Simulation of stress waves in attenuating drill strings,
including piezoelectric sources and sensors
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A key element in drill steering and prediction of lithology ahead-of-the-bit is the transmission of
while-drilling information from the bottom of the well to the rig operator and the geophysicists.
Mud-pulse telemetry, based on pressure pulses along the drilling mud and extensional waves
through the drill string, is the most used technique. The last method, properly designed, could
transmit data rates up to 100 bits per second, against the 1 or 2 bits per second achieved with
pressure pulses. In this work, a time-domain algorithm is developed for the propagation of
one-dimensional axial, torsional, and flexural stress waves, including transducer sources and
sensors. In addition, the equations include relaxation mechanisms simulating the viscoelastic
behavior of the steel, dielectric losses, and any other losses, such as those produced by the presence
of the drilling mud, the casing, and the formation. Moreover, the algorithm simulates the passbands
and stopbands due to the presence of the coupling joints and pulse distortion and delay due to
nonuniform cross-section areas. Acoustic and electric pulses, generated at one location in the string,
can be propagated and detected at any other location by piezoelectric and acoustic sensors, such as
PCB accelerometers, clamp-on ammeters, force, and strain transduce2000cAcoustical Society

of America.[S0001-496800)02907-9

PACS numbers: 43.20.Mv, 43.40.Cw, 43.38.Fx, 43.20.BgC]

INTRODUCTION and drilling noise. The quasiperiodic structure of this wave-
guide generates a classical pattern of passbands and stop
Systems for transmitting information in a borehole in- bands® For instance, extensional waves in a typical drill
volve electromagnetic radiation through the drill string andstring have the first passband from 0 to 226 Hz and the first
formations, the use of an insulated conducting cable, presstop band from 226 to 280 HzThe ranges for torsional
sure pulses through the mud column, and acoustic waveraves are 0 to 130 Hz and 130 to 176 Hz, respectively.
propagation along the drill string. The most obvious tech-Deviations from a perfect periodic structure and a variable
nique, i.e., electrical transmission, would require stoppingcross section modify the location of these bands. In addition,
the drilling process every 10 @& drill pipe segmentto add  other attenuation mechanisms act on the extensional waves.
new electrical junctions. The only successful method is thélhese include viscous dissipation into the drilling mud, con-
transmission of pressure pulses, but this technique has a loversion from extensional to torsional and flexural waves, and
transmission rate of about 2 bits per second. On the othesontact with the formation and well casing.
hand, acoustic telemetry based on extensional waves along Besides waves from an acoustic source, such as the drill
the drill string is a promising technique that, at present, isit, it is important to transmit while-drilling information
able to transmit 10 codified bits per second over a range of from piezoelectric transducer sources, located, for instance,
km.1? Several patents have been presented on devices basedthe bottom-hole assembly, to the drill rig on the surface.
on this telemetry technique, for instance, those issued bfgoth acoustic and electromagnetic energy can be transmitted
Hixon,® Cox and Chane§,and Sharp and Smither. through the waveguide if a constitutive equation based on
An important application of the acoustic telemetry piezoelectric coupling is assumed. In general, the signal
method is the Seisfittechnology, which uses the exten- wavelength is far greater than the 4.5-in diameter of the drill
sional wave generated at the drill ihe pilot signal de- string, and the phenomenon can be accurately described by
tected at the rigto obtain RVSP seismograrfié.Improve-  the one-dimensional wave equation.
ment of the method requires the understanding of signal In the present work, we develop a time-domain algo-
transmission and attenuation of the main types of wagrs  rithm for the propagation of extensional, torsional, and flex-
tensional, torsional, and flexuyathrough the drill-string ural stress waves coupled with the electrostatic field equa-
waveguide. At the frequencies used in hydrocarbon drilling,tions, in order to include transducer sources and sensors. In
i.e., from 1 Hz to 2 kHz, longitudinal and torsional waves areaddition, the equations include relaxation mechanisms simu-
nondispersive in a uniform pipe. However, in real drill lating the viscoelastic behavior of the steel, dielectric losses,
strings, the propagation is affected by the presence of cognd any other losses, such as those produced by the presence
pling joints, a nonuniform cross-sectional area, attenuation@f the drilling mud, the casing, and the formation. Moreover,
the method, based on the one-dimensiqidl) wave equa-
tion, considers the presence of the coupling joints and non-
uniform cross-section areas.
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|. EXTENSIONAL WAVES whereY is the relaxed Young's moduluy,; is the unre-

) ) ) laxed Zener modulus, and, is the center frequency of the
The analysis of wave propagation for a ferroelectric ce-

_ . _ ~ ~“relaxation peak. The Maxwell relaxation function is simply
ramic, classified as hexagonal crysgahm is performed in
the Appendix. Propagation along the symmetry axiisec- Y2=nYolexp(—t/7)—1]h(t), (6)
tion of poling implies the existence of coupled acoustic andyhere 7 is the relaxation time and is a dimensionless pa-
elastic and electromagnetic polarizations directed along th@hent—0 or w— o) of the Maxwell relaxation function is
symmetry axis. If we assume that the wavelength of theerg while the relaxed contributidwhent— o or @—0) is
pulse propagating through the drill string is at least five times_ v 5o the relaxed modulus is €17)Y,.°
larger than the diameter of the string, the problem is one  The transducer, described by the constitutive equations
dimensional. In this case, the stiffened acoustic wave is they) s assembled in parallel to the metal part of the drill pipe,
extensional wave propagating along the drill string. described by the constitutive equatied. If the ratio of the

