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A key element in drill steering and prediction of lithology ahead-of-the-bit is the transmission of
while-drilling information from the bottom of the well to the rig operator and the geophysicists.
Mud-pulse telemetry, based on pressure pulses along the drilling mud and extensional waves
through the drill string, is the most used technique. The last method, properly designed, could
transmit data rates up to 100 bits per second, against the 1 or 2 bits per second achieved with
pressure pulses. In this work, a time-domain algorithm is developed for the propagation of
one-dimensional axial, torsional, and flexural stress waves, including transducer sources and
sensors. In addition, the equations include relaxation mechanisms simulating the viscoelastic
behavior of the steel, dielectric losses, and any other losses, such as those produced by the presence
of the drilling mud, the casing, and the formation. Moreover, the algorithm simulates the passbands
and stopbands due to the presence of the coupling joints and pulse distortion and delay due to
nonuniform cross-section areas. Acoustic and electric pulses, generated at one location in the string,
can be propagated and detected at any other location by piezoelectric and acoustic sensors, such as
PCB accelerometers, clamp-on ammeters, force, and strain transducers. ©2000 Acoustical Society
of America.@S0001-4966~00!02907-6#

PACS numbers: 43.20.Mv, 43.40.Cw, 43.38.Fx, 43.20.Hq@DEC#
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INTRODUCTION

Systems for transmitting information in a borehole i
volve electromagnetic radiation through the drill string a
formations, the use of an insulated conducting cable, p
sure pulses through the mud column, and acoustic w
propagation along the drill string. The most obvious tec
nique, i.e., electrical transmission, would require stopp
the drilling process every 10 m~a drill pipe segment! to add
new electrical junctions. The only successful method is
transmission of pressure pulses, but this technique has a
transmission rate of about 2 bits per second. On the o
hand, acoustic telemetry based on extensional waves a
the drill string is a promising technique that, at present
able to transmit 10 codified bits per second over a range
km.1,2 Several patents have been presented on devices b
on this telemetry technique, for instance, those issued
Hixon,3 Cox and Chaney,4 and Sharp and Smither.5

An important application of the acoustic telemet
method is the Seisbit® technology, which uses the exten
sional wave generated at the drill bit~the pilot signal de-
tected at the rig! to obtain RVSP seismograms.6,7 Improve-
ment of the method requires the understanding of sig
transmission and attenuation of the main types of waves~ex-
tensional, torsional, and flexural! through the drill-string
waveguide. At the frequencies used in hydrocarbon drilli
i.e., from 1 Hz to 2 kHz, longitudinal and torsional waves a
nondispersive in a uniform pipe. However, in real dr
strings, the propagation is affected by the presence of c
pling joints, a nonuniform cross-sectional area, attenuat

a!Electronic mail: jcarcione@ogs.trieste.it
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and drilling noise. The quasiperiodic structure of this wav
guide generates a classical pattern of passbands and
bands.3 For instance, extensional waves in a typical dr
string have the first passband from 0 to 226 Hz and the
stop band from 226 to 280 Hz.1 The ranges for torsiona
waves are 0 to 130 Hz and 130 to 176 Hz, respective
Deviations from a perfect periodic structure and a varia
cross section modify the location of these bands. In addit
other attenuation mechanisms act on the extensional wa
These include viscous dissipation into the drilling mud, co
version from extensional to torsional and flexural waves, a
contact with the formation and well casing.

Besides waves from an acoustic source, such as the
bit, it is important to transmit while-drilling information
from piezoelectric transducer sources, located, for instan
in the bottom-hole assembly, to the drill rig on the surfa
Both acoustic and electromagnetic energy can be transm
through the waveguide if a constitutive equation based
piezoelectric coupling is assumed. In general, the sig
wavelength is far greater than the 4.5-in diameter of the d
string, and the phenomenon can be accurately describe
the one-dimensional wave equation.

In the present work, we develop a time-domain alg
rithm for the propagation of extensional, torsional, and fle
ural stress waves coupled with the electrostatic field eq
tions, in order to include transducer sources and sensor
addition, the equations include relaxation mechanisms si
lating the viscoelastic behavior of the steel, dielectric loss
and any other losses, such as those produced by the pres
of the drilling mud, the casing, and the formation. Moreov
the method, based on the one-dimensional~1D! wave equa-
tion, considers the presence of the coupling joints and n
uniform cross-section areas.
538(1)/53/12/$17.00 © 2000 Acoustical Society of America
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I. EXTENSIONAL WAVES

The analysis of wave propagation for a ferroelectric
ramic, classified as hexagonal crystal6mm, is performed in
the Appendix. Propagation along the symmetry axis~direc-
tion of poling! implies the existence of coupled acoustic a
electromagnetic waves and one stiffened acoustic wave,
elastic and electromagnetic polarizations directed along
symmetry axis. If we assume that the wavelength of
pulse propagating through the drill string is at least five tim
larger than the diameter of the string, the problem is o
dimensional. In this case, the stiffened acoustic wave is
extensional wave propagating along the drill string.

Moreover, following Drumheller,9 we consider the pres
ence of piezoelectric sources and sensors, and attenu
due to the viscoelastic properties of the steel, the presenc
drilling mud, and other factors, like leaky modes.

