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S U M M A R Y
We design a numerical algorithm for wave simulation in a borehole due to multipole sources.
The stress–strain relation of the formation is based on the Kelvin–Voigt mechanical model to
describe the attenuation. The modelling, which requires two anelastic parameters and twice
the spatial derivatives of the lossless case, simulates 3-D waves in an axisymmetric medium by
using the Fourier and Chebyshev methods to compute the spatial derivatives along the vertical
and horizontal directions, respectively. Instabilities of the Chebyshev differential operator due
to the implementation of the fluid–solid boundary conditions are solved with a characteristic
approach, where the characteristic variables are evaluated at the source central frequency. The
algorithm uses two meshes to model the fluid and the solid. The presence of the logging tool
is modelled by imposing rigid boundary conditions at the inner surface of the fluid mesh.
Examples illustrating the propagation of waves are presented, namely, by using monopoles,
dipoles and a quadrupoles as sources in hard and soft formations. Moreover, the presence of
casing and layers is considered. The modelling correctly simulates the features—traveltime
and attenuation—of the wave modes observed in sonic logs, namely, the P and S body waves,
the Stoneley wave, and the dispersive S waves in the case of multipole sources.

Key words: Numerical solutions; Fourier analysis; Downhole methods; Geomechanics;
Seismic attenuation; Wave propagation.

1 I N T RO D U C T I O N

Guided waves through a borehole can be used to control the drilling
conditions and to obtain the petro-physical properties of the sur-
rounding formation (e.g. Carcione & Poletto 2000). In particular,
full-waveform sonic-log tools measure the P- and S-wave velocities
and attenuation factors (Paillet & Cheng 1991). These properties
provide information about the rock type, the porosity, the fluid satu-
ration, the presence of fractures and the in situ stress conditions. The
laboratory experiments conducted by Chen (1982) provide a clear
picture of the different wave modes. If the P- and S-wave velocities
of the formation are greater than the P-wave (sound) velocity of
the borehole fluid (hard formation), the wave train consists of re-
fracted P- and S-waves, guided waves (pseudo-Rayleigh waves) and
a Stoneley wave. The first two are body waves, the guided modes
are highly dispersive and have a velocity ranging from the S-wave
velocity to a fraction of the fluid sound velocity. The Stoneley wave
has a velocity smaller than the fluid velocity, a high amplitude and
is not very dispersive.

When the S-wave velocity is less than the fluid sound velocity
(soft formation), there is no refracted S wave, and leaky P waves
may interfere with the refracted P wave. A solution to separate
them is to use dipole sources (Tichelaar & van Luik 1995). Modal
S-wave trains can be generated with multipole sources. The radia-

tion intensity of multipole sources depends on the azimuthal angle
θ about the borehole axis as exp (i n θ ), where i = √−1 and n
is the multipole order. For instance, n = 0 is a monopole, n =
1 is a dipole and n = 2 is a quadrupole. Multipole sources are
useful to excite certain wave modes (Winbow 1985, 1991; Chen
1988, 1989). For instance, high-order sources are effective to gen-
erate S waves. The experiments conducted by Chen (1989) using
quadrupole sources are very illustrative. While monopole sources
in limestone (hard formation) generate P waves and low-frequency
Stoneley waves, quadrupole waveforms do not show these waves.
Also, modal (guided) waves can and cannot be excited depending if
the source frequency is higher or lower than the entry frequencies of
the modes. While monopole waveforms in plastic (soft formation)
generate clear P and Stoneley waves, quadrupole sources generate
P and modal S waves above the entry frequency and only modal S
waves below the entry frequency. Dipole sources generate flexural
modes and quadrupole sources excite screw modes (Kumar & Ram
1969; Kurkjian & Chang 1986).

Numerical modelling in the frequency–wavenumber domain,
known as the real axis integration (RAI), the branch-cut integra-
tion (BCI) or the discrete wavenumber (DW) method, is fast and
effective but restricted to uniform properties in the axial and az-
imuthal directions (White & Zechman 1968; Kurkjian & Chang
1986). Randall et al. (1991) first modelled multipole sources in
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azimuthally uniform media using the velocity–stress formulation
and a staggered finite-difference grid. Mittet & Renlie (1996) intro-
duce attenuation and anisotropy and solve the same problem using
high-order finite differences to reduce the computational cost. A
fully 3-D finite-difference code has been developed by Chen et al.
(1998), who simulate wave propagation in the presence of the sonic
well-logging tool.