Moreover, following Drumhellef,we consider the pres- ‘transducer area to the total area is denoteddpythe total
ence of piezoelectric sources and sensors, and attenuatigftess acting on this cross section is

due to the viscoelastic properties of the steel, the presence of
drilling mud, and other factors, like leaky modes. T=(1-0)Tp+0Tp=(1-0)Y*S+0cS-0eE (7)
since the parallel configuration implies that the strain is equal

) _ _ _ in both materials. Note that the system has an effective pi-
Using the results obtained in the Appendix for a ferro- g;gelectric constarde.

electric medium, the electric fiel# (E3) denotes the axial

component. The acoustic constitutive equation relates the

axial (z)-component of the stress tensor, denoted Ty g The wave equation

(T3), with the axial component of the strain tensor, denoted

by S (S;). The constitutive equations of the transducers, |he wave propagation problem is solved by introducing

A. The constitutive equations

including electromagnetic losses, are the b_alance of linear momentum and Maxwell's equations.
Consider a small eleme®Q of length 6z and let the cross-
Tp=cS-eE, D=eSterdE, (1) sectional area of the rod kEz). Continuity of particle ve-

whereD (D) is the electric displacemetthonzero in this locity and force holds for a rod whose cross-sectional dimen-
case, since there are conduction curfents(czq) is the  sions are small compared to the length of the (e stress
plane wave moduluse (e,3) is the piezoelectric coupling, can be double-valued or discontinupul the force on the
ande(t) (e,,) is the dielectric relaxation functiofthe sym-  face passing througR is F, the stress on the other face will

bol * denotes time convolution be F+(d,F) 6z, and ifv is the particle velocity of the ele-
The dielectric relaxation function includes one Debyement, Newton’s second law implies

mechanism, which is mathematically equivalent to a Zener padzdw = 620,F. ®)

model. Then

o ) _ On the other hand, the total force acting on the cross section
e=e[l-(1-a’)exp—twia)]n(t), a=Vele, (2)  of the drill string is
where €° is the static permittivitye., is the optical permit- F=aT. 9

tivity, w1 is the center frequency of the Debye peak, brid ) _ I
the Heaviside function. Moreover, we should consider'ntroducing an acoustic souréesuch as the drill bit, Eq8)

Ohm'’s law, relating the conduction currefit to the electric @ be rewritten as

field E, pdw=a la,(aT)+f. (10
J.=0E, (3)  The material density(z) is given by
where o is the conductivity. We have neglected ferromag-  p=(1—-0)p,+0Op,, (12)

netic relaxation, damping due to the piezoelectric coupling
and out-of-phase conduction currents.
The constitutive equation of the drill string can be writ-

Wwherep, is the density of the drill string angd, is the den-
sity of the transducer.
Time convolutions in the constitutive equati¢r) can

ten as be avoided by introducing memory variabf@3/\e obtain
TAZYRaS Y=Y, W To[(1-0)Yy+OC]St (1) Vo1 i)~ OcE,
where the acoustic relaxation functiofh can be described (12

by a Zener model, representing the string material, and fhere the memory variable§ and ¢, satisfy
Maxwell model, representing additional dissipation factors,

such as energy loss by radiation into the fluids which sur-  d{1=—wor[{1—(1-v?)S] (13
round the drill string. The Zener relaxation function is and
Yi=Yo[1—(1—»? h AL -

1= Yo[1—(1=vo)exp(—twor)JN(t), v= Yy 5) L2=—(S=L2). (14)
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Sinced;S=d,v, and redefining,{,— ¢, Eqs.(12)—(14) be-
come

4T=[(1-0)Y,+0c]dw
+(1-0)Yo({1— i) —OedE,

1= —wor[{1—(1—1%)dp], (15

1
&t§2:;(‘9zv_§2)y

witioa

(29)

€= de€g—— .
wiatlw
Now, assume a plane wave with a particle velocity hav-
ing an spatial phase factor expiws?, wheres is the com-
plex slownesgthis quantity is complex in the lossy case; the
real and imaginary parts are related to the wave number and
the attenuation, respectivelyFor any field variable, we have
d,— —iws. Itis easy to show that the dispersion equation is

- Oe)?
where we have used E(p). 2 (1-0)Y+ ®c+( *) =p, (25)
On the other hand, the radial-component of the electro- €
magnetic equation in the transducet}s, where
O=0E+¢,D+J 16 i
e 19 =2 —o. (26)

[the generalized version of E¢A8i)], whereJ (J,) is the
electric current source.

w

The physical phase velocity and attenuation factor are given

Since part of the cross-sectional area consists of metapy

we assume an effective piezoelectric coupling. Taking
this into account and introducing the hidden varial&
substitution of Eq(1) into Eq. (16) yields

0=0E+€e"gE+B®edp+ e+, (17
where
Te=0+wia(1—a?)e,
with & obeying the following first-order equation:
déE=—wial E+wia(1-a)E].
Time-differentiation of Eq(17) gives
T+ €3, E+Oed, i+ Y+ T=0, (19

where&=4,E, =09, and J=4dJ. Equation(10) implies
dw=[a a,aT+f]/p. Substituting this expression into Eq.
(19) we obtain

(18)

1
Tl+ €79 E+ ®eaz[ ;[aflazaﬂ f1t + ¢+ T7=0, (20
which, together with the time derivative ¢18),
hb=—wiaf Y+ a)la(l—az)é'], (21

forms the electromagnetic equations.

