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Abstract

We design a numerical algorithm for simulation of low-frequency electric-signal transmission through a drill string.

This is represented by a transmission line with varying geometrical and electromagnetic properties versus depth, de-

pending on the characteristics of the drill-string/formation system. These properties are implicitly modeled by the series

impedance and the shunt admittance of the transmission line. The differential equations are parabolic, since at low

frequencies the wave field is diffusive. We use an explicit scheme for the solution of parabolic problems, based on a

Chebyshev expansion of the evolution operator and the Fourier pseudospectral method to compute the spatial de-

rivatives. The results are verified by comparison to analytical solutions obtained for the initial-value problem with a

voltage source.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Seismic-while-drilling technology has rapidly evolved during the last decade. An important application

of the seismic telemetry method is the SeisbitR technique, which uses the extensional wave generated at the

drill bit (the pilot signals detected at the rig) to obtain RVSP seismograms [2]. Another possibility is to

transmit information – from the bottom-hole-assembly (BHA) to the surface – through the drill string. This

can be a key element in drill steering and prediction of lithology ahead-of-the-bit.

The transmission of electric pulses through the drill string has the advantage of instantaneous syn-

chronization of seismic data. This problem has been studied since the 1970s [3,4,11,14,15,17,19,20] by
means of analytical methods, which require the use of simplified models. High frequencies transmission,

where displacement currents cannot be neglected, implies high transmission rates (high phase velocity), but

also high attenuation [10]. On the other hand, at low frequencies, the attenuation is lower, but the data rates

are lower [20]. Nevertheless, the electromagnetic system has higher data rates compared to more conven-

tional systems, such as the mud-pulse method or the acoustic-telemetry method [9,12].
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Previous research demonstrated that for frequencies in the range 10–100 Hz the penetration is of the

order of several kilometers. DeGauque and Grudzinski [11], using electromagnetic theory, show that be-

cause of the finite conductivity of the drill pipes, decreasing the frequency below a few hertz does not

improve the communication. They demonstrate that the attenuation coefficient becomes a constant below a

given frequency and that decreasing the frequency does not increase the communication range, but, on the

contrary, decreases the transmission rate. They obtain an optimum frequency corresponding to a minimum

attenuation and a maximal data rate. Xia and Chen [20] show that the frequency range of operation is

essential, because high frequencies attenuate rapidly and very low frequencies are not suitable for trans-
mission of information at a sufficient data rate.

Carcione and Poletto [10] have developed a theoretical and numerical approach for modeling electro-

magnetic wave propagation in drill strings. The model corresponds to a generalized telegrapher equation,

which reduces to a diffusion – parabolic differential equation at low frequencies and to a hyperbolic (wave)

equation at high frequencies. The method considers the presence of the coupling joints, non-uniform cross-

section areas, and varying drill-string and formation electromagnetic properties. The formulation includes

resistive and capacitive losses in the surrounding medium and drill string material. They have solved the

high frequency differential equations by using a fourth-order Runge–Kutta method and the Fourier
pseudospectral method to compute the spatial derivatives.

In this work, we develop a time-domain algorithm for the propagation of low-frequency electric signals

along the drill-string. The algorithm uses an explicit scheme based on a Chebyshev expansion of the

evolution operator and the Fourier pseudospectral method to compute the spatial derivatives [18]. This

technique has spectral accuracy in time and space.

2. The electric-transmission system

2.1. The differential equations

Transmission of electric pulses through a drill string can be simulated by using the transmission line

model developed by Carcione and Poletto [10]. The system, illustrated in Fig. 1, is governed by the fol-

lowing differential equations:
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where as in the figure, q, � and l denote resistivity, permittivity and magnetic permeability, and the sub-
indices f and d denote formation and drill string, respectively (see the figure). The series inductance and

resistance, L and R, and shunt capacitance, C, are measured by unit length, and the the series capacitance,

C, and shunt resistance and inductance, R and L, are measured per inverse of unit length (the inverse of R
is the conductance per unit length). The circuit shown in Fig. 1(b) corresponds to a length dz of the line. The

voltage and current are functions of depth z and time t, so that the terminal conditions are those shown in

the figure, where v is the voltage and i is the electric current.