The algorithm proposed here simulates synthetic seismograms
generated by multipole borehole sources in an axisymmetric
medium described by the Kelvin–Voigt constitutive equation. A
similar stress–strain relation, in Cartesian coordinates, has been
proposed to propagate 3-D waves in the presence of the Earth’s sur-
face (Carcione et al. 2004). The novel features of the present method
is the use of cylindrical coordinates, pseudospectral differentiation,
domain decomposition to model the fluid–solid interface, multipole
sources, and the description of dissipation without additional field
variables. Most of the time-domain modelling algorithms require the
use of additional (memory) variables to model anelasticity. Gener-
ally, this approach is based on the use of the generalized Zener model
(Carcione 2007) or the generalized Maxwell model (Emmerich &
Korn 1987; Mittet & Renlie 1996). Use of memory variables can
be expensive in three dimensions, since the Zener model requires
six variables for each relaxation mechanism (Carcione 2007). The
Kelvin–Voigt mechanical model is not based on memory variables
(Ben-Menahem & Singh 1981; Carcione 2007), and its implemen-
tation requires the calculations of additional spatial derivatives and
the use of two anelastic parameters compared to four parameters
when using the Zener model.

The present algorithm simulates 3-D axisymmetric waves in a
2-D multidomain, where the radial spatial derivatives are computed
with the Chebyshev method and the vertical spatial derivatives are
computed with the Fourier method (e.g. Carcione 2007). Both dif-
ferentiations are implemented with the fast Fourier transform. The
algorithm uses two meshes in cylindrical coordinates, correspond-
ing to the fluid and solid media. The meshes are combined by de-
composing the wave field into incoming and outgoing wave modes
at the interface between the media, and modifying these modes on
the basis of the fluid–solid boundary conditions (Carcione 1991,
1996). The inner surface, corresponding to the tool–mud interface,
satisfies rigid conditions.

2 E Q UAT I O N S O F M O M E N T U M
C O N S E RVAT I O N

The axisymmetric 3-D equations of momentum conservation for
the solid in cylindrical coordinates can be written as (Fung 1965;
Mittet & Renlie 1996)

v̇r = �r , v̇θ = �θ, v̇z = �z, (1)

where

ρ�r = 1

r

[
∂

∂r
(rσrr ) + nσrθ − σθθ

]
+ ∂σr z

∂z
+ fr , (2)

ρ�θ = 1

r
(2σrθ − nσθθ ) + ∂σrθ

∂r
+ ∂σθ z

∂z
+ fθ , (3)

ρ�z = 1

r

[
nσθ z + ∂

∂r
(rσr z)

]
+ ∂σzz

∂z
+ fz, (4)

where r, θ and z are the spatial variables, n is the order of the
multipole source, ρ is the density, the σ ’s are stress components,

the v’s are particle velocities and the f ’s are body forces per unit
volume. A dot above a variable denotes time differentiation.

The corresponding equations for the fluid are

ρv̇r = −∂p

∂r
+ fr , ρv̇θ = n

r
p + fθ , ρv̇z = −∂p

∂z
+ fz, (5)

where p = − σ rr is the fluid pressure.
These and the stress–strain equations below result from assuming

that the quantities vθ , σ rθ , σ θ z , f θ , f θ z and f rθ are proportional to
sin n θ while the other variables are proportional to cos n θ (Randall
et al. 1991). A monopole corresponds to n = 0, a dipole to n = 1, a
quadrupole to n = 2, etc.

3 S T R E S S – S T R A I N R E L AT I O N S

The 3-D stress–strain relations for the solid are given by

σ̇rr = λϑ + 2μ
∂vr

∂r
+ λ′ϑ̇ + 2μ′ ∂v̇r

∂r
+ frr , (6)

σ̇θθ = λϑ + 2μ
(vr

r
+ n

r
vθ

)
+ λ′ϑ̇ + 2μ′

(
v̇r

r
+ n

r
v̇θ

)
+ fθθ ,

(7)

σ̇zz = λϑ + 2μ
∂vz

∂z
+ λ′ϑ̇ + 2μ′ ∂v̇z

∂z
+ fzz, (8)

σ̇θ z = μ

(
∂vθ

∂z
− n

r
vz

)
+ μ′

(
∂v̇θ

∂z
− n

r
v̇z

)
+ fθ z, (9)

σ̇r z = μ

(
∂vr

∂z
+ ∂vz

∂r

)
+ μ′

(
∂v̇r

∂z
+ ∂v̇z

∂r

)
+ frz, (10)

σ̇rθ = μ

(
∂vθ

∂r
− vθ

r
− n

r
vr

)
+ μ′

(
∂v̇θ

∂r
− v̇θ

r
− n

r
v̇r

)
+ frθ ,

(11)

ϑ = ∂vr

∂r
+ ∂vz

∂z
+ vr

r
+ n

r
vθ , (12)

where λ and μ are the Lamé constants, λ′ and μ′ are the Kelvin–
Voigt anelastic parameters (Carcione et al. 2004), ϑ is the dilatation,
and f ab are stress forces.