Vp=[Re(s)]* (27)

and

a=—wIm(s), (29)

respectively.

D. Wave equation in matrix form

Equations(20) and (21), together with Eqs(10) and
(15), form the wave equation in the quasistatic case. Note
that ,E must be replaced by the variabiein Eq. (15).
These equations govern solutions that travel at velocities
comparable to acoustic velocities.

The quasistatic differential equations can be written in
matrix form as

IW=Mw +s, (29
where

w=[v,T,{1,{2,E4]" (30
is the unknown vector,

s=[f/p,0,0,0—[J+0Oed,(p 1f)]/e*,0]" (31

is the source vector, and is the propagation matrix, given
by

C. Plane wave solution 0 Mp O 0 0 0

Let us assume a harmonic wave with a phase factor Mar 0 Mz Mz My 0
exp(ot), wherew is the angular frequency. Then, the con- - Mz; O Mz O 0 0 32
stitutive equationgl) and(4) can be written as My O 0 My O 0

Tp:CS_eE, 0 M52 0 0 M55 M56

D=eS+%E, (22) 0 0 0 0 Mg Mg

~ where
TA=YS, .
M = -

where 12 (Pa) O')Za,

Sy wotior Yo ’s M21=[(1-0)Yy+0c]d,, Mz=(1-0)Y,,

-7 Owov+iw l+iwT 23 Mos=—(1-0) 7Yy, My=-—€0,

and Mg1=wor(1—1v?)d,, Mgs=—wgv, (33
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My=719,, My=—7"1 where, for simplicity, we use the same notation as for the
extensional waves. Her&,, andY denote the relaxed and
Moo — %(9 -1y Moz — o/ €” unrelaxed limits of the drill-string relaxation functiory,,
52= "= 9(pd) T0R, Mss=—oel€”, and{; is the corresponding hidden variable, witheplaced

by RtQ in Eq. (15). The same argument holds for the pa-
rameters of the Maxwell model.

In matrix notation, the equation describing torsional os-
cillations, coupled with the quasistatic electromagnetic field,

The constitutive equation for torsional waves in a ferro-has the form(26), where

electric ceramic is similar to that of the extensional waves ~ T

. ) ; S o w=[0,T,{1,05.¢, 40
given in Eq.(1). For torsional vibrationsE denotes the azi- [0.T.00.5.8¢] (40
muthal componentE, of the electric field, Tp is the IS the unknown vector,
¢z-component of the pie_zoelectric_ stress t_enébri,s the s=[f1/p,0,0,0—[J+Oeda(Rrp ) ]/€*,0]T (41
¢z-component of the strain tensd, is the azimuthal com- _ _ )
ponent D) of the electric displacement is the rigidity is the source vector, and is the propagation matrix, whose
modulusc,,, € is the piezoelectric couplinge(s), ande(t) ~ components have the same express&f), except for
is the _dielectric. reIaxatiqn functiom4(t). .As b_efore, the M= (1p) 13,1, M21=[(1—®)YU+®C]R-F1(92RT,
acoustic relaxation functiony,(t) of the drill string (Y for
extensional wavesan be described by a parallel connection My=(1—0)R; o, My=—(1- @)R{lnYo,
between a Zener model and a Maxwell model, representing

M56:_€O/€w, M65=—wia2(1—a2), M66=—w1a.

Il. TORSIONAL WAVES

additional dissipation factors. Similarly, a Debye mechanism Mas=—OR; e,

represents the dielectric relaxation function. M 3= wor(1—12)d,Ry, (42)
The wave propagation problem is solved by introducing

the balance of angular momenttim* and Maxwell’'s equa- My=7"'9,Rr,

tions. Let¢ denote the relative angular displacement of two Oe

cross sections, so thate is the twist of the cylinder. The Mg,=— E_ooazRT(Pl)ilé’zl-

torsional couple is equal to the radius of gyratien multi-

plied by the forceaT, i.e., C=aR;T, where T is the It can be shown that the dispersion relation has the form
¢z-component of the total stress tensor. The moment of th¢25).

kinetic reactions about the axial axdaR%&n(ﬁ balances the

angular moment,C. Then, the equation of motion is Ill. FLEXURAL WAVES

paRedyd=d,(aRyT). (39 In the simplest theory of flexural vibrations it is assumed
that the motion of each element of the pipe is purely one of
translation in a direction perpendicular to the axis of the
pipe. We assume that the wavelength is much larger than the
diameter of the drill string. Therefore, effects such as rotary
inertia are neglectetf:'* Following Kolsky* the equation

of motion for flexural vibrations of bars is

Note that the radius of gyration is defined by
RZ=a"! f d’da (35)