Eq. (1) contains time integrals, which are expensive to evaluate with numerical methods. Defining the

new variables

q ¼
Z

idt and u ¼
Z

vdt; ð2Þ

the integrals are avoided, and the telemetry equations can be written in matrix form as
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where oz denotes spatial differentiation. We have introduced the source terms is and vs.

The standard telegrapher equation is obtained for C ! 1 and L ! 1 [16],
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At low frequencies, the displacement currents can be neglected (C ¼ 0), and Eq. (4) can be written as a first-

order differential equations in time,
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�
vþ vs; ð5Þ

where vs is a source term.

2.2. Parameters of the drill-string formation system

The analysis of the resistances, inductances and capacitances as a function of the electromagnetic

properties and geometrical characteristics of the drill string and formation, are given in [10]. We assume

that the series capacitance of the drill pipes and coupling joints are infinite, and that a finite capacitance C
arises at the contact between the joints and the pipes. Similarly, the shunt inductance L is introduced on

heuristic grounds. Both the shunt capacitance and inductance are used here as free parameters and should

be calculated or measured.

Fig. 1. Section of drill-string/formation system (a), and corresponding circuit representation (b): q, � and l denote resistivity, per-

mittivity and magnetic permeability, respectively. The series- and shunt-inductance, capacitance and resistance, L, C, R and L, C, R,

characterize the system. The circuit corresponds to a length dz of transmission line. The voltage and current are functions of depth z
and time t, so that the terminal conditions are those shown in (b), where v is the voltage and i is the current.
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Summarizing, the field variables and material properties with the corresponding units in the SI system

are

v ½V
 i ½A

R ¼ qd=S ½X=m
 R ¼ qf c ½X � m

L ¼ lf c ½H=m
 L ½H � m

C ½F � m
 C ¼ �f =c ½F=m
;

ð6Þ

where

c ¼ 1

2p
ln

2l
r2

� �
; ð7Þ

where l is the drill-string length, r1 and r2 are the inner and outer radii, and S ¼ pðr2
2 � r2

1Þ is the cross-

section. (1 H¼ 1 V s/A, 1 F¼ 1 A s/V and 1 X¼ 1 V/A.) The free space permittivity and magnetic per-

meability are �0 ¼ 8:85 � 10�12 F/m and l0 ¼ 4p10�7 H/m, respectively.

2.3. Phase velocity and attenuation factor

Let us assume a harmonic wave with a phase factor expðıxtÞ, where x is the angular frequency and

ı ¼
ffiffiffiffiffiffiffi
�1

p
. We define the series impedance and the shunt admittance as

Z ¼ Rþ ıxLþ 1

ıxC
ð8Þ

and

Y ¼ 1

R
þ ıxCþ 1

ıxL
; ð9Þ

respectively. Then, the phase velocity and attenuation factor are given by [10]

vp ¼ � Re sð Þ½ 
�1
and a ¼ x ImðsÞ; ð10Þ

respectively, where

s ¼ ı

x

ffiffiffiffiffiffi
YZ

p
ð11Þ

is the complex slowness, and the operators ‘‘Re’’ and ‘‘Im’’ denote real and imaginary part.

3. The numerical algorithm

Eqs. (3) and (5) have the form

ow

ot
¼ Gwþ s; ð12Þ

where w is the field vector, s is the source vector, and G is the propagation matrix containing the spatial

derivatives and material properties. (G ¼ o2=oz2 � R=R in Eq. (5).)

We use the Fourier method [5,7,8,13], which consists of a spatial discretization and calculation of spatial
derivatives using the fast Fourier transform. The Fourier method is a collocation technique in which a

continuous function is approximated by a truncated series of trigonometric functions, wherein the spectral
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(expansion) coefficients are chosen such that the approximate solution coincides with the exact solution at

the discrete set of sampling or collocation points, The collocation points are defined by equidistant sam-

pling points Since the expansion functions are periodic, the Fourier method is appropriate for problems

with periodic boundary condition. In order to fulfill this condition, we model the ends of the string by

adding grid points where the electrical resistivity is very high.

