order to fit experimental data, one requires a parameterization with f0, Q0 and q, since the
peak dissipation factor Q0 and the location of the peak are generally reported in the literature
[e.g., 3]. In this case, the relaxation times depend on q and the peak dissipation factor is the
same regardless the value of q. The relaxation times are

s� ¼
j1=q

2pf0
, sr ¼ j�1=q

2pf0
, (17)

where

j ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

0

p
sinu

Q0 sinu� cosu
, u ¼ pq

2
(18)

[48].
The Cole-Cole model stress (r)-strain (�) relation, corresponding to the modulus (16), is [41]

rþ sqr
@qr
@tq

¼ P0 �þ sq�
@q�

@tq

� �
(19)

The limit s� ¼ 0 gives the Kelvin-Voigt model implemented in [43]. In the frequency domain,
we have

r ¼ P�: (20)

4. 2D Wave equation

The conservation of linear momentum for a 2D linear thermoelastic medium, describing dilata-
tional deformations, can be written as

q€ui ¼ @ir, i ¼ 1ðxÞ, 2ðyÞ (21)

[e.g., 8], where ui are displacement components and @i denotes spatial derivatives.
The initial conditions are uið0, xÞ ¼ 0, @tuið0, xÞ ¼ 0, and uiðt, xÞ ¼ 0, for t< 0, where x is the

position vector. The strain-displacement relation is � ¼ @1u1 þ @2u2: Then, the complete set of
equations describing the propagation is

€u1 ¼ q�1@1r,

€u2 ¼ q�1@2r,

rþ sqr
@qr
@tq

¼ P0 �þ sq�
@q�

@tq

� �
,

� ¼ @1u1 þ @2u2:

(22)

5. Numerical algorithm

The calculation of a fractional derivative is based on the Gr€unwald-Letnikov (GL) approximation,
such that for a function g it is

@qg
@tq

� Dqg ¼ 1
hq

XJ

j¼0

ð�1Þjð q
j
Þgðt � jhÞ, (23)

JOURNAL OF THERMAL STRESSES 5



where h is the time step, and J ¼ t=h� 1: The derivation of this expression can be found, for
instance, in [42]. The binomial coefficients are negligible for j exceeding an integer J, the effective
memory length. When q< 1, the decay of the binomial coefficients is slow [e.g., 42, 49], and J is
large. Then, we increase the order of the derivative by applying a time derivative of order m to
the third Eq. (22). The result is

@2
t u1 ¼ q�1@1r,

@2
t u2 ¼ q�1@2r,

Dmrþ sqrDmþqr ¼ P0ðDm�þ sq�Dmþq�Þ þ s,

� ¼ @1u1 þ @2u2:

(24)

where we added a source term s. It is enough to take m¼ 1 to have a considerable saving in
memory storage compared to m¼ 0.

Discretizing Eq. (24) as t ¼ nh and defining un ¼ uðnhÞ, the left-hand side of the first two
equations of equations (24) can be written as

h2ðD2uiÞn ¼ unþ1
i � 2uni þ un�1

i , i ¼ 1, 2, (25)

where we have used a right-shifted finite-difference expression for the second derivative. The
third equation is

rn ¼ P0ð�n þ R� þ hmsq�D
qþm
� Þ � Rr � hmsqrD

qþm
r (26)

with

Rn ¼
Xm
j¼1

ð�1Þj
�
m
j

�
nm�j, (27)

Let us consider the case m¼ 1. The GL derivative of g at time nh can be rewritten as

Dqþ1gn ¼ gn

hqþ1
þ rðqþ1Þ

g , rðqþ1Þ
g ¼ 1

hqþ1

XJ

j¼1

ð�1Þj
�
qþ 1
j

�
gn�j, (28)

where rðqþ1Þ
g has the memory of the field from n – 1 back in time.