(Ref 15, whered is the distance to the axis of rotation. For
a hollow cylinder, the radius of gyration, with respect to the
axial axisz, is padyw=—d,F+fg, (43

1 wherew is the displacement in the plane of bend[egg., if
RT:E(r§+ ra)i? (360  (x,2) is the bending planey points in thex-direction, fg is
the external force, andf is the shearing force. This is given
wherer, andr, are the inner and outer radii, respectively. by

E]eazr;ing Q0 =0,¢ and the polar moment of inertia per unit F=—a,M =o7z(aR.2:Yuz9uW), (44)
’ whereM is the bending momenY, is the unrelaxed Young
| = aRgzz(rg_ ), (377  modulus, andRe is the radius of gyration of the cross section
2 about an axis through its centroid at right angles to the plane
Eq. (34) becomes of bending. For thex,z)-planeRZ=a*[x?da, which for a
L hollow cylinder is
A Q=173,(1T)+f, 38
Pot AIT)+fr (38) R,:=%(rf+r§)llz. (45)

where T=T/R; (it is assumed that the>-displacement is
equal toR;¢), and we have introduced the external torque
f+. The time derivative of the constitutive equation is

Coupling with the axial forcd= implies additional terms in
Egs.(43) and(10). Chin'® (pp. 225, 257, and 271Including
these interactions and sinfe=aT, Egs.(10) and (43) be-
R, T=[(1-0)Y,+0Oc]d,RrQ come

+(1=0)Yo(L— 1lp) — OFE, (39 apdw = d,F +aYyREd[ (d,,)(9,W)] +af (46)
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and padyW+aREY d,,, W+ d,(NI,w)=0, (53)

padyW=—d(F+Fdw)+fe, (47) where we assume that there are no external forces. A plane
with F given by Eq.(9). Coupling with the axial motion Wwave ansatz exigkx—wt), wherek is the complex wave
allows the inclusion of losses and piezoelectric effects. ~ number, gives the following dispersion equatin:

On the other hand, assuming a large bending radius, 2 P2V A N2
Drumhellet’ obtains the following coupled differential paw’=aReYK'—NK*+ikdN. (54
equations: Using Eq.(52) andd,N=apg, we get
F 2_p2 _ _ 2
paatv=aZF—r—+af (48) pw?=REY K —pg(z—zy)k?+ikpg. (55)
b Equation (55) has four solutions, with phase velocity and
and attenuation factor given by
F — -1
b

_ _ _ _ respectively. The group velocity is equal to the derivative of
wherery, is the radius of curvature of the strifgending  the angular frequency with respect to the real parkoft

radiug. Assuming no loss for simplicity, the stress’is gives
T=[(1-0)Yy+0c]| St —|+OeE 50 o\
~[(1-©)Yy+Oc]| S+ |+ OeE, (50 Vg:[Re(g 57
whereYy, =Y. , _ From Eq.(55) we obtain
Let X(z) denote the reference line of the string. The
conditionX(z) =0 defines a straight string. For large bending ak ) o
radius, £=2pw[4RFYk3—2kpg(Z—zN)+ng] . (58)
. 1
OpX= T (51 |v. THE ALGORITHMS
rn(2)
Since d,(Fd,w) in Eq. (47) is equal tod,Fow+Fa,w, Previous algorithms for computing drill-string axial mo-

Eqgs.(47) and(49) are equivalent i#),F 9,w can be neglected tion use the method of characteristics and low-order finite
and d,w~ d,X=1/r,. Similarly, Eq.(46) is equivalent to differencing!® and frequency-domain techniquésHere,
Eq. (48) if (d,,,W)(d,w) can be neglected and,w  drill-string axial, torsional, and lateral vibrations are com-
~1/r,,. However, note that the presence of a radius of curputed with a fourth-order Runge-Kutta technique. The
vature implies the action of a lateral forde in Eq. (47), method calculates the field at time< 1)dt, wheredt is the
otherwise there is no coupling between the flexural and axiaime step, as
motions when solving the problem with Eqg6) and (47). d
. h . - . t

Moreover, the drill string is prestressed by its weight, W I=w+ — (A +2A,+2A5+A,), (59
but in order to avoid collapse, it is lifted at the surface, where 6
itis in tension. Since it must contact the formation in order toynere
drill, it is in compression at the bit. Hence, the static axial
load changes from tension at the surface to compression at Aj=Mw"+s",
the bit, with the point of zero stress close to the drill collar.
Assumingz=0 at the bit and that the distance to the neutral A=
point is zy, the force per unit area of drill string is

N=apg(z—zy), (52

whereg is the acceleration of gravity. In terms of theight-
on-bit (WOB), the force isN=apgz—WOB?® (p. 145. The
axial force satisfiefN<O for the segments in tension, and
N>0 for the segments in compression. The transittdn The spatial derivatives are calculated with the Fourier and
=0 defines the neutral point of the drill string. When mod- Chebyshev methods by using the fast Fourier transform
eling gravity effects, the forcl should be added to the axial (FFT).?2>2! These approximations are infinitely accurate for
force F in Eqgs.(47)—(49). band-limited periodic functions with cutoff spatial wave
numbers which are smaller than the cutoff wave numbers of
the mesh. When using the Chebyshev method, nonperiodic
boundary conditions can be implemented at the end of the

