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A Telegrapher Equation for Electric Telemetering
in Drill Strings

José M. Carcione and Flavio Poletto

Abstract—A reliable method of transmitting downhole informa-
tion to the surface while drilling is essential to improve drilling ap-
plications. We have designed a numerical algorithm for simulation
of electric-signal transmission through the drill string, based on
the telegrapher equation (a circuit model). The drill string is then
represented by a transmission line with varying geometrical and
electromagnetic properties versus depth, depending on the charac-
teristics of the drill string/formation system. These properties are
implicitly modeled by the series impedance and the shunt admit-
tance of the transmission line. The telegrapher equation is solved
in the high-frequency range by using a direct method.

Index Terms—Drill string, electric current, simulation, trans-
mission line.

I. INTRODUCTION

A KEY element in drill steering and prediction of lithology
ahead-of-the-bit is the transmission of while-drilling in-

formation from the bottom of the well to the rig operator and
the geophysicists. Systems for transmitting this information are
diverse [3] and include: 1) mud logging, by which the returning
mud stream is monitored for traces of formation gas; 2) cables
through the drill string; 3) telemetering using radio waves and
electromagnetic fields through the earth [12]; 4) telemetering
by relay stations in the drill pipes; 5) telemetering by means of
tracers in the mudstream; 6) storing the logging information in a
retrievable recorder; 7) acoustic telemetering through the mud-
stream, through the drill string [10], [6], or through the earth
(seismic telemetry), etc. An important application of the seismic
telemetry method is the Seisbit technology, which uses the ex-
tensional wave generated at the drill bit (the pilot signals de-
tected at the rig) to obtain RVSP seismograms [2].

Another possibility is the transmission of electric pulses
through the drill string. This solution has the advantage of
instantaneous synchronization of seismic data. The related
problem has been studied since the 1970s. Hill and Wait [13]
investigated the propagation of a signal from a toroidal coil
source near the bottom of a drill rod to the surface. They
predicted optimum frequencies in the 10–100 Hz range for
depths of the order of several kilometers. The research indicated
that, for depths of the order of 2 km and earth resistivities of
the order of 100 m, frequency effects become important at
frequencies of several hertz. The same researchers [14], [19]
suggested insulating the rod to decrease losses. Bhagwan and
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Trofimenkoff [4], [5] use a ladder network representation of
the drill string. Their predictions agree with Hill and Wait’s
results for drill stem lengths in the 0.5-2.5 km range and in
the frequency range from dc to about 1 kHz. This transmis-
sion line model appears, therefore, to be useful for system
performance evaluation. DeGauque and Grudzinski [9], using
electromagnetic theory, demonstrated that, because of the
finite conductivity of the drill pipes, decreasing the frequency
below a few hertz does not improve the communication. They
also demonstrated that the attenuation coefficient becomes
a constant below a given frequency and that decreasing the
frequency does not increase the communication range, but, on
the contrary, decreases the transmission rate. They obtained an
optimum frequency corresponding to a minimum attenuation
and a maximal data rate. Soulier and Lemaitre [17] favor the
transmission line representation of the drill string, modeling
the system as a coaxial cable acting as a waveguide. The main
conductors are the casing and drill pipes; the shielding are
the formations situated at infinity; and the insulation are the
formations around the well. Using this model, they claim to
obtain results that are consistent with field data. Recently, Xia
and Chen [20] investigated the problem in the low-frequency
range and obtained a good agreement between theoretical
and experimental results. The frequency range of operation is
essential, since high frequencies attenuate rapidly and low fre-
quencies are not suitable to transmit information at a sufficient
data rate.

In this paper, we develop a time-domain algorithm for the
propagation of electric signal along the drill string. The method,
based on the telegrapher equation, considers the presence of the
coupling joints, nonuniform cross section areas, and varying
drill string and formation electromagnetic properties. The ap-
proach is basically a version of the ladder-network or coaxial-
cable representation. A fourth-order Runge–Kutta method and
the Fourier differential operator are used to advance the solution
in time and compute the spatial derivatives, respectively [6].