A. The constitutive equations

Using the results obtained in the Appendix for a ferr
electric medium, the electric fieldE (E3) denotes the axia
component. The acoustic constitutive equation relates
axial (z)-component of the stress tensor, denoted byTP

(T3), with the axial component of the strain tensor, deno
by S (S3). The constitutive equations of the transduce
including electromagnetic losses, are

TP5cS2eE, D5eS1e* ] tE, ~1!

whereD (D3) is the electric displacement~nonzero in this
case, since there are conduction currents!, c (c33) is the
plane wave modulus,e (ez3) is the piezoelectric coupling
ande(t) (ezz) is the dielectric relaxation function~the sym-
bol * denotes time convolution!.

The dielectric relaxation function includes one Deb
mechanism, which is mathematically equivalent to a Ze
model. Then

e5e0@12~12a2!exp~2tv1a!#h~ t !, a5Ae`/e0, ~2!

wheree0 is the static permittivity,e` is the optical permit-
tivity, v1 is the center frequency of the Debye peak, andh is
the Heaviside function. Moreover, we should consid
Ohm’s law, relating the conduction currentJc to the electric
field E,

Jc5sE, ~3!

wheres is the conductivity. We have neglected ferroma
netic relaxation, damping due to the piezoelectric coupli
and out-of-phase conduction currents.

The constitutive equation of the drill string can be wr
ten as

TA5Y* ] tS, Y5Y11Y2 , ~4!

where the acoustic relaxation functionY1 can be described
by a Zener model, representing the string material, an
Maxwell model, representing additional dissipation facto
such as energy loss by radiation into the fluids which s
round the drill string. The Zener relaxation function is

Y15Y0@12~12n2!exp~2tv0n!#h~ t !, n5AYU

Y0
, ~5!
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whereY0 is the relaxed Young’s modulus,YU is the unre-
laxed Zener modulus, andv0 is the center frequency of th
relaxation peak. The Maxwell relaxation function is simpl

Y25hY0@exp~2t/t!21#h~ t !, ~6!

wheret is the relaxation time andh is a dimensionless pa
rameter. The unrelaxed or instantaneous contribution~i.e.,
when t→0 or v→`! of the Maxwell relaxation function is
zero, while the relaxed contribution~whent→` or v→0! is
2hY0 , so the relaxed modulus is (12h)Y0 .9

The transducer, described by the constitutive equati
~1!, is assembled in parallel to the metal part of the drill pip
described by the constitutive equation~4!. If the ratio of the
transducer area to the total area is denoted byQ, the total
stress acting on this cross section is

T5~12Q!TA1QTP5~12Q!Y* S1QcS2QeE, ~7!

since the parallel configuration implies that the strain is eq
in both materials. Note that the system has an effective
ezoelectric constantQe.

B. The wave equation

The wave propagation problem is solved by introduci
the balance of linear momentum and Maxwell’s equatio
Consider a small elementPQ of lengthdz and let the cross-
sectional area of the rod bea(z). Continuity of particle ve-
locity and force holds for a rod whose cross-sectional dim
sions are small compared to the length of the rod~the stress
can be double-valued or discontinuous!. If the force on the
face passing throughP is F, the stress on the other face wi
be F1(]zF)dz, and if v is the particle velocity of the ele
ment, Newton’s second law implies

radz] tv5dz]zF. ~8!

On the other hand, the total force acting on the cross sec
of the drill string is

F5aT. ~9!

Introducing an acoustic sourcef , such as the drill bit, Eq.~8!
can be rewritten as

r] tv5a21]z~aT!1 f . ~10!

The material densityr(z) is given by

r5~12Q!r11Qr2 , ~11!

wherer1 is the density of the drill string andr2 is the den-
sity of the transducer.

Time convolutions in the constitutive equation~7! can
be avoided by introducing memory variables.10 We obtain

T5@~12Q!YU1Qc#S1~12Q!Y0~z12hz2!2QeE,
~12!

where the memory variablesz1 andz2 satisfy

] tz152v0n@z12~12n2!S# ~13!

and

] tz25
1

t
~S2z2!. ~14!
54rcione and F. Poletto: Stress waves in attenuating drill strings
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Since] tS5]zv, and redefining] tz l→z l , Eqs.~12!–~14! be-
come

] tT5@~12Q!YU1Qc#]zv

1~12Q!Y0~z12hz2!2Qe] tE,

] tz152v0n@z12~12n2!]zv#, ~15!

] tz25
1

t
~]zv2z2!,

where we have used Eq.~9!.
On the other hand, the radial-component of the elec

magnetic equation in the transducer is,11

05sE1] tD1J ~16!

@the generalized version of Eq.~A8i!#, whereJ (Jr) is the
electric current source.

Since part of the cross-sectional area consists of me
we assume an effective piezoelectric couplingQe. Taking
this into account and introducing the hidden variablej,12

substitution of Eq.~1! into Eq. ~16! yields

05seE1e`] tE1Qe]zv1e0j1J, ~17!

where

se5s1v1a~12a2!e0,

with j obeying the following first-order equation:

] tj52v1a@j1v1a~12a2!E#. ~18!