Let us consider a uniform drill string subject to the vari- pipes, and the grid points can be distributed in accordance
able axial forceN and assume that there is no coupling with with the structure and geometry of the drill string. We con-
the extensional wave. Substitution of E¢4) into (47) with sider the following coordinate transformation from the com-
F=0 yields putational to the physical domain:

dt
W+ §A1)+§”1’Z,

dt
Wt Ay [+

A3: M

A4: M(Wn+ th3)+Sn+l

Plane wave analysis
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Coupling joint Steel pipe 1.0
dq =104 mm dy =114 mm
dy = 165 mm dy =127 mm B (a)
F T 1 L} LF 0.5
851 cm 46 cm B
] — 2

FIG. 1. Regular drill string consisting of pipes and tool joints.

Particle velocity
o
o

0.5
B q)—a-1 . ]
Zj—Zma{m , J—O,...,nz 1, (60) ]
mapping the intervall —1,1] onto the interval[0,zyas 10 o 2'5 5‘0 7‘5 1(‘)0 1;5 1;’0 1‘75 200
where;=cogwj/(n,—1)] are the Gauss-Lobatto collocation )
points. The function Time (ms)
1.0
is a family of transformations, where is a vector of param- 0.8
eters defining the mapping. The spatial derivative of a field g B
variable in the physical domain is then given by % 06
[0 0
au  dudl [q(l)—q(—=1)|adf du f .
—= = | = (62 !
dz  d¢ 9z Zmax aq d¢ £ 044
For instance, in the second example we use the followingg )
symmetric mapping function: 02—
arcsin(y{) i U
(D= (63) 0.0 i e N“”“J ! B
arcsir(y) 0 1 2 3 4 5
satisfyingq(1)=1 andq(—1)=—1. Herea=y, and Frequency (kHz)
d¢ arcsiny) =5 FIG. 2. Time history(@) and Fourier transfornfb) of the sinc extensional
% = v V1=vy7L% (64) pulse propagated along ten tool joiritee Fig. 1

This mapping stretches the mesh at the boundaries. When
vy—0, we obtain the Gauss-Lobatto collocation points, and  f(t)=sind 2z f (t—tg)],
y—1 gives equally distributed points as in the Fourier dif-

ferential operator. Using this mapping, the spatial derivativgNhiCh corresponds to a gate function in the frequency do-

(62) can be rewritten as main. The source frequency is 5.568 kHz, which is half the
u 1 ) | > U maximum frequency “supported” by the mesh, i.é .y
9z yTzarca ysin = |N1=9% 3’ (65) =Vymin/(2d2), whereV,, i, is the minimum phase velocity.

] ) ) ) ) Frequencies beyond this limit are aliased. The source is lo-
wheren, is the number of grid points, andiz is the maxi-  cated at grid point 1499 and the receiver at grid point 2050.
mum grid spacing. o _ The first tool joint starts at grid point 1599, with each joint

Free surface boundary conditions at the end of the pipeg,ogeled by two grid points and each pipe element by 37 grid
are implemented by the technique described in Ref. 21.  qints The spatial derivatives are computed with the Fourier
method, and absorbing regions of length 18 grid points are
implemented at the two ends of the drill string to avoid wrap-

V- EXAMPLES around effects. The wave field is computed by using a time
A. Propagation of extensional stress waves along an step of 1us, with the time history resampled every 48.
attenuating drill string with periodic coupling Figure 2 shows the time histofg) and its Fourier trans-
joints form (b), where the characteristic passbands can be

A drill string with the characteristics shown in Fig. 1 is appreciated:® The transform was made using a sampling
used to simulate acoustic transmission through nine pipe einterval of 40us and 5544 points.
ements separated by ten tool joints. In particular, this prob- ~ The following numerical experiment considers the band-
lem has been solved by Drumhelféwith a different nu-  limited time function
merical algorithm, based on the method of finite differences.

The Young modulus of the pipe and coupling jointsYig _ 1520 2 B

=Y,=206 GPa, and the material density js=7850 f(t)—exp{ 2fe(t=to) ]Coiﬂ"(t to)], (66)
kg/m®. We considem,=3465 and a uniform grid spacing

dz=23cm. The source time history is wheref. is the cutoff frequency anth=3/f...
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FIG. 3. Time history for extensional waves corresponding to the model
illustrated in Fig. 1, showing the case without ldg®ntinuous ling and
with loss (broken ling.

Attenuation can be easily parameterized as a function of €
the minimum quality facto@ of the relaxation peak and the
central frequency of this peak. We have

Attenuation (1

2y df g
Q=77 and fo=5_.

We assumé =500 Hz, Q=200, fo=f./2, and Maxwell's
parameters;=0.02 andr=200us, which are used to model
the radiated energy into the fluids surrounding the drill
string. Figure 3 compares the time histories corresponding to
the losslesgcontinuous ling and lossy(broken ling cases.