Considering a discretization with N number of grid points, the system (12) becomes a coupled system of

n � N ordinary differential equations at the grid points, where n is the dimension of matrix G. The solution to

Eq. (12) subject to the initial condition wð0Þ ¼ w0 is formally given by

wN ðtÞ ¼ expðtGN Þw0
N þ

Z t

0

expðsGNÞsN ðt � sÞds; ð13Þ

where w0
N is the initial-condition field vector, expðtGNÞ is called evolution operator, and the subindex N

indicates that those quantities are discrete representation of the respective continuous quantities. We

consider a separable source term s ¼ aNhðtÞ, where aN is the spatial distribution of the source and the

function hðtÞ is the source time history. A fully discrete solution of (13) is achieved by approximating the

evolution operator. For instance, if there is no source, the solution can expressed by

wN ðtÞ ¼ HMðtGN Þw0
N ; ð14Þ

where HM is a polynomial of degree M that converges to expðtGN Þ in the domain that includes all the ei-

genvalues of the operator tGN .

To solve Eq. (13), we use a time-integration technique based on the Chebyshev expansion of the function

expðxÞ [18]. Let

y ¼ 1

bt
ðxþ btÞ; �16 y6 1; ð15Þ

where b is the absolute value of the eigenvalue of matrix GN having the largest negative real part (as we shall

see later, the eigenvalues are close to the real axis and their real part is negative.) Using Eq. (15), we have

expðxÞ ¼ expð�btÞ expðbtyÞ ¼
X1
k¼0

bkTkðyÞ; ð16Þ

where TkðyÞ is the Chebyshev polynomial of order k [1], and

bk ¼ ck expð�btÞIkðbtÞ ð17Þ

for initial conditions without source, and

bk ¼ ck

Z t

0

expð�bsÞIkðbsÞhðt � sÞds ð18Þ

in the presence of source, without initial conditions,

ck ¼
1; k ¼ 0;
2; k P 1;

�
ð19Þ

and Ik is the modified Bessel function of order k [1]. Thus, the M degree polynomial approximation of

expðxÞ is

HMðxÞ ¼
XM
k¼0

bkTkðyðxÞÞ: ð20Þ
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Because of (15), we substitute the operator FN defined as

FN ¼ 1

b
ðGN þ bIÞ ð21Þ

for y, where I is the identity matrix. For instance, in the absence of sources, the fully discrete solution is

wM
N ¼

XM
k¼0

bkTkðFN Þw0
N : ð22Þ

TkðFN Þw0
N is computed by using the recurrence relation

TkðuÞ ¼ 2uTk�1ðuÞ � Tk�2ðuÞ; k P 2; ð23Þ

T0ðuÞ ¼ 1; T1ðuÞ ¼ u: ð24Þ

Hence,

TkðFNÞw0
N ¼ 2FNTk�1ðFN Þw0

N � Tk�2ðFN Þw0
N ; k P 2; ð25Þ

T0ðFN Þw0
N ¼ w0

N ; T1ðFN Þw0
N ¼ FNw

0
N : ð26Þ

The algorithm is a three-level scheme, since it uses the recurrence relation. Accuracy and stability have been

investigated by Tal-Ezer [18], who shows that the algorithm is much more efficient that a modified Euler

scheme.

3.1. Example

Consider, for instance, the differential equation (5). The propagation matrix (in the continuum) is the

scalar

G ¼ R

L
o2

oz2

�
� R
R

�
: ð27Þ

In the Fourier method, the second derivative is replaced by �k2, where k is the wavenumber. (Note that G
takes real negative values.) The maximum wavenumber is the Nyquist wavenumber, which for a grid

spacing dz is p=dz. Hence, the value of b corresponding to Eq. (5) is

b ¼ R

L
p2

dz2

�
þ R
R

�
: ð28Þ

As Tal-Ezer has shown [18], the polynomial degree M should be of the order of
ffiffiffiffi
bt

p
to obtain accurate

solutions.

4. Analytical solutions

Analytical solutions are important to analyze the physics of the problem and verify the numerical

algorithm. In this section, we obtain solutions of Eq. (5).

J.M. Carcione, F. Poletto / Journal of Computational Physics 186 (2003) 596–609 601



4.1. Voltage versus distance and frequency

Bhagwan and Trofimenkoff�s solution [4] for a conducting string of finite length l is

vðl;xÞ ¼ vT Z1

ðZ1 þ Z2Þ coshðc1lÞ
; ð29Þ

where vT is the input voltage,

Z1 ¼ Z01 cothðc1lÞ; Z2 ¼ Z02 cothðc2DlÞ; ð30Þ

Dl is the length of a downhole electrode,

c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ ıxL

R

r
; c2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ ıxL2

R2

r
; ð31Þ

Z01 ¼ c1R; Z02 ¼ c2R2 ð32Þ

and

L2 ¼
lf

2p
ln

Dl
r2

� �
; R2 ¼

qf

2p
ln

Dl
r2

� �
: ð33Þ

Eq. (29) takes into account the boundary conditions at both ends of the string. The subindex 2 indicates

properties of the downhole electrode.