Then, the final discretized equations are

unþ1
1 ¼ h2ðq�1@1rnÞ þ 2un1 � un�1

1 ,

unþ1
2 ¼ h2ðq�1@2rnÞ þ 2un2 � un�1

2 ,

rn ¼ 1
ar

½rn�1 � hsqrr
qþ1
r þ P0ða��n � �n�1 þ hsq� r

qþ1
� Þ þ hsn�,

�n ¼ @1un1 þ @2un2,

(29)

where

an ¼ 1þ sn
h

� �q

, n ¼ �, r: (30)

The spatial derivatives are calculated with the staggered Fourier method, which has spectral
accuracy for band-limited signals [8, 49, 50], so that the results have not spatial numerical disper-
sion. Since we use Fourier basis functions to compute the spatial derivatives, Eq. (29) satisfy peri-
odic boundary conditions at the edges of the numerical mesh.
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6. Results

We define the Gr€uneisen ratio [51],

C ¼ b
c

(31)

(dimensionless). Let us consider the following typical properties of a sandstone:

density, q : 2600kg=m3

Gr€uneisen ratio,C : 1:1
Volumetric specific heat, c : 2:8� 106 kg=ðm s2

�
KÞ

thermal conductivity , c : 2:3 m kg=ðs3�KÞ
isothermal P� wave velocity, cI ¼

ffiffiffiffiffiffiffiffiffiffi
P0=q

p
: 4160 m=s

absolute temperature,T0 : 300�K,
relaxation time, s ¼ 10�13 s ¼ 0:1 ps,

where we have expressed the quantities in the international systems of units (SI). These values
yield P0 ¼ 45GPa, a2 ¼ 8.2� 10– 7 m2/s, b¼ 625m/s, cA ¼ 4207m/s, c1 ¼ 4245m/s and cT1 ¼
2808m/s (see Figure 1). The relaxation time can be chosen with the criteria indicated by [20]
[see Eq. (42) in Appendix A]. Here we take a higher value (0.1 ps against 0.05 ps). As s decreases
the attenuation and dispersion increase, and generally, the attenuation of the P wave at seismic
frequencies is negligible in homogeneous media. However, in the presence of heterogeneities and/
or cracks or cavities, much smaller than the signal wavelength, the conversion of T diffusion
mode to P wave generates attenuation at low frequencies. This process is similar to wave-induced
fluid-flow attenuation [e.g., 11], by which P-wave to slow P (Biot)-wave conversion is the main
physical mechanism.

The LS theory predicts two compressional waves, namely the P and T waves, the latter com-
monly termed the second sound wave [52]. The phase velocities are shown in Figure 1, where the
T-wave mode is diffusive at low frequencies with a very high dissipation factor, orders of magni-
tude larger that that of the P wave. Figure 2 compares the Zener and LS phase velocities and
quality factors. As can be seen, the Zener thermoelastic model predicts a higher attenuation, a
result of the stronger velocity dispersion, according to the Kramers-Kronig relations, and lower
velocities. The dotted line is a fit of the LS curves with the Zener mechanical model. Since the
agreement is very good, the LS model satisfies the relations [53]. Then, we can use the Zener

Figure 1. Phase velocities of the P and T waves corresponding to the Lord-Shulman theory of thermoelasticity.
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mechanical model and its generalization (Cole-Cole model) adapted to match the more realistic
velocities predicted by the LS theory.

Figure 3 shows the Cole-Cole phase velocity (a) and dissipation factor (b) as a function of fre-
quency for three values of the order q, where q¼ 1 is the Zener model. The thermoelastic
medium corresponds to the above properties, whose Zener parameters are P1 ¼ 47GPa, f0 ¼
2810GHz, Q0 ¼ 50, s� ¼ 0.058 ps and sr ¼ 0.055 ps, so that the high-frequency modulus has the
same value. The low-frequency stiffnesses P0 are 45.36, 45 and 44.63GPa for q¼ 0.8, 1, and 1.2,
respectively. The peak attenuation and the velocity dispersion increase with increasing q.

On the other hand, using the parameterization (17)-(18), the peak dissipation factor is con-
stant, regardless the value of q and the relaxation times vary with q. An example is illustrated
in [48].