As expected, the attenuation is more pronounced for the codag, 5. Phase velocitya) and attenuation factdb) of a wave propagating

Frequency (kHz)

waves. in an assemble brass/ferroelectric cerafomntinuous ling where the pro-

portion of ceramic i€ =0.8. The broken line corresponds to the pure brass
B. Transmission of extensional pulses between material(i.e., ®=0) and the dashed line to the pure ceramic matéial,
ferroelectric ceramics 0=1).

In this example we consider the propagation of stress
waves between two piezoelectric transducers joined by a hol-  As in the acoustic case, dielectric loss is parameterized
low cylinder made of brass. The model and configurationpy the minimum quality facto®, and the central frequency
shown in Fig. 4, correspond to a laboratory experiment conf, of the relaxation peak. We have
ducted by Drumhelle?.The Young modulus of the cylinder
is Yy=Y,=108.13GPa, and its material density s Q.= 2a
=8456 Kg/nt. Intrinsic loss in the brass is described by the ¢ a’-1
Zener model withQ=180 andf,=20 KHz.

w3
and f1=z.

The source transducer is made of lead titanate-zirconate
(PZT-5H ceramit whose propertiés are c=48.24 GPa,

source transducer p=T7489kg/mi, e=23.3CInt, °=1470¢,, Q.=50, f,
brass pipe g; Z 535 mm =20kHz, ando=1.5mS/m. On the other hand, the receiver
d1 = 6.35mm —— transduceralso PZT-5H ceramichas acoustic properties
dz =127 mm 51 mm =111 GPa,p=7485.3 kg/m, and similar electric properties
— : to the source transducer. These data are in agreement with
Table IV of Ref. 9. Figure 5 shows the phase velo¢Ry)
[ T T T T T T T T e o o (a) and attenuation factg28) (b) as a function of frequency
for the receiver transducer. The continuous line corresponds
to a wave propagating in an assemble of brass/ferroelectric
692 mm 61 mm 413 mm ceramic, where the proportion of ceramic@s=0.8, while
? the broken line corresponds to the pure brass matérél
receiver transducer ®=0) and the dashed line to the pure ceramic matériel,
0=1).

FIG. 4. Geometry of the experiment corresponding to the ferroelectric trans- . _ . . .
ducers(not in scale. Both ends of the brass pipe satisfy free surface bound- ~ We considern,=694 and a Umf(?rm grid spacindz .
ary conditions. =1.745mm. The source transducer is located between grid
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FIG. 6. Time history of an extensional pulse propagated between two pi- O.St
ezoelectric transducersee Fig. 4 (broken ling compared to the experi- B
mental results obtained by Drumhell@ef. 9 (continuous ling ]
1.0 T T T T
0 2 4 6 8 10

points 407 and 410, and the electric current is applied to grid
point 408. The time history of the sourcg(t), is given in

Fig. 9 of Drumhelle. The receiver transducer is located fig. 8. Section of dil string, numerical mesh, and time history of the
between grid points 446 and 449, and the signal is recordeshgular velocity( for torsional waves propagating from source to receiver.
at grid point 447. The spatial derivatives are computed with
the Chebyshev method, using the mapping funct&s) with

v=0.999. Free surface boundary conditions are satisfied b
the two ends of the brass cylinder. The wave field is com-

Time (ms)

uted by using a time step of O/s, with the time history
esampled every 1.Gs.

The time history of the electric field at the receiver
transducer is illustrated in Fig. @roken ling and compared

1.0 to the experimental resultgontinuous ling The first pulse
(a) is the direct signal traveling from source to receiver. The
second and third pulses are the reflections off the right and
0.5

left boundaries, respectively.

C. Transmission of torsional stress waves

T S O

The drill string shown in Fig. 1 is used to simulate trans-
mission of torsional waves. The rigidity modulus of the pipe
and coupling joints isY ;=Y,=82.4 GPa. The same mesh

Particle velocity
o
(=)

057 and modeling parameters of the previous example are used
: here. Figure 7 shows the time histq@) () and its Fourier
1.0 : : : [ : : : transform(b). As before, the transform was made using a
0 25 50 75 100 125 150 175 200 sampling interval of 4Qus and 5544 points.
Time (ms) The following simulation uses the Chebyshev differen-
10 tial operator and a mapping transformation to model in detalil
: | ®) the geometrical features of the coupling joints, while using a
coarse distribution of grid points for modeling the pigese
0.8+ Fig. 8. For simplicity, we consider propagation through one
S 7 coupling joint. The Gauss-Lobatto collocation points are re-
g 0.6 distributed by using the following mapping function:
(7]
g 2 ™
s 04 q(¢)=_—arctafe tan(e)],  ¢=—-, (67)
E: | a
0.2 with £ =0.2, satisfyingq(1)=1 andq(—1)=-1, and
0.0 va\,‘ f | | 152}[0052((,0)4-823!’12((,0)]. (69)
0 1 2 3 4 5 aq €