The corresponding equation for an infinite rod or hollow cylinder is the differential equation (5). The

phase velocity and attenuation factor can be obtained from (10) by setting C ¼ 1, C ¼ 0 and L ¼ 1 in

Eqs. (8) and (9). In this case, the slowness (11) is simply

s ¼ ıc1

x
: ð34Þ

The voltage associated with the infinite string is

vðl;xÞ ¼ vT expð�azÞ: ð35Þ

In the limit as l ! 1, Bhagwan and Trofimenkoff�s solution (29) coincides with the solution of (5).

4.2. Time-domain solutions

We obtain transient solutions when initial conditions or source are prescribed.

4.2.1. Initial condition

The solution vðz; tÞ of Eq. (5) for the initial condition vðz; 0Þ is given by

vðz; tÞ ¼ vðz; 0Þ � gðz; tÞ; ð36Þ

where � denotes spatial convolution and gðz; tÞ is the Green�s function. In the wavenumber domain, we have

vðk; tÞ ¼ vðk; 0Þgðk; tÞ; ð37Þ

where k is the real wavenumber, vðk; 0Þ is the spatial Fourier transform of the initial condition, and gðk; tÞ is
the Green�s function (A.10). Substituting this equation into Eq. (37) yields
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vðk; tÞ ¼ vðk; 0ÞHðtÞ expð�Rk2t=LÞ expð�Rt=LÞ: ð38Þ

The effect of the first exponential on the right hand side is to filter the high wavenumbers.

We use as initial condition

vðz; 0Þ ¼ exp

"
� Dk2ðz� z0Þ2

4

#
cos½�kkðz� z0Þ
; ð39Þ

with a Gaussian shape in the wavenumber domain

vðk; 0Þ ¼
ffiffiffi
p

p

Dk
exp

2
4

8<
: � k þ �kk

Dk

 !2
3
5þ exp

2
4� k � �kk

Dk

 !2
3
5
9=
; expð�ıkz0Þ; ð40Þ

where z0 is the location of the peak , �kk is the central wavenumber, and 2Dk is the width of the pulse, such

that vð�kk � Dk; 0Þ ¼ vð�kk; 0Þ=e.
The solution in the space domain vðz; tÞ is obtained by a discrete inverse Fourier transform, using the fast

Fourier transform.

4.2.2. Source

The solution vðz; tÞ of Eq. (5) for zero initial conditions is given by

vðz; tÞ ¼ vsðtÞ � gðz; tÞ; ð41Þ

where here � denotes time convolution. In the frequency-domain, we have

vðz;xÞ ¼ vsðxÞgðz;xÞ; ð42Þ

where vsðxÞ is the time Fourier transform of the source, and gðz;xÞ is the Green�s function (A.6). The

source pulse has the same form (39), replacing z by t and k by x, where t0 is a time delay, and �xx is the central

frequency. The solution in the time domain vðz; tÞ is obtained by a discrete inverse Fourier transform, using

the fast Fourier transform.

5. Examples

The following are the parameters considered by Bhagwan and Trofimenkoff [4]: l ¼ 1000 m, r1 ¼ 0:02 m,

r2 ¼ 0:025 m, qd ¼ 2:5 � 10�7 X � m, qf ¼ 10 X � m, lf ¼ l0 and Dl¼ 5 m. The phase velocity (a) and at-

tenuation factor (b) versus frequency are shown in Fig. 2. Phase velocity and therefore data rates increase

with frequency, but attenuation also increases.

Fig. 3 shows the normalized voltage (35) versus frequency at a distance z ¼ 1000 m from the source. The
dotted line is Bhagwan and Trofimenkoff�s solution for a rod of finite dimensions (l ¼ 1000 m).

Let us consider a drill-string system governed by Eq. (5) and the initial condition (39), with �kk ¼ 0.02 1/

m, Dk ¼ �kk/2, and z0 ¼ 1650 m. The properties of the system are given above, and R, R, and L can be

obtained from Eq. (6). We consider N ¼ 165 grid points and a uniform grid spacing dz ¼ 20 m. Fig. 4

shows a set of snapshots of the voltage at 1, 30, 60 and 90 ms. The dots represent the numerical solution and

the solid line is the analytical solution (36).