Time-differentiation of Eq.~17! gives

seE1e`] tE1Qe]z] tv1e0c1J50, ~19!

whereE5] tE, c5] tj, andJ5] tJ. Equation~10! implies
] tv5@a21]zaT1 f #/r. Substituting this expression into Eq
~19! we obtain

seE1e`] tE1Qe]zH 1

r
@a21]zaT1 f #J 1e0c1J50, ~20!

which, together with the time derivative of~18!,

] tc52v1a@c1v1a~12a2!E#, ~21!

forms the electromagnetic equations.

C. Plane wave solution

Let us assume a harmonic wave with a phase fa
exp(ivt), wherev is the angular frequency. Then, the co
stitutive equations~1! and ~4! can be written as

TP5cS2eE,

D5eS1 ẽE, ~22!

TA5ỸS,

where

Ỹ5nY0

v01 ivn

v0n1 iv
2

hY0

11 ivt
~23!

and
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ẽ5ae0

v11 iva

v1a1 iv
. ~24!

Now, assume a plane wave with a particle velocity ha
ing an spatial phase factor exp(2ivsz), wheres is the com-
plex slowness~this quantity is complex in the lossy case; th
real and imaginary parts are related to the wave number
the attenuation, respectively!. For any field variable, we have
]z→2 ivs. It is easy to show that the dispersion equation

s2F ~12Q!Ỹ1Qc1
~Qe!2

e* G5r, ~25!

where

e* 5 ẽ2
i

v
s. ~26!

The physical phase velocity and attenuation factor are gi
by

Vp5@Re~s!#21 ~27!

and

ā52v Im~s!, ~28!

respectively.

D. Wave equation in matrix form

Equations~20! and ~21!, together with Eqs.~10! and
~15!, form the wave equation in the quasistatic case. N
that ] tE must be replaced by the variableE in Eq. ~15!.
These equations govern solutions that travel at veloci
comparable to acoustic velocities.

The quasistatic differential equations can be written
matrix form as

] tw5Mw1s, ~29!

where

w5@v,T,z1 ,z2 ,E,c#Á ~30!

is the unknown vector,

s5@ f /r,0,0,0,2@J1Qe]z~r21f !#/e`,0#Á ~31!

is the source vector, andM is the propagation matrix, given
by

M5S 0 M12 0 0 0 0

M21 0 M23 M24 M25 0

M31 0 M33 0 0 0

M41 0 0 M44 0 0

0 M52 0 0 M55 M56

0 0 0 0 M65 M66

D , ~32!

where

M125~ra!21]za,

M215@~12Q!YU1Qc#]z , M235~12Q!Y0 ,

M2452~12Q!hY0 , M2552eQ,

M315v0n~12n2!]z , M3352v0n, ~33!
55rcione and F. Poletto: Stress waves in attenuating drill strings
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M415t21]z , M4452t21,

M5252
Qe

e` ]z~ra!21]za, M5552se /e`,

M5652e0/e`, M6552v1
2a2~12a2!, M6652v1a.

II. TORSIONAL WAVES

The constitutive equation for torsional waves in a fer
electric ceramic is similar to that of the extensional wav
given in Eq.~1!. For torsional vibrations,E denotes the azi-
muthal componentEf of the electric field, TP is the
fz-component of the piezoelectric stress tensor,S is the
fz-component of the strain tensor,D is the azimuthal com-
ponent (Df) of the electric displacement,c is the rigidity
modulusc44, e is the piezoelectric coupling (ex5), ande(t)
is the dielectric relaxation functione11(t). As before, the
acoustic relaxation functionc44(t) of the drill string ~Y for
extensional waves! can be described by a parallel connecti
between a Zener model and a Maxwell model, represen
additional dissipation factors. Similarly, a Debye mechani
represents the dielectric relaxation function.

The wave propagation problem is solved by introduc
the balance of angular momentum13,14 and Maxwell’s equa-
tions. Letf denote the relative angular displacement of t
cross sections, so that]zf is the twist of the cylinder. The
torsional couple is equal to the radius of gyrationRT multi-
plied by the forceaT, i.e., C5aRTT, where T is the
fz-component of the total stress tensor. The moment of
kinetic reactions about the axial axisraRT

2] ttf balances the
angular moment]zC. Then, the equation of motion is

raRT
2] ttf5]z~aRTT!. ~34!

Note that the radius of gyration is defined by

RT
25a21E d2da ~35!

~Ref 15!, whered is the distance to the axis of rotation. F
a hollow cylinder, the radius of gyration, with respect to t
axial axisz, is

RT5
1

&
~r 1

21r 2
2!1/2, ~36!

wherer 1 and r 2 are the inner and outer radii, respective
Defining V5] tf and the polar moment of inertia per un
mass,

I 5aRT
25

p

2
~r 2

42r 1
4!, ~37!

Eq. ~34! becomes

r] tV5I 21]z~ IT̂ !1 f T , ~38!

where T̂5T/RT ~it is assumed that thef-displacement is
equal toRTf!, and we have introduced the external torq
f T . The time derivative of the constitutive equation is

RT] tT̂5@~12Q!YU1Qc#]zRTV

1~12Q!Y0~z12hz2!2QeE, ~39!
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where, for simplicity, we use the same notation as for
extensional waves. Here,Y0 andYU denote the relaxed an
unrelaxed limits of the drill-string relaxation functionc44,
andz1 is the corresponding hidden variable, withv replaced
by RTV in Eq. ~15!. The same argument holds for the p
rameters of the Maxwell model.