II. ELECTRIC-TRANSMISSIONDIFFERENTIAL EQUATION

A. Telegrapher Equation

Transmission of electric pulses through a drill string can be
simulated by using a transmission line model. Consider a drill
string connected between a source and a load. Within any short
length we can define both energy storage and dissipation. The
latter occurs both in the drill string and in the media surrounding
the drill string. A cross section of the system and a circuit dis-
playing these properties are shown in Fig. 1(a) and (b), respec-
tively, where , , and denote resistivity, permittivity, and mag-
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Fig. 1. (a) Section of drill string/formation system and (b) corresponding circuit representation where�, �, and� denote resistivity, permittivity, and magnetic
permeability, respectively. The series- and shunt-inductance, capacitance and resistance,L; C; R, andL; C; R characterize the system. The circuit corresponds
to a length�z of the transmission line. The voltage and current are functions of depthz and timet, so that the terminal conditions are those shown in (b), wherev
is the voltage andi is the electric current.

netic permeability, respectively. The series inductanceand re-
sistance , and shunt capacitanceare measured by unit length,
and the series capacitanceand shunt resistance and in-
ductance are measured per inverse of unit length (the inverse
of is the conductance per unit length). The circuit shown in
Fig. 1(b) corresponds to a length of the line. The voltage and
current are functions of depthand time , so that the terminal
conditions are those shown in the figure, whereis the voltage
and is the electric current. Expressing the change in voltage

, and taking the limit , we
have

(1)

Similarly, summing the currents in the shunt elements implies

(2)

Differentiating (1) with respect to and (2) with respect to, we
obtain

(3)

The standard telegrapher equation is obtained for and
[16]

(4)

The wave equation for lossless media is obtained for
and , i.e., no energy dissipation into the formation and a
perfect conducting rod.

Equation (4) contains time integrals, which are expensive
to evaluate with numerical methods. We recast the telegrapher

equation in matrix form, thus avoiding these integrals. Defining
the new variables

and (5)

and using (1) and (2), the telemetry equations can be written in
matrix form as

(6)

where denotes spatial differentiation. Note that we have in-
troduced the source terms and . Equation (6) is a gen-
eralization of the telegrapher’s equation [18], [16], [8], since
the coefficients may depend on the spatial variable. This ap-
proach does not takes into account the propagation of the elec-
tric and magnetic fields, since it does not predict the set of
waveguide modes [15], [18]. However, the distributed circuit
approach does, in fact, give the correct description for the prin-
cipal (TEM) wave. Moreover, it is more flexible than the elec-
tromagnetic approach, since the coefficients can be generalized
to time-dependent functions, and the system is not constrained
to be perfectly straight.

B. Parameters of the Drill String Formation System

Let us calculate the different parameters for the drill string
illustrated in Fig. 1(a). The series resistance is

(7)

where is the area and and are the inner and outer radii
of the drill string, respectively.
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The lateral area per unit length of drill string is . If is
the radial variable, the shunt resistance is given by

(8)

where is undetermined, but can be estimated using the fact
that the drill string has a finite length. We approximate the drill
string by half of a prolate ellipsoid of semilength(the drill
string length) and radius [5]. The shunt capacitance of the
ellipsoid is [1], [4]

(9)

where the approximation holds for a very long ellipsoid (
). The shunt capacitanceis obtained by dividing by 2

(10)

The shunt resistance is

(11)

Comparing (8) and (11) yields , the length of the drill
string. Similarly, the series inductance is [5], [16]

(12)

We assume that the series capacitance of the drill pipes and
coupling joints are equal to infinite, and that a finite capacitance

arises at the contact between the joints and the pipes. Simi-
larly, the shunt inductance is introduced on heuristic grounds.
Both the shunt capacitance and inductance are used here as free
parameters and should be calculated or measured.

Summarizing, the field variables and material properties with
the corresponding units in the SI system are

V A
m m

H m H m
F m F m

(13)

where

(14)

and 1 H 1 V s/A, 1 F 1 A s/V and 1 1 V/A. The free
space permittivity and magnetic permeability are 8.85
10 F/m and 4 10 H/m, respectively.