Now, we consider the thermoelastic model developed by [3] for a porous medium with spher-
ical pores of radius R (see Appendix B). In this case, we have significant attenuation at the seis-
mic band. We assume R¼ 0.4mm, P0 ¼ �E ¼ 70GPa, r¼ 0.170, �r ¼ 0.173, E¼ 83GPa,
K¼ 39GPa, l¼ 33GPa, �K ¼ 33GPa, �l ¼ 27.6GPa, q¼ 2600 kg/m3, / ¼ 9.54%, C¼ 1.1,
b¼ 117� 106 kg/(m s2

�
K), c¼ 532m kg/(s3

�
K) and T0 ¼ 300 o K (a barred quantity corre-

sponds to the medium including the pore space). Figure 4 shows the good fit with the Cole-Cole

Figure 2. Comparison between the Zener and Lord-Shulman theories of thermoelasticity: Phase velocity (a) and dissipation fac-
tor (b) of the P wave. The symbols represent a fit with the Zener (standard-linear solid) mechanical model.
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model based on Eqs. (17)-(18), where we have used f0 ¼ 23.37Hz, Q0 ¼ 35.37 and q¼ 0.82. The
Zener curve is also shown, but only can match the maximum value and the location of the peak.
Decreasing c shifts the relaxation peak to lower frequencies, but the peak dissipation (Q�1) is
the same.

We verify the numerical algorithm by comparing numerical and analytical solutions in homo-
geneous media, where the latter is given in Appendix C. The time history of the source is

sðtÞ ¼ o� 1
2

� �
exp ð�oÞ, o ¼ pðt � tsÞ

tp

" #2

, (32)

where tp is the period of the wave and we take ts ¼ 1:4tp: The peak frequency is fp ¼ 1=tp:
The numerical mesh has uniform vertical and horizontal grid spacings of 20m, and 231� 231

grid points. The medium properties are those of the previous example. A dilatational source is
applied at the center of the mesh with a peak frequency equal to the relaxation frequency. We
use a memory length L¼ 75 and a time step h¼ 0.5ms. Figure 5 compares the numerical and
analytical transient solutions at a distance of

ffiffiffi
2

p
� 800m from the source location. The agreement

between solutions has an L2- norm error less than 0.5%. A comparison between the lossy and

Figure 3. Cole-Cole phase velocity (a) and dissipation factor (b) of the P wave as a function of frequency for different values of
the order q (q¼ 1 corresponds to the Zener viscoelastic model of Figure 1).
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Figure 4. Dissipation factor (a) and phase velocity (b) of thermoelastic [3] model, compared to those of the Cole-Cole and
Zener models.

Figure 5. Comparison between the analytical (solid line) and numerical (dots) solutions in a lossy medium.
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lossless (Q0 ¼ 1) solutions are displayed in Figure 6. Since the elastic (lossless) limit is taken at
the low-frequency limit, this pulse is slower than the viscoelastic one. The numerical algorithm
allows us to compute snapshots of the wavefield in order to see its evolution. Figure 7 shows a
snapshot of the stress field at 450ms.

Let us consider an inhomogeneous medium, specifically, an interface separating two half-
spaces. The upper medium has the properties corresponding to Figure 4, while the lower one has
no pores, with P0 ¼ E ¼ 170GPa and q¼ 2800Kg/m3, i.e., lossless. The upper medium has
relaxed and unrelaxed velocities of 5189 and 5388m/s, while the lower medium has a velocity of
7792m/s over all the frequency range. Figure 8 shows a snapshot at 350ms. A weak reflected
wave and a strong transmitted wave can be observed.

Figure 6. Comparison between the lossy (solid line) and lossless (dashed line) solutions.