In matrix notation, the equation describing torsional o
cillations, coupled with the quasistatic electromagnetic fie
has the form~26!, where

w5@V,T̂,z1 ,z2 ,E,c#Á ~40!

is the unknown vector,

s5@ f T /r,0,0,0,2@J1Qe]z~RTr21f T!#/e`,0#Á ~41!

is the source vector, andM is the propagation matrix, whos
components have the same expression~33!, except for

M125~ Ir!21]zI , M215@~12Q!YU1Qc#RT
21]zRT ,

M235~12Q!RT
21Y0 , M2452~12Q!RT

21hY0 ,

M2552QRT
21e,

~42!
M315v0n~12n2!]zRT ,

M415t21]zRT ,

M5252
Qe

e` ]zRT~rI !21]zI .

It can be shown that the dispersion relation has the fo
~25!.

III. FLEXURAL WAVES

In the simplest theory of flexural vibrations it is assum
that the motion of each element of the pipe is purely one
translation in a direction perpendicular to the axis of t
pipe. We assume that the wavelength is much larger than
diameter of the drill string. Therefore, effects such as rot
inertia are neglected.13,14 Following Kolsky,14 the equation
of motion for flexural vibrations of bars is

ra] ttw52]zF1 f F , ~43!

wherew is the displacement in the plane of bending@e.g., if
(x,z) is the bending plane,w points in thex-direction#, f F is
the external force, andF is the shearing force. This is give
by

F52]zM5]z~aRF
2YU]zzw!, ~44!

whereM is the bending moment,YU is the unrelaxed Young
modulus, andRF is the radius of gyration of the cross sectio
about an axis through its centroid at right angles to the pl
of bending. For the (x,z)-planeRF

25a21*x2da, which for a
hollow cylinder is

RF5 1
2 ~r 1

21r 2
2!1/2. ~45!

Coupling with the axial forceF implies additional terms in
Eqs.~43! and~10!. Chin16 ~pp. 225, 257, and 271!. Including
these interactions and sinceF5aT, Eqs. ~10! and ~43! be-
come

ar] tv5]zF1aYURF
2]z@~]zzzw!~]zw!#1a f ~46!
56rcione and F. Poletto: Stress waves in attenuating drill strings
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ra] ttw52]z~F1F]zw!1 f F , ~47!

with F given by Eq.~9!. Coupling with the axial motion
allows the inclusion of losses and piezoelectric effects.

On the other hand, assuming a large bending rad
Drumheller17 obtains the following coupled differentia
equations:

ra] tv5]zF2
F
r b

1a f ~48!

and

ra] ttw52]zF2
F

r b
1 f F , ~49!

where r b is the radius of curvature of the string~bending
radius!. Assuming no loss for simplicity, the stress is17

T5@~12Q!YU1Qc#S S1
w

r b
D1QeE, ~50!

whereYU5Y0 .
Let x̂(z) denote the reference line of the string. T

conditionx̂(z)50 defines a straight string. For large bendi
radius,

]zzx̂5
1

r b~z!
. ~51!

Since ]z(F]zw) in Eq. ~47! is equal to]zF]zw1F]zzw,
Eqs.~47! and~49! are equivalent if]zF]zw can be neglected
and ]zzw']zzx̂51/r b . Similarly, Eq. ~46! is equivalent to
Eq. ~48! if ( ]zzzzw)(]zw) can be neglected and]zzw
'1/r b . However, note that the presence of a radius of c
vature implies the action of a lateral forcef F in Eq. ~47!,
otherwise there is no coupling between the flexural and a
motions when solving the problem with Eqs.~46! and ~47!.

Moreover, the drill string is prestressed by its weig
but in order to avoid collapse, it is lifted at the surface, wh
it is in tension. Since it must contact the formation in order
drill, it is in compression at the bit. Hence, the static ax
load changes from tension at the surface to compressio
the bit, with the point of zero stress close to the drill coll
Assumingz50 at the bit and that the distance to the neut
point is zN , the force per unit area of drill string is

N5arg~z2zN!, ~52!

whereg is the acceleration of gravity. In terms of theweight-
on-bit ~WOB!, the force isN5argz2WOB16 ~p. 145!. The
axial force satisfiesN,0 for the segments in tension, an
N.0 for the segments in compression. The transitionN
50 defines the neutral point of the drill string. When mo
eling gravity effects, the forceN should be added to the axia
force F in Eqs.~47!–~49!.

Plane wave analysis

Let us consider a uniform drill string subject to the va
able axial forceN and assume that there is no coupling w
the extensional wave. Substitution of Eq.~44! into ~47! with
F50 yields
57 J. Acoust. Soc. Am., Vol. 108, No. 1, July 2000 J. M. Ca
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ra] ttw1aRF
2Y]zzzzw1]z~N]zw!50, ~53!

where we assume that there are no external forces. A p
wave ansatz expi(kx2vt), where k is the complex wave
number, gives the following dispersion equation:16

rav25aRF
2Yk42Nk21 ik]zN. ~54!

Using Eq.~52! and]zN5arg, we get

rv25RF
2Yk42rg~z2zN!k21 ikrg. ~55!

Equation ~55! has four solutions, with phase velocity an
attenuation factor given by

Vp5v@Re~k!#21, ā52Im~k!, ~56!

respectively. The group velocity is equal to the derivative
the angular frequency with respect to the real part ofk. It
gives

Vg5FReS ]k

]v D G21

. ~57!