Frequency (kHz) Equation(67) is a particular case of the transformation used

FIG. 7. Time history(a) and Fourier transforrtb) of the sinc torsional pulse in Ref. 21. !—JSing this mapping, the spatial derivatié2)
propagated along ten tool jointsee Fig. L can be rewritten as
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(a)

au 2 au 1.0
=" SzmaX[COSZ(cp)Jrszsinz(cp)] e (69) ]
wherez,,,, is the length of the string. 05
We considemn,= 309, a string lengtlz,,,=20.5m, and ]
a source time-history with dominant frequenty=4 kHz. s
The diameters of the pipes and joint are those illustrated in g 0.0 7 \ R e \
Fig. 1, but with a linear transition from grid point 1440.02 3 24 48\'\ f/72 9 120

m) to 147(10.08 m) (from pipe to join} and from point 163

(10.42 m to 166 (10.48 m (from joint to pipe. Figure 8 0.5 fme (ms)
shows the string and the numerical mesh, where one gric .
point every four is represented. The source is located at gric 1
point 20(0.95 m and the receiver at grid point 2605.46 10—
m). At the two ends of the string, nonreflecting boundary
conditions based on the method of characteristics are
imposed! and, in addition, absorbing strips of length 18 are 1.0
implemented to avoid any spurious reflection. The time- . (b)
history, computed with a time step ofids and resampled to 0.8
10 us, is shown in Fig. 8. A set of coupling joints can be ¢ i
modeled by a general transformation based on functions o@
the type given in Eq(67). -4 0.6
8 |
% 04—
D. Propagation of flexural waves £ |
0.2
The simulation of flexural waves requires a careful i
analysis of the dispersion equation. In order to avoid alias-
ing, the source spectrum must be band-limited, with the 00 | P ‘
0.0 0.2 0.4 0.6 0.8 1.0

minimum frequency strictly greater than zero. This will be
illustrated in the following analysis. According to the sam-

_pImg theorem the maximum frequency allowed by the meSh:IG. 9. Time history(a) and Fourier transforrfb) of the Butterworth wave-
IS let used to simulate flexural waves.

Frequency (kHz)

:Vp min
max- 2dz ’ w?=Cc2R2K,
whereV min is the minimum phase velocity obtained from has the solutions
Eq. (56),

1) ) )
Vp min= 277 il RECK(fin)) 172, k== \/m, and k= xi/ CoRe (70

with f i, the minimum frequency of the spectrum. Then, the
minimum allowabledz is

which correspond to a propagating mode and a static mode,
respectively. The phase velocity of the propagating modes is

Az =7Tfmin[de(fmin))]7l given by
) Fmax Vo=27ReCof, and Vi maed Vi min= \Frmae! Frn
Ne.g:e;‘ctmg gr_awty forct;as.N=O) and coupling with the |, principle, the minimum and maximum velocities propa-
axial force =0) we obtain gating in the drill string are 262 and 914 nf{8pe9, and 280
VIRECHT min and 978 m/gjoints), respectively. The wavelength is
dzpn=——"—"",
Zmln ‘Qfmax A= \/ZWRFCo/f,

wherecy=\Y/p. which yields minimum and maximum wavelengths for the

Let us consider the example illustrated in Fig. 1 with pipe section of 1.5 and 5.24 m, respectively. These values
N=F=0. The perturbation is initiated by the flexural force are much larger than the radius of gyration of the pipes
fe, with a time history whose frequency spectrum is a But-(0.043 nj, a necessary condition for the validity of the
terworth filter having a minimum frequency of 50 Hz and atheory* On the other hand, the group velocity is twice the
maximum frequency of 570 Homputed for the pipe sec- phase velocity?

tion), corresponding to a grid spacing=23 cm. The wave- The same mesh and modeling parameters of the first

let and its Fourier transform are illustrated in Figéa)%and  example are used here, and due to less stringent conditions

9(b), respectively. concerning algorithm stability, the wave field is computed
The dispersion equatiofb5), with a time step of 1Qus.
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Frequency (kHz) FIG. 11. Snapshots of the flexural wave at 12Dand 180 mgb) in the

absence of tool joints. The arrow indicates the source and the white dot the
FIG. 10. Time history(a) and Fourier transfornib) of the flexural wave  receiver.
propagated along ten tool joingsee Fig. 1L The dotted line is the amplitude

spectrum of the flexural wave in the absence of coupling joints. . . . .
P ping axial force. The problem is solved by using the equations

. . . . obtained by Drumhell&[see Eqs.48) and (49), respec-
Figure 10 shows the particle velocily () and its Fou- tively]. The radius of curvature of the drill string,, is

rier transform(b). The dotted line is the amplitude spectrum constant and equal to 120 times the radius of gyration of the

?r;tnr:?ofrlrix\lljv?sl Vﬁ‘:z\(’j‘z 'l;‘sit:e ;gzanclfn Ofm(';glrj\f’;lngf lo'ntsthhepipes. Figure 12 shows the wave field, where (hecorre-
9 piing 480a sponds to the flexural particle velocity and (b) to the ex-

9,24 points. Slnce source and receiver are 1?6'73 M apaghsional particle velocity. The lateral motion represents a
since the maximum group velocity is approximately 1828 siantial loss of energy from the axial motion. This ex-

m/s (pipes, and since the source delay is approximately 50ample is only intended to provide an idea of eventual capa-

ms, the first break arrives at nearly 120 ms, as can be verifiegjiios of the modeling algorithm. An extensive analysis of

in Fig. 10@). Moreover, high-frequency energghort wave- ., hiing and energy exchange will be carried out in a future
lengths arrives earlier than low-frequency energy, in agree~, ork.