Figure 7. Homogeneous medium. Snapshot of the stress at 450ms.
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7. Conclusions

The classical Zener model of thermoelasticity has been compared to the more general Lord-Shulman
theory, whose low-frequency phase velocity is the adiabatic one, while the first has velocities ranging
between the isothermal and adiabatic limits. Then, we present a numerical algorithm to model ther-
moelastic propagation based on the Cole-Cole model, which implies the solution of fractional time
derivatives of stress and strain. The kernel of this relation has three parameters that can be obtained
by fitting real or synthetic data, namely, the relaxed (low-frequency) velocity, the maximum dissipa-
tion factor and the fractional order. We fit the quality factors obtained for homogeneous media and
from Savage’s theory of thermoelastic loss in porous media. The wave field is computed in the time-
space domain using the Gr€unwald-Letnikov approximation and the staggered Fourier pseudospectral
method. The modeling algorithm has been tested with the analytical Green’s function.

Appendix: A Plane-wave analysis

A.1. Zener theory and mechanical viscoelastic model

The complex modulus of the Zener model is obtained by taking a time Fourier transform in Eq. (5),

P ¼ r
�
¼ P0 �

1þ ixs�
1þ ixsr

(33)

where x ¼ 2pf is the angular frequency and i ¼
ffiffiffiffiffiffiffi
�1

p
: Setting

s� ¼
1

2pf0Q0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

0 þ 1
q

þ 1

�
and sr ¼ 1

2pf0Q0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

0 þ 1
q

� 1

�
, (34)

Eq. (33) can be re-written as

Pðf Þ ¼ Q0 þ iðf=f0ÞðRþ 1Þ
Q0 þ iðf=f0ÞðR� 1Þ � P0,R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

0

q
, (35)

where f0 is the relaxation frequency, Q0 is the minimum quality factor at f0 ¼ 1= 2p
ffiffiffiffiffiffiffiffi
s�sr

p� �
, P is the zero-fre-

quency modulus, and f is the frequency.

Figure 8. Snapshot of the stress at 350ms in a inhomogeneous medium. The reflected and transmitted waves are indicated,
and the asterisk marks the source location.
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The unrelaxed modulus (f ! 1) is P1 ¼ ½ðRþ 1Þ=ðR� 1Þ�P0, and the following relations holds, Q0 ¼
2

ffiffiffiffiffiffiffiffiffiffiffi
P1P0

p
=ðP1 � P0Þ, so that the modulus dispersion P1 � P0 can approximately be obtained from Q0. The Zener

Q factor is

QZ ¼ ReðPÞ
ImðPÞ (36)

[e.g., 8], and the phase velocity is

cp ¼ Re

�
1
v

�" #�1

, v ¼
ffiffiffi
P
q

s
, (37)

where v is the complex velocity and q is the mass density [e.g., 8].
Equation (33) is also the mathematical expression of the standard-linear solid mechanical model of viscoelasti-

city made of springs and dashpots, also called Zener viscoelastic model [e.g., 8]. In this case, the relaxation times
depend on the viscosity, g, of the dashpot as

sr ¼ 1� P0
P1

� �
s� and s� ¼

g
P1

: (38)

A.2. Lord and Shulman (LS) theory

According to [20] and [9], the dispersion relation is

v4 � ðc2A þMÞv2 þMc2I ¼ 0,M ¼ ixa2

1þ ixs
, (39)

where s is a relaxation time. Equation (39) is equivalent to Eq. (39) of [20], which is derived from his Eq. (36) (a
factor c4A is missing in the last term of this equation). If s¼ 0, we obtain Eq. (9) of [45]. High and low values of s
correspond to peak locations of the P wave, fp, at low and high frequencies, respectively, with

fp �
1
2ps

: (40)

Equation (39) has the solutions:

2v2 ¼ c2A þM6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2A þMÞ2 � 4Mc2I

q
: (41)

There are two P-wave solutions, an elastic P wave (plus sign) and a thermal T wave (minus sign). At x¼ 0 we
have two real solutions: v¼ 0 (T wave) and v ¼ cA (P wave), independent of s. If s¼ 0, v ¼ 1 (P wave) and v ¼
vI (T wave) at infinite frequencies.