Assume now the numerical algorithm when a source is introduced at z0 ¼ 1659 m. We consider N ¼ 165

grid points and a grid spacing dz ¼ 20 m. The source central frequency is �ff ¼ 1000 Hz, �xx ¼ 2p �ff , Dx ¼ �xx=2
and t0 ¼ 1:6 ms. The low-frequency approximation neglects the displacement currents, i.e., the terms
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containing the shunt capacitance C. For the standard telegrapher equation, this analysis can be performed

in Eq. (11), in particular, considering the product YZ. This is given by

YZ ¼ 1

R

�
þ ıxC

�
ðRþ ıxLÞ ¼ R

R
þ ıxRCþ ı

xL
R

� x2CL: ð43Þ

At 1000 Hz, the relation between the absolute values of these four terms is 7:8 � 10�3=4:3�
10�8=1=5:6 � 10�6 ð1=m2Þ, justifying the use of Eq. (5) to solve this problem. A snapshot of the voltage at 4

ms is shown in Fig. 5(a) (dots). The solid line is the analytical solution (41). This solution has been obtained

with a discrete Fourier transform of 693 points and a time step of 0.05 ms. To compute successive snap-

shots, the snapshot shown in Fig. 5(a) is used as an initial condition. The voltage distribution at 20 ms is

shown in Fig. 5(b) (dots), where the solid line represents the analytical solution.

Fig. 3. Normalized voltage (35) versus frequency at a distance z¼ 1000 m from the source. The dotted line is Bhagwan and Trofi-

menkoff�s solution for a rod of finite dimensions (l ¼ 1000 m).

Fig. 2. Phase velocity (a) and attenuation (b) versus frequency. The drill-string parameters correspond to the example discussed by

Bhagwan and Trofimenkoff [4].
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Fig. 4. Set of snapshots of the voltage at 1, 30, 60 and 90 ms. The dots represent the numerical solution and the solid line is the

analytical solution (36). The amplitude ratio between snapshots, (a)/(b)/(c)/(d), is 1=2:6 � 10�3/1:4 � 10�4/9:6 � 10�6.

Fig. 5. Snapshot of the voltage at 4 ms generated by a source of 1000 Hz (a), and at 20 ms by considering (a) as an initial condition.

The solid line represents the analytical solution. The amplitude ratio between snapshot (a) and (b) is 1/0.11.
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In order to model the ends of the string, we consider a very high rod resistivity for the first and last 40

grid points of the mesh. Fig. 6 shows a snapshot of the voltage at 20 ms, generated by a source of 1000 Hz.

The resistivity of the rod has been multiplied by 5000 between 0 and 800 m and between 2500 and 3280 m.

There is no signal in those regions (compare to Fig. 5(b)).

The last example considers a drill string with the characteristics shown in Fig. 7. We use N ¼ 3465 grid

points and a uniform grid spacing dz ¼ 23 cm. The source is located at grid point 1732 and has a central

frequency of 1000 Hz. Each tool joint is modeled by two grid points and each pipe element by 37 grid

points. The formation properties are qf ¼ 2 X � m and lf ¼ l0. Moreover, qd ¼ 2:5 � 10�7 X � m for the
pipes and qd ¼ 250 � 10�7 X � m for the tool joints. This value describes a poor contact between pipe and

tool joint rather than the resistivity of the tool joints, which is similar to that of the pipe.

Fig. 8(a) shows snapshots of the normalized voltage at 4 ms, with and without tool joints (solid and

dashed lines, respectively). The attenuation is evident in the first case. Fig. 8(b) shows the voltage when the

Fig. 7. Section of drill string consisting of pipes and tool joints (d1 and d2 denote the inner and outer diameters).

Fig. 6. Snapshot of the voltage at 20 ms generated by a source of 1000 Hz. The model is a finite rod of length 1700 m, extending from

800 to 2500 m.

Fig. 8. (a) Snapshots of the normalized voltage at 4 ms, with and without tool joints (solid and dashed lines, respectively). (b) The

voltage when the section z < 400 m is surrounded by a formation of lower resistivity.
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section z < 400 m is surrounded by a formation of qf ¼ 0:4 X � m. As before the solid and dashed lines

correspond to the rod and to the drill string, respectively. The lower shunt resistance implies higher at-

tenuation of the voltage between 0 and 400 m.