ment with the prediction of the dispersion equation. The

spectrum indicates that high-frequency energy has been lo

Actually, the energy has been distributed between the propzh' CONCLUSIONS

gation and static modes, and thé» dependence of the We presented the basic theory and algorithm for simu-

static-mode attenuation factfgee Eq(70)] explains the dis- lating the different vibrations’ modes propagating in drill

sipation of the high-frequency components. On the othestrings. A set of examples illustrates the versatility of the

hand, Fig. 1(b) reveals the presence of stopbands. Snapnumerical algorithm: simulation of stopbands in axial and

shots of the particle velocity at 12@) and 180 mgb) are  torsional wave propagation, generation of stress waves by

shown in Fig. 11, where the arrow and white dot indicate thepiezoelectric transducers, mode attenuation, use of an adap-

source and receiver locations, respectively. As can be appréive mesh for modeling the shape of the coupling joints, flex-

ciated, the high-frequency energy precedes the lowural mode dispersion and dissipation, and coupling to the

frequency energy, and the width of the signal increases witlaxial mode.

time due to the velocity dispersion effect. The modeling is the basis for further research on acous-
In the last example, we consider coupling between thdic telemetry, such as in the Seisbinethod: in particular,

axial and the flexural motions, corresponding to the drillsimulation of coupled axial, torsional, and lateral vibrations,

string of the first exampléFig. 1), where the source is an inclusion of nonlinear back-interaction of lateral bending on
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1.0 ness, dielectric, and piezoelectric matrices are given by

] @ Ciy Cp Cig 0O O O
05 Ciz C11 Ci3 O 0 0
- c= , (A3)

0 0 0 cy 0O O
0 0 0 0 ¢y O
0 0 0 0 0 cg

wherecge=C11—2C12,

Lateral particle velocity
o
o

-1.0 ‘ I ‘ ey 0 O
0 40 80 120 160
. €= 0 €yxx 0 y (A4)
Time (ms) 0 0
€
1.0 zz
- ®) and
- o.sf 0 0O 0O 0 e5 O
ia B e= O O O ex5 O O y (AS)
[ -
>
. e, €, e 0 0O O
é 0.0 z1 z1 z3
g i respectively.
g ] In the absence of sources and conduction currents, New-
< 05 ton’s and Maxwell's equations can be written in compact
. form as
_1.07 | ‘ ‘ V-szo'?ttu, _VXE:,LLatH, VXH:atD, (A6)
0 40 80 120 160 whereu is the elastic displacement vectét,is the magnetic
Time (ms) field vector,p is the densityu is the magnetic permeability,
FIG. 12. Flexurala) and extensionalb) particle velocitiesv andv caused and
by an axial force, corresponding to the model illustrated in Fig. 1. & 0 0 0 o, 19y
the axial torsional waves; modeling of boundary conditions, Vo= 0 d 0 d 0 dj,
such as rock-bit interaction, allowing the simulation of bit- 0 0 49, 9y dx O
bounce, rate-of-penetration, stick-slip oscillations, and (A7)
: : , 0 —4d, dy
torque reversals; modeling dual bending modes; focusing of
lateral vibrations at the neutral point, etc. Moreover, the al- VX= 7 0 —d
gorithm can be implemented in a more complex context, —dy N 0

where the whole drill string/drive system is simulaféd. , ) o
Assume that a unifornz-propagating plane wave exists in

ACKNOWLEDGMENTS the medium. Theng,=d,=0 and substitution of the consti-

. tutive equationgAl) and(A2) into the dynamical equations
Thanks to Fabio Cavallini and @a Seriani for impor-  (Ag) yields

tant technical comments.
Caa9, M1~ €5d,E1=pdyuy, (3

Caad, 2= €x59,E2=pdyly, (D)
T . . C33d —e,3d,E3=pdyuz, (C
Let us assume for simplicity a lossless piezoelectric me- ~ °3¥72137 €z80253= Pulls (©

dium. Such a medium is characterized by the constitutive  §,E,=udH;, (d)
equationgRef. 11, p. 274

APPENDIX: WAVE PROPAGATION IN A
PIEZOELECTRIC SOLID

- aZE]_:/.L(?tHz, (e) (A8)
T=c.S—eE, (A1)
OIMO"tHs, (f)
D=eS+e E, (A2)
—d,Hr=e,d,u;+ €,,0:Eq,
whereT is the 6x 1 stress vectoiSis the 6x 1 strain vector, Ho=esdzlit endiEr, (@
D is the 3x1 electric displacement vector, aildis the 3 I H1=ey50,Us+ €4 Es, (D)

X1 electric field vector; the dot and the double dot denote
the scalar and double scalar products, as defined by Auld.
Let us assume a medium classified as hexagémah with  Assume a phase factor expf), wherew is the angular fre-
its symmetry axis coinciding with the-direction. The stiff-  quency, and a spatial phase factor exjp{s?, wheres is the

O0=ex;d s+ €, 0E5. (i)
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