Equation (6) is solved with a fourth-order Runge Kutta tech-
nique [7]. The spatial derivatives are calculated with the Fourier
method by using the fast Fourier transform (FFT) [11]. This
approximations is infinitely accurate for band-limited periodic
functions with cutoff spatial wavenumbers which are smaller
than the cutoff wavenumbers of the mesh.

III. PHASE VELOCITY AND ATTENUATION FACTOR

Let us assume a harmonic wave with a phase factor ,
where is the angular frequency and . Then, (1) and
(2) can be written as

(15)

and

(16)

where and are the series impedance and the shunt admit-
tance, respectively [18].

Now, assume a planewave with an spatial phase factor
, where is the complex slowness. The real

and imaginary parts of are related to the wavenumber and
the attenuation, respectively. For any field variable, we have

. Eliminating the voltage and the current in (15)
and (16) gives the dispersion equation

(17)

The phase velocity and attenuation factor are given by

and (18)

respectively, with the operators and denoting real and
imaginary parts, respectively.

IV. EXAMPLES

Wait and Hill’s [19] solution for an infinitely long and lossless
rod is

(19)

where

and (20)

and = 1.781. The effective magnetic currentin
the source is proportional to frequency [13]. The normalization
is such that V at 5 kHz, i.e., ( /5 kHz) V, where

is the frequency.
Bhagwan and Trofimenkoff [5] take into account the

boundary conditions at both ends of the string. Their solution
for an ideal (lossless) rod of finite lengthis

(21)

where V; is the length of the downhole
electrode ( m in these calculations); and

(22)

The following are the parameters considered by Wait and Hill
[19] and Bhagwan and Trofimenkoff [5]: m, ,
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Fig. 2. (a) Phase velocity and (b) attenuation factor versus frequency for a perfectly conducting drill string. The parameters correspond to the example discussed
by Wait and Hill [19].

Fig. 3. Electric current versus distance on an infinitely long rod excited by a
magnetic ring source for a frequency of 5 kHz. The continuous line is (27) and
the broken line is Wait and Hill’s solution [(19)]. Our curve is normalized to the
value of Wait and Hill at 10 m.

m, , m, , and
. Moreover, and .

From (4) and (13), the differential equation associated with
Wait and Hill’s solution is

(23)

If the formation is a perfect dielectric ( ), we obtain
the wave equation, with the electromagnetic velocity of the for-
mation equal to . For a conducting formation, the fre-
quency-domain solution takes a simple form. We obtain

(24)

Fig. 4. Electric current versus frequency atz = 1000 m on a drill rod. The
continuous line is (27), the broken line is Wait and Hill’s solution [(19)], and
the dashed line is Bhagwan and Trofimenkoff’s solution, for a rod of finite
dimensions. The curves are normalized to the value of Wait and Hill at 1 Hz.

Fig. 5. Dominant wavelength of the signal transmitted through a rod.

where we have used (13). Because the second term in (24) is
negligible for the values used by Wait and Hill [19] and for the
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Fig. 6. Propagation of a pulse in a rod immersed in drilling fluid. Set of snapshots of the electric current at 24�s, corresponding to different cases: (a) lossless rod
and lossless fluid; (b) lossless rod and lossy fluid; (c) lossy rod and lossless fluid; and (d) lossy rod and lossy fluid. The asterisk indicates the location of the source.

frequency range under consideration, we obtain the following
complex slowness from (17):

(25)

In the time-domain, this approximation corresponds to the dif-
fusion equation

(26)

Thus, the phase velocity and attenuation factor are simply

and (27)

since the propagation effects due to the finite length of the
drill string have not been taken into account in our calcula-
tions, and the dielectric effects are negligible. Bhagwan and
Trofimenkoff’s phase velocity and attenuation factor coincides
with ours if in their equation [(17)]. The (a) phase
velocity and (b) attenuation factor versus frequency are shown
in Fig. 2. Phase velocity, and therefore data rates, increases
with frequency, but attenuation also increases. The electric
current associated with (27) is