From Eq.~55! we obtain

]k

]v
52rv@4RF

2Yk322krg~z2zN!1 irg#21. ~58!

IV. THE ALGORITHMS

Previous algorithms for computing drill-string axial mo
tion use the method of characteristics and low-order fin
differencing,18 and frequency-domain techniques.19 Here,
drill-string axial, torsional, and lateral vibrations are com
puted with a fourth-order Runge-Kutta technique. T
method calculates the field at time (n11)dt, wheredt is the
time step, as

wn115wn1
dt

6
~D112D212D31D4!, ~59!

where

D15Mwn1sn,

D25M S wn1
dt

2
D1D1sn11/2,

D35M S wn1
dt

2
D2D1sn11/2,

D45M ~wn1dtD3!1sn11.

The spatial derivatives are calculated with the Fourier a
Chebyshev methods by using the fast Fourier transfo
~FFT!.20,21 These approximations are infinitely accurate f
band-limited periodic functions with cutoff spatial wav
numbers which are smaller than the cutoff wave numbers
the mesh. When using the Chebyshev method, nonperi
boundary conditions can be implemented at the end of
pipes, and the grid points can be distributed in accorda
with the structure and geometry of the drill string. We co
sider the following coordinate transformation from the co
putational to the physical domain:
57rcione and F. Poletto: Stress waves in attenuating drill strings
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zj5zmaxFq~z j !2q~21!

q~1!2q~21! G , j 50,...,nz21, ~60!

mapping the interval@21,1# onto the interval @0,zmax#,
wherez j5cos@pj/(nz21)# are the Gauss-Lobatto collocatio
points. The function

q5q~z,a! ~61!

is a family of transformations, wherea is a vector of param-
eters defining the mapping. The spatial derivative of a fi
variable in the physical domain is then given by

]u

]z
5

]u

]z

]z

]z
5Fq~1!2q~21!

zmax
G ]z

]q

]u

]z
. ~62!

For instance, in the second example we use the follow
symmetric mapping function:

q~z!5
arcsin~gz!

arcsin~g!
, ~63!

satisfyingq(1)51 andq(21)521. Herea5g, and

]z

]q
5

arcsin~g!

g
A12g2z2. ~64!

This mapping stretches the mesh at the boundaries. W
g→0, we obtain the Gauss-Lobatto collocation points, a
g→1 gives equally distributed points as in the Fourier d
ferential operator. Using this mapping, the spatial derivat
~62! can be rewritten as

]u

]z
5

1

gdz
arcsinFg sinS p

n D GA12g2z2
]u

]z
, ~65!

wherenz is the number of grid points, anddz is the maxi-
mum grid spacing.

Free surface boundary conditions at the end of the p
are implemented by the technique described in Ref. 21.

V. EXAMPLES

A. Propagation of extensional stress waves along an
attenuating drill string with periodic coupling
joints

A drill string with the characteristics shown in Fig. 1
used to simulate acoustic transmission through nine pipe
ements separated by ten tool joints. In particular, this pr
lem has been solved by Drumheller18 with a different nu-
merical algorithm, based on the method of finite differenc
The Young modulus of the pipe and coupling joints isYU

5Y05206 GPa, and the material density isr57850
kg/m3. We considernz53465 and a uniform grid spacin
dz523 cm. The source time history is

FIG. 1. Regular drill string consisting of pipes and tool joints.
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f ~ t !5sinc@2p f c~ t2t0!#,

which corresponds to a gate function in the frequency
main. The source frequency is 5.568 kHz, which is half t
maximum frequency ‘‘supported’’ by the mesh, i.e.,f max

5Vp min /(2dz), whereVp min is the minimum phase velocity
Frequencies beyond this limit are aliased. The source is
cated at grid point 1499 and the receiver at grid point 20
The first tool joint starts at grid point 1599, with each joi
modeled by two grid points and each pipe element by 37 g
points. The spatial derivatives are computed with the Fou
method, and absorbing regions of length 18 grid points
implemented at the two ends of the drill string to avoid wra
around effects. The wave field is computed by using a ti
step of 1ms, with the time history resampled every 40ms.

Figure 2 shows the time history~a! and its Fourier trans-
form ~b!, where the characteristic passbands can
appreciated.1,8 The transform was made using a sampli
interval of 40ms and 5544 points.

The following numerical experiment considers the ban
limited time function

f ~ t !5exp@2 1
2 f c

2~ t2t0!2#cos@p f c~ t2t0!#, ~66!

where f c is the cutoff frequency andt053/f c .

FIG. 2. Time history~a! and Fourier transform~b! of the sinc extensional
pulse propagated along ten tool joints~see Fig. 1!.
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Attenuation can be easily parameterized as a functio
the minimum quality factorQ of the relaxation peak and th
central frequencyf 0 of this peak. We have

Q5
2n

n221
and f 05

v0

2p
.

We assumef c5500 Hz, Q5200, f 05 f c/2, and Maxwell’s
parametersh50.02 andt5200ms, which are used to mode
the radiated energy into the fluids surrounding the d
string. Figure 3 compares the time histories correspondin
the lossless~continuous line! and lossy~broken line! cases.
As expected, the attenuation is more pronounced for the c
waves.