6. Conclusions

We have developed a theoretical and numerical approach for modeling electromagnetic wave propa-
gation in drill strings. The model corresponds to a generalized telegrapher equation, which reduces to a

diffusion equation at low frequencies and to a hyperbolic (wave) equation at high frequencies. We have

solved the diffusion equation including resistive losses in the surrounding medium and drill string material.

Modeling at low frequencies requires an algorithm for parabolic differential equations. The algorithm is

based on a Chebyshev expansion of the evolution operator. The use of this spectral method overcomes two

drawbacks: low accuracy and stringent stability conditions, since the error in time decays exponentially.

In this phase of the research, we intend to obtain a physically meaningful theoretical and numerical

model. Use of this theory for practical industrial application is a further matter of research, from the
numerical and experimental points of view. Since the Fourier method is periodic, the model should be

periodic or additional cells should be used at the extremes of the mesh to simulate periodicity. The

boundary conditions are modeled by including regions of high resistivity at the ends of the string. In the

example, these non-physical regions require the same grid points of the physical model. Since the modeling

is one dimensional, this addition of grid points is not costly in terms of memory storage and computer time.

Other developments of the numerical code involve the inclusion of different media around the string

(casing, cementation, etc.), and frequency effects of the series resistance of the rod and shunt capacitance of

the formation. The series resistance can increase with frequency due to the skin effect (R /
ffiffiffiffi
x

p
) and the

presence of out-of-phase conduction currents, and the shunt capacitance must include dielectric losses in

the formation.
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Appendix A. Green’s functions

The Green�s function gðz; tÞ corresponding to Eq. (5) is the solution of

og
ot

¼ R

L
o2

oz2

�
� R
R

�
g þ dðzÞdðt � t0Þ; ðA:1Þ

where d denotes Dirac�s function, and we have assumed a unit source located at z ¼ 0 and activated at
t ¼ t0. A double transform to the Laplace (Fourier) and wavenumber domains implies the substitution

o=ot ! p ¼ ıx and o=oz ! �ık, where x is the angular frequency and k is the wavenumber. We obtain [6]

~~gg~ggðk; pÞ ¼ expð�pt0Þ
p þ 1

L ðk2Rþ RÞ ; ðA:2Þ

where a tilde denotes Fourier transform with respect to the spatial or temporal variables, and we have

assumed zero initial conditions. The inverse Fourier transform to the space domain is
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~ggðz; pÞ ¼ L
2pR

Z 1

�1

expðıkz� pt0Þdk
k2 þ 1

R
ðpLþ RÞ : ðA:3Þ

We use the residue theorem to solve this integral. The poles in the complex k-plane are

k1 ¼ ıa; k2 ¼ �ıa; aðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pLþ R

R

r
: ðA:4Þ

For zP 0 we consider a counter-clockwise contour formed by the real k-axis and a half-circle including the

pole k1. The residue corresponding to this pole is

1

2ıa
expð�pt0Þ expð�azÞ: ðA:5Þ

Choosing the radius of the half-circle equal to 1 and because the residue theorem states that the integral is

equal to 2pı times the residue, we obtain

~ggðz;xÞ ¼ L
2aR

expð�ıxt0Þ expð�azÞ; aðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ıxLþ R

R

r
: ðA:6Þ

For z < 0 we consider a clockwise contour formed by the real k-axis and a half-circle including the pole k2.

The solution is given by (A.6), but substituting z by �z.
Let us assume the initial condition v0 ¼ vðz; 0Þ ¼ dðzÞ and no sources. A double transform of (A.1) to the

Laplace and wavenumber domains yields

~~gg~ggðk; pÞ ¼ 1

p þ 1
L ðk2Rþ RÞ ; ðA:7Þ

where we have used the property ov=ot ! p~~gg~gg � ~vv0, ~vv0 ¼ 1.

To obtain ~ggðk; tÞ, we compute the inverse Laplace transform of (A.7),

~ggðk; tÞ ¼ 1

2pı

Z cþı1

c�ı1

expðptÞds
p þ 1

L ðk2Rþ RÞ ; ðA:8Þ

where c > 0. There is one pole,

p0 ¼ � 1

L
ðk2Rþ RÞ: ðA:9Þ

Use of the residue theorem implies the Green�s function

~ggðk; tÞ ¼ HðtÞ expðp0tÞ; ðA:10Þ

where HðtÞ is the Heaviside function.