Ref. [20] takes

s ¼ a2

c2I
(42)

for his lattice model [see his Eqs. (34), (37) and (58)]. For x ! 1, we have M ! a2=s ¼ c2I and the solution is

2v2 ¼ c2A þ c2I6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2A þ c2I Þ

2 � 4c4I

q
, (43)

where the plus and minus signs correspond to the P and T waves, respectively. Denoting the velocities by c1 and
cT1, respectively, we have cT1 < cI < cA < c1: The relaxed and unrelaxed P-wave moduli of the LS model – with
the choice [29] – are

P0 ¼ qc2A and P1 ¼ q
2

	
c2A þ c2I þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2A þ c2I Þ

2 � 4c4I

q 

, (44)

respectively.

B. Thermoelastic attenuation of a medium with spherical pores

Ref. [3] obtained the quality factor of the P waves for media filled with spherical pores of radius R. A shear strain
produces a dilatation in the cavities, which in turn generates a heat current and a temperature field T. The expres-
sion of the dissipation factor is
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Q�1
P ðxÞ ¼ 120 � 1� 2�r

1� �r
� �/b

2T0

cK0
� ð1� 2rÞð1þ rÞ

7� 5r
FðxÞ, (45)

where

K0 ¼ 1� 2
3
� 2r� 1
r� 1

� �
P0, � ¼ 1þ 15/ð1� rÞ

7� 5r
, (46)

FðxÞ ¼ v2ð2v2 þ 5vþ 4Þ
ð2v3 � 9v� 9Þ2 þ v2ð2v2 þ 8vþ 9Þ2
� � ,

v ¼
ffiffiffiffi
x
2

r
� R
a
,

(47)

where r and �r are the relaxed Poisson ratio of the mineral and porous medium (at zero frequency), respectively,
and / is the porosity.

C. Green’s function and analytical solution

We obtain a 2D analytical solution of Eqs. (24) with m¼ 1 in homogeneous media. Combining the equations, we
have

€� ¼ 1
q
Dr: (48)

Using Eqs. (2), (20) and (24), Eq. (48) becomes a Helmholtz equation in the frequency domain,

D�þ k2� ¼ � Ds

ixP 1þ ðixsrÞq
� � , k ¼ x

v
, (49)

where k is the wavenumber and v is given by Eq. (37). If v is real, the medium is lossless. The solution to the
acoustic (lossless) equation ðDþ k2ÞG ¼ �8dðrÞ is the Green function G ¼ �2iHð2Þ

0 ðkrÞ, with v ¼ ca (the acoustic
velocity), where Hð2Þ

0 is the zero-order Hankel function of the second kind [e.g., 8]. More precisely,

Gðx, y, x0, y0,x, caÞ ¼ �2iHð2Þ
0

xr
ca

� �
(50)

where (x0, y0) is the source location, and

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2

q
: (51)

The anelastic solution is obtained by invoking the correspondence principle [8], i.e., by substituting the acoustic
velocity ca with the complex velocity v. The differential operator �D=ðixP½1þ ðixsrÞq�Þ acts on the source in Eq.
(49). Thus, the Green function for the strain is

G� ¼ � 1

ixP 1þ ðixsrÞq
� �DG: (52)

Since DG ¼ �p2G away from the source and using Eq. (20), the Green function for the stress is

Gr ¼ PG� ¼
k2G

ix 1þ ðixsrÞq
� � : (53)

We set Gð�xÞ ¼ G	ðxÞ, where the superscript “	” denotes complex conjugation. This equation ensures that
the inverse Fourier transform of the Green’s function is real. The frequency-domain solution is then given by
rðxÞ ¼ 1

8GrðxÞFðxÞ, where F is the Fourier transform of the source time history. Hence,

rðx, y, x0, y0,xÞ ¼
1
8
GrF ¼ � xFðxÞ

4v2 1þ ðixsrÞq
� �Hð2Þ

0
xr
v

� �
, (54)

Because the Hankel function has a singularity at x¼ 0, we assume G¼ 0 for x¼ 0, an approximation that does
not have a significant effect on the solution (note, moreover, that F(0) ¼ 0). The time-domain solution rðtÞ is
obtained by a discrete inverse Fourier transform. We have tacitly assumed that r and _r are zero at time t¼ 0.
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