B. Transmission of extensional pulses between
ferroelectric ceramics

In this example we consider the propagation of str
waves between two piezoelectric transducers joined by a
low cylinder made of brass. The model and configurati
shown in Fig. 4, correspond to a laboratory experiment c
ducted by Drumheller.9 The Young modulus of the cylinde
is YU5Y05108.13 GPa, and its material density isr
58456 Kg/m3. Intrinsic loss in the brass is described by t
Zener model withQ5180 andf 0520 KHz.

FIG. 3. Time history for extensional waves corresponding to the mo
illustrated in Fig. 1, showing the case without loss~continuous line! and
with loss ~broken line!.

FIG. 4. Geometry of the experiment corresponding to the ferroelectric tr
ducers~not in scale!. Both ends of the brass pipe satisfy free surface bou
ary conditions.
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As in the acoustic case, dielectric loss is parameteri
by the minimum quality factorQe and the central frequenc
f 1 of the relaxation peak. We have

Qe5
2a

a221
and f 15

v1

2p
.

The source transducer is made of lead titanate-zircon
~PZT-5H ceramic! whose properties9,11 are c548.24 GPa,
r57489 kg/m3, e523.3 C/m2, e051470e0 , Qe550, f 1

520 kHz, ands51.5 mS/m. On the other hand, the receiv
transducer~also PZT-5H ceramic! has acoustic propertiesc
5111 GPa,r57485.3 kg/m3, and similar electric properties
to the source transducer. These data are in agreement
Table IV of Ref. 9. Figure 5 shows the phase velocity~27!
~a! and attenuation factor~28! ~b! as a function of frequency
for the receiver transducer. The continuous line correspo
to a wave propagating in an assemble of brass/ferroele
ceramic, where the proportion of ceramic isQ50.8, while
the broken line corresponds to the pure brass material~i.e.,
Q50! and the dashed line to the pure ceramic material~i.e.,
Q51!.

We considernz5694 and a uniform grid spacingdz
51.745 mm. The source transducer is located between

l

s-
-

FIG. 5. Phase velocity~a! and attenuation factor~b! of a wave propagating
in an assemble brass/ferroelectric ceramic~continuous line!, where the pro-
portion of ceramic isQ50.8. The broken line corresponds to the pure bra
material~i.e., Q50! and the dashed line to the pure ceramic material~i.e.,
Q51!.
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points 407 and 410, and the electric current is applied to g
point 408. The time history of the source,J(t), is given in
Fig. 9 of Drumheller.9 The receiver transducer is locate
between grid points 446 and 449, and the signal is recor
at grid point 447. The spatial derivatives are computed w
the Chebyshev method, using the mapping function~63! with
g50.999. Free surface boundary conditions are satisfied
the two ends of the brass cylinder. The wave field is co

FIG. 6. Time history of an extensional pulse propagated between two
ezoelectric transducers~see Fig. 4! ~broken line! compared to the experi-
mental results obtained by Drumheller~Ref. 9! ~continuous line!.

FIG. 7. Time history~a! and Fourier transform~b! of the sinc torsional pulse
propagated along ten tool joints~see Fig. 1!.
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puted by using a time step of 0.1ms, with the time history
resampled every 1.6ms.

The time history of the electric field at the receiv
transducer is illustrated in Fig. 6~broken line! and compared
to the experimental results~continuous line!. The first pulse
is the direct signal traveling from source to receiver. T
second and third pulses are the reflections off the right
left boundaries, respectively.

C. Transmission of torsional stress waves

The drill string shown in Fig. 1 is used to simulate tran
mission of torsional waves. The rigidity modulus of the pi
and coupling joints isYU5Y0582.4 GPa. The same mes
and modeling parameters of the previous example are u
here. Figure 7 shows the time history~a! ~V! and its Fourier
transform ~b!. As before, the transform was made using
sampling interval of 40ms and 5544 points.

The following simulation uses the Chebyshev differe
tial operator and a mapping transformation to model in de
the geometrical features of the coupling joints, while usin
coarse distribution of grid points for modeling the pipes~see
Fig. 8!. For simplicity, we consider propagation through o
coupling joint. The Gauss-Lobatto collocation points are
distributed by using the following mapping function:

q~z!5
2

p
arctan@« tan~w!#, w5

pz

2
, ~67!

with «50.2, satisfyingq(1)51 andq(21)521, and

]z

]q
5

1

«
@cos2~w!1«2 sin2~w!#. ~68!

Equation~67! is a particular case of the transformation us
in Ref. 21. Using this mapping, the spatial derivative~62!
can be rewritten as

i-

FIG. 8. Section of drill string, numerical mesh, and time history of t
angular velocityV for torsional waves propagating from source to receiv
60rcione and F. Poletto: Stress waves in attenuating drill strings
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2

«zmax
@cos2~w!1«2 sin2~w!#

]u

]z
, ~69!

wherezmax is the length of the string.
We considernz5309, a string lengthzmax520.5 m, and

a source time-history with dominant frequencyf d54 kHz.
The diameters of the pipes and joint are those illustrated
Fig. 1, but with a linear transition from grid point 144~10.02
m! to 147~10.08 m! ~from pipe to joint! and from point 163
~10.42 m! to 166 ~10.48 m! ~from joint to pipe!. Figure 8
shows the string and the numerical mesh, where one
point every four is represented. The source is located at
point 20 ~0.95 m! and the receiver at grid point 260~15.46
m!. At the two ends of the string, nonreflecting bounda
conditions based on the method of characteristics
imposed21 and, in addition, absorbing strips of length 18 a
implemented to avoid any spurious reflection. The tim
history, computed with a time step of 1ms and resampled to
10 ms, is shown in Fig. 8. A set of coupling joints can b
modeled by a general transformation based on function
the type given in Eq.~67!.