References

[1] M. Abramowitz, I.A. Stegun (Eds.), Handbook of Mathematical Functions, National Bureau of Standards, Applied

Mathematical Series, 1964.

[2] L. Aleotti, F. Poletto, F. Miranda, P. Corubolo, F. Abramo, A. Craglietto, Seismic while-drilling technology: use and analysis of

the drill-bit seismic source in a cross-hole survey, Geophys. Prosp. 47 (1999) 25–39.

[3] J. Bhagwan, F.N. Trofimenkoff, Electric drill stem telemetry, IEEE Trans. Geosci. Remote Sensing GE-20 (1982) 193–197.

[4] J. Bhagwan, F.N. Trofimenkoff, Drill stem resistance effects in electric telemetry links, IEEE Trans. Geosci. Remote Sensing GE-

21 (1983) 141–144.

608 J.M. Carcione, F. Poletto / Journal of Computational Physics 186 (2003) 596–609



[5] J.P. Boyd, Chebyshev and Fourier Spectral Methods, Dover Pub., New York, 2001.

[6] R. Bracewell, The Fourier Transform and its Applications, McGraw-Hill Inc., New York, 1965.

[7] C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, in: Spectral Methods in Fluid Dynamics, Springer-Verlag, Berlin, 1987,

pp. 7–10.

[8] J.M. Carcione, in: Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic and Porous Media, Handbook of

Geophysical Exploration, vol. 31, Pergamon Press Inc., New York, 2001.

[9] J.M. Carcione, F. Poletto, Simulation of stress waves in attenuating drill strings, including piezoelectric sources and sensors,

J. Acoust. Soc. Am. 108 (2000) 53–64.

[10] J.M. Carcione, F. Poletto, A telegrapher equation for electric telemetering in drill strings, IEEE Trans. Geosci. Remote Sensing 40

(2002) 1047–1053.

[11] P. DeGauque, R. Grudzinski, Propagation of electromagnetic waves along a drill string of finite conductivity, SPE Drilling Eng.

(1987) 127–134.

[12] D.S. Drumheller, S.D. Knudsen, The propagation of sound waves in drill strings, J. Acoust. Soc. Am. 97 (1995) 2116–2125.

[13] B. Fornberg, A Practical Guide to Pseudospectral Methods, Cambridge University Press, Cambridge, 1996.

[14] D.A. Hill, J.R. Wait, Electromagnetic basis of drill-rod telemetry, Electron. Lett. 14 (1978) 532–533.

[15] D.A. Hill, J.R. Wait, Calculated admittance of an idealized drill rod antenna in a lossy medium, IEEE Trans. Antennas Propagat.

AP-23 (1979) 701–704.

[16] K.F. Sander, G.A.L. Reed, Transmission and Propagation of Electromagnetic Waves, Cambridge University Press, Cambridge,

1986.

[17] L. Soulier, M. Lemaitre, E.M. MWD data transmission status and perspectives, SPE/IADC 25686, 1993.

[18] H. Tal-Ezer, Spectral methods in time for parabolic problems, SIAM J. Numer. Anal. 26 (1989) 1–11.

[19] J.R. Wait, D.A. Hill, Theory of transmission of electromagnetic waves along a drill rod in conducting rock, IEEE Trans. Geosci.

Electron. GE-17 (1979) 21–24.

[20] M.Y. Xia, Z.Y. Chen, Attenuation predictions at extremely low frequencies for measurement-while-drilling electromagnetic

telemetry system, IEEE Trans. Geosci. Remote Sensing 31 (1993) 1222–1228.

J.M. Carcione, F. Poletto / Journal of Computational Physics 186 (2003) 596–609 609


	Electric drill-string telemetry
	Introduction
	The electric-transmission system
	The differential equations
	Parameters of the drill-string formation system
	Phase velocity and attenuation factor

	The numerical algorithm
	Example

	Analytical solutions
	Voltage versus distance and frequency
	Time-domain solutions
	Initial condition
	Source


	Examples
	Conclusions
	Acknowledgements
	Green&rsquo;s functions
	References