(28)

where ( /5 kHz) A, to be consistent with [13] and [19].
Fig. 3 shows the electric current versus distance on an infin-

itely long rod excited by a magnetic ring source for a frequency
of 5 kHz. Fig. 4 represents the electric current versus frequency

at a distance m from the source. The dashed line
is Bhagwan and Trofimenkoff’s attenuation curve for a rod of
finite dimensions ( m). The parameter in (14) is cal-
culated by using m. The curves are normalized with
respect to the lower frequency value of [19]. As can be inferred
from Figs. 3 and 4, the magnitude of the excited current decays
very rapidly after 0.5-km distance, and the current is weaker at
higher frequencies. However, the velocity of transmitting sig-
nals decreases at low frequencies, as illustrated in Fig. 2(a). The
group velocity is the derivative of the frequency with respect to
the real wavenumber

(29)

We obtain

(30)

Thus, the dominant wavelength of a wave packet is given by

(31)

The wavelength versus frequency is shown in Fig. 5. It ranges
from 31.5 km at 1 Hz to 100 m at 100 kHz.

A. Simulations

The previous example corresponds to a diffusive field, since
the electric displacement term [the second term in the right-hand
side of (24)] is small compared to the conductivity term [the
first term in the right-hand side of (24)]. Let us consider that the



1052 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 40, NO. 5, MAY 2002

Fig. 7. Regular drill string consisting of pipes and tool joints.

Fig. 8. Snapshots of the (a) current and (b) voltage at 3�s propagation time. The asterisk indicates the location of the source.

rod is immersed in a dielectric fluid, such as oil-based drilling
fluid, and assume the following properties: m, ,

m, m, m,
, , , and . We consider

grid points and a uniform grid spacing m. The
source central frequency is 1 MHz and is located at grid point
30. Absorbing strips of length 18 grid points are implemented at
the two ends of the rod to avoid wrap-around effects. The wave
field is computed by using a time-step of 20 ns.

Fig. 6 shows a set of snapshots of the electric current at 24
s, corresponding to different cases: (a) lossless rod and lossless

fluid, (b) lossless rod and lossy fluid, (c) lossy rod and lossless
fluid, and (d) lossy rod and lossy fluid. The pulse has traveled
approximately 3.2 km (from left to right), and has been attenu-
ated by losses in both the fluid and the rod material.

The last example considers a drill string with the characteris-
tics shown in Fig. 7, in a fluid the properties of which are those of
the previous example. We assume a series capacitance
m for the tool joints, to model capacitive effects between
the pipes and the coupling joints. We consider and
a uniform grid spacing cm. The source is located at
grid point 1732 and has a central frequency of 3 MHz. The first
half of the string has no tool joints. The first tool joint starts at
grid point 1755, with each joint modeled by two grid points and
each pipe element modeled by 37 grid points. The wave field is
computed by using a time-step of 1 ns. Fig. 8 shows snapshots
of the (a) current and (b) voltage at 3s. The attenuation of the
pulse traveling to the right is evident. This effect is mainly due
to the series capacitance.

V. CONCLUSIONS

We have developed a theoretical and numerical approach for
modeling electromagnetic wave propagation in drill strings. The

model corresponds to a generalized telegrapher equation, which
reduces to a diffusion equation at low frequencies and to a hy-
perbolic (wave) equation at high frequencies. We have solved
the wave equation including resistive and capacitive losses in
the surrounding medium and drill string material. Modeling at
low frequencies requires an algorithm for parabolic differential
equations.

In this phase of the research, we intended to obtain a physi-
cally meaningful theoretical model. Use of this theory for prac-
tical industrial application is a further matter of research, from
the numerical and experimental points of view. We are currently
investigating the low-frequency numerical solution, the incor-
poration of boundary conditions to model the ends of the string,
the inclusion of different media around the string (casing, ce-
mentation, etc.), and frequency effects of the series resistance
of the rod and shunt capacitance of the formation. The series
resistance can increase with frequency due to the skin effect

and the presence of out-of-phase conduction cur-
rents, and the shunt capacitance must include dielectric losses
in the formation.
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