Substituting eqs (2)–(4) into (6)–(11) yields

σ̇rr = λϑ + 2μ
∂vr

∂r
+ λ′ψ + 2μ′ ∂�r

∂r
+ frr , (13)

σ̇θθ = λϑ + 2μ
(vr

r
+ n

r
vθ

)
+ λ′ψ + 2μ′

(
�r

r
+ n

r
�θ

)
+ fθθ ,

(14)

σ̇zz = λϑ + 2μ
∂vz

∂z
+ λ′ψ + 2μ′ ∂�z

∂z
+ fzz, (15)

σ̇θ z = μ

(
∂vθ

∂z
− n

r
vz

)
+ μ′

(
∂�θ

∂z
− n

r
�z

)
+ fθ z, (16)

σ̇r z = μ

(
∂vr

∂z
+ ∂vz

∂r

)
+ μ′

(
∂�r

∂z
+ ∂�z

∂r

)
+ frz, (17)

σ̇rθ = μ

(
∂vθ

∂r
− vθ

r
− n

r
vr

)
+ μ′

(
∂�θ

∂r
− �θ

r
− n

r
�r

)
+ frθ ,

(18)
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ψ = ϑ̇ = ∂�r

∂r
+ ∂�z

∂z
+ �r

r
+ n

r
�θ. (19)

The Kelvin–Voigt model requires less storage and field variables to
describe attenuation compared to the Zener and Maxwell models.
For instance, consider that the model is discretized in two meshes
with nr × nz grid points each. The number of unknown field vari-
ables using the velocity–stress formulation is nine (three particle-
velocity components and six stress components). The Zener model
requires six additional arrays to describe attenuation, and six arrays
for the material properties (two elastic constants and four relax-
ation times). Then, the total RAM storage occupied by the Zener
model is 42 × nr × nz . On the other hand, the Kelvin–Voigt model
requires nine arrays for the field variables and four arrays for the
material properties, implying a storage of 26 × nr × nz . Therefore,
the saving in storage is more than 40 per cent. The drawback is that
the Kelvin–Voigt model requires the calculation of nine additional
spatial derivatives at each time step, compared to the Zener model.
However, the saving in computer storage can be significant when
modelling 3-D wave propagation.

The corresponding constitutive equation for the fluid is

− ṗ = σ̇rr = λϑ + frr , (20)

where we have assumed no intrinsic losses.
In order to simulate multipoles sources, we assume the following

function

fab = δabδ(r − rs)δ(z − zs) f (t), a = r, θ, z. (21)

where f (t) is the time history of the source.

4 F R E Q U E N C Y- D O M A I N A NA LY S I S

The phase velocity and quality factor of the solid are given by
(Carcione et al. 2004; Carcione 2007)

v =
[

Re

(
1

vc

)]−1

(22)

and

Q = Re
(
v2

c

)
Im

(
v2

c

) , (23)

where vc is either the P-wave complex velocity or the S-wave com-
plex velocity. They are given by

vcP =
√

� + 2�

ρ
and vcS =

√
�

ρ
, (24)

respectively, where

� = λ + iωλ′, and � = μ + iωμ′, (25)

ω is the angular frequency, and Re and Im take real and imaginary
parts.

The phase velocities of the P and S waves tend to
√

E/ρ and√
μ/ρ for ω → 0, and to ∞ for ω → ∞, where E = λ + 2 μ. The

P- and S-wave quality factor are simply

Q P = E

ωE ′ , and QS = μ

ωμ′ , (26)

where E′ = λ′ + 2μ′. The attenuation factor is given by (Carcione
2007)

α = ω

v
[
√

1 + Q2 − Q]. (27)

For low-loss media (Q � 1), eq. (27) becomes

αP = ω2 E ′

2EvP
and αS = ω2μ′

2μvS
, (28)

where eqs (26) have been used. Then, the attenuation factor is
approximately proportional to the square of the frequency if the
variation of the phase velocity is small over the range of frequencies
of the signal.

The anelastic parameters can be obtained from the quality factors
at a given frequency, say, the central frequency of the source, ω0.
We obtain

λ′ = 1

ω0

(
E

Q P0
− 2μ

QS0

)
and μ′ = μ

ω0 QS0
, (29)

where Q P0 and Q S0 are the quality factors at ω = ω0, and E and μ

are the moduli at ω = 0.
The moduli can be obtained from the P- and S-wave phase ve-

locities at ω = ω0, v P0 and v S0, respectively. Using eqs (25), (22),
(24) and (26) gives

E = ρv2
P0g(Q P0) and μ = ρv2

S