D. Propagation of flexural waves

The simulation of flexural waves requires a care
analysis of the dispersion equation. In order to avoid ali
ing, the source spectrum must be band-limited, with
minimum frequency strictly greater than zero. This will b
illustrated in the following analysis. According to the sam
pling theorem the maximum frequency allowed by the me
is

f max5
Vp min

2dz
,

whereVp min is the minimum phase velocity obtained fro
Eq. ~56!,

Vp min52p f min@Re~k~ f min!!#21,

with f min the minimum frequency of the spectrum. Then, t
minimum allowabledz is

dzmin5
p f min@Re~k~ f min!!#21

f max
.

Neglecting gravity forces (N50) and coupling with the
axial force (F50) we obtain

dzmin5
ApRFc0f min

& f max

,

wherec05AY/r.
Let us consider the example illustrated in Fig. 1 w

N5F50. The perturbation is initiated by the flexural forc
f F , with a time history whose frequency spectrum is a B
terworth filter having a minimum frequency of 50 Hz and
maximum frequency of 570 Hz~computed for the pipe sec
tion!, corresponding to a grid spacingdz523 cm. The wave-
let and its Fourier transform are illustrated in Figs. 9~a! and
9~b!, respectively.

The dispersion equation~55!,
61 J. Acoust. Soc. Am., Vol. 108, No. 1, July 2000 J. M. Ca
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v25c0
2RF

2k4,

has the solutions

k56A v

c0RF
, and k56 iA v

c0RF
, ~70!

which correspond to a propagating mode and a static mo
respectively. The phase velocity of the propagating mode
given by

Vp5A2pRFc0f , and Vp max/Vp min5Af max/ f min.

In principle, the minimum and maximum velocities prop
gating in the drill string are 262 and 914 m/s~pipes!, and 280
and 978 m/s~joints!, respectively. The wavelength is

l5A2pRFc0 / f ,

which yields minimum and maximum wavelengths for t
pipe section of 1.5 and 5.24 m, respectively. These val
are much larger than the radius of gyration of the pip
~0.043 m!, a necessary condition for the validity of th
theory.14 On the other hand, the group velocity is twice th
phase velocity.14

The same mesh and modeling parameters of the
example are used here, and due to less stringent condi
concerning algorithm stability, the wave field is comput
with a time step of 10ms.

FIG. 9. Time history~a! and Fourier transform~b! of the Butterworth wave-
let used to simulate flexural waves.
61rcione and F. Poletto: Stress waves in attenuating drill strings
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Figure 10 shows the particle velocityẇ ~a! and its Fou-
rier transform~b!. The dotted line is the amplitude spectru
of the flexural wave in the absence of coupling joints. T
transform was made using a sampling interval of 400ms and
924 points. Since source and receiver are 126.73 m a
since the maximum group velocity is approximately 18
m/s ~pipes!, and since the source delay is approximately
ms, the first break arrives at nearly 120 ms, as can be ver
in Fig. 10~a!. Moreover, high-frequency energy~short wave-
lengths! arrives earlier than low-frequency energy, in agre
ment with the prediction of the dispersion equation. T
spectrum indicates that high-frequency energy has been
Actually, the energy has been distributed between the pro
gation and static modes, and theAv dependence of the
static-mode attenuation factor@see Eq.~70!# explains the dis-
sipation of the high-frequency components. On the ot
hand, Fig. 10~b! reveals the presence of stopbands. Sn
shots of the particle velocity at 120~a! and 180 ms~b! are
shown in Fig. 11, where the arrow and white dot indicate
source and receiver locations, respectively. As can be ap
ciated, the high-frequency energy precedes the lo
frequency energy, and the width of the signal increases w
time due to the velocity dispersion effect.

In the last example, we consider coupling between
axial and the flexural motions, corresponding to the d
string of the first example~Fig. 1!, where the source is a

FIG. 10. Time history~a! and Fourier transform~b! of the flexural wave
propagated along ten tool joints~see Fig. 1!. The dotted line is the amplitude
spectrum of the flexural wave in the absence of coupling joints.
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axial force. The problem is solved by using the equatio
obtained by Drumheller9 @see Eqs.~48! and ~49!, respec-
tively#. The radius of curvature of the drill string,r b , is
constant and equal to 120 times the radius of gyration of
pipes. Figure 12 shows the wave field, where the~a! corre-
sponds to the flexural particle velocityẇ and ~b! to the ex-
tensional particle velocityv. The lateral motion represents
substantial loss of energy from the axial motion. This e
ample is only intended to provide an idea of eventual ca
bilities of the modeling algorithm. An extensive analysis
coupling and energy exchange will be carried out in a fut
work.

VI. CONCLUSIONS

We presented the basic theory and algorithm for sim
lating the different vibrations’ modes propagating in dr
strings. A set of examples illustrates the versatility of t
numerical algorithm: simulation of stopbands in axial a
torsional wave propagation, generation of stress waves
piezoelectric transducers, mode attenuation, use of an a
tive mesh for modeling the shape of the coupling joints, fle
ural mode dispersion and dissipation, and coupling to
axial mode.

The modeling is the basis for further research on aco
tic telemetry, such as in the Seisbit® method: in particular,
simulation of coupled axial, torsional, and lateral vibration
inclusion of nonlinear back-interaction of lateral bending

FIG. 11. Snapshots of the flexural wave at 120~a! and 180 ms~b! in the
absence of tool joints. The arrow indicates the source and the white do
receiver.
62rcione and F. Poletto: Stress waves in attenuating drill strings
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the axial torsional waves; modeling of boundary conditio
such as rock-bit interaction, allowing the simulation of b
bounce, rate-of-penetration, stick-slip oscillations, a
torque reversals; modeling dual bending modes; focusin
lateral vibrations at the neutral point, etc. Moreover, the
gorithm can be implemented in a more complex conte
where the whole drill string/drive system is simulated.22

ACKNOWLEDGMENTS

Thanks to Fabio Cavallini and Ge´za Seriani for impor-
tant technical comments.

APPENDIX: WAVE PROPAGATION IN A
PIEZOELECTRIC SOLID

Let us assume for simplicity a lossless piezoelectric m
dium. Such a medium is characterized by the constitu
equations~Ref. 11, p. 274!,

T5c:S2e•E, ~A1!

D5e:S1e•E, ~A2!

whereT is the 631 stress vector,S is the 631 strain vector,
D is the 331 electric displacement vector, andE is the 3
31 electric field vector; the dot and the double dot den
the scalar and double scalar products, as defined by Au11

Let us assume a medium classified as hexagonal6mm, with
its symmetry axis coinciding with thez-direction. The stiff-

FIG. 12. Flexural~a! and extensional~b! particle velocitiesẇ andv caused
by an axial force, corresponding to the model illustrated in Fig. 1.
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ness, dielectric, and piezoelectric matrices are given by

c5S c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c66

D , ~A3!

wherec665c1122c12,

e5S exx 0 0

0 exx 0

0 0 ezz

D , ~A4!

and

e5S 0 0 0 0 ex5 0

0 0 0 ex5 0 0

ez1 ez1 ez3 0 0 0
D , ~A5!

respectively.
In the absence of sources and conduction currents, N

ton’s and Maxwell’s equations can be written in compa
form as

¹•T5r] ttu, 2¹3E5m] tH, ¹3H5] tD, ~A6!

whereu is the elastic displacement vector,H is the magnetic
field vector,r is the density,m is the magnetic permeability
and

¹•5S ]x 0 0 0 ]z ]y

0 ]y 0 ]z 0 ]x

0 0 ]z ]y ]x 0
D ,

~A7!

¹35S 0 2]z ]y

]z 0 2]x

2]y ]x 0
D .

Assume that a uniformz-propagating plane wave exists i
the medium. Then,]x5]y50 and substitution of the consti
tutive equations~A1! and~A2! into the dynamical equation
~A6! yields

c44]zzu12ex5]zE15r] ttu1 , ~a!

c44]zzu22ex5]zE25r] ttu2 , ~b!

c33]zzu32ez3]zE35r] ttu3 , ~c!

]zE25m] tH1 , ~d!

2]zE15m] tH2 , ~e! ~A8!

05m] tH3 , ~f !

2]zH25ex5]ztu11exx] tE1 , ~g!

]zH15ex5]ztu21exx] tE2 , ~h!

05ez3]ztu31ezz] tE3 . ~i!

Assume a phase factor exp(ivt), wherev is the angular fre-
quency, and a spatial phase factor exp(2ivsz), wheres is the
63rcione and F. Poletto: Stress waves in attenuating drill strings
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slowness in thez-direction. For any field variable, we have

] t→ iv and ]z→2 ivs.

Using these relations and eliminating the magnetic fi
components, Eqs.~A8! become

~c44s
22r!v11ex5sE150, ~a!

~c44s
22r!v21ex5sE250, ~b!

~c33s
22r!v31ez3sE350, ~c!

~A9!
mex5sv11E1~s22mexx!50, ~g!

mex5sv21E2~s22mexx!50, ~h!

2sez3v31ezzE350, ~i!

where v5] tu is the particle velocity vector. Equation
~A9a!~b! and ~A9f!~h! give the dispersion equation for th
quasiacousticandquasielectromagneticwaves,

~s22mex5!~s2c442r!2mex5
2 s250, ~A10!

with v and E polarized in the plane perpendicular to th
symmetry~poling! axis. On the other hand, Eqs.~A9c! and
~A9i! yield the dispersion relation of the piezoelectrica
stiffened acoustic wave,

s2S c331
ez3

2

ezz
D 5r, ~A11!

with v and E polarized along the symmetry~poling! axis.
From Eqs.~A8f! and ~A8i!, this wave mode satisfies] tH3

50 and] tD350, andH3 andD3 are both zero, except fo
time-independent fields that are not of interest. That the e
tric field has zero curl implies that it can be represented
the gradient of a scalar potential even though it is tim
varying, not static. This is called aquasistatic field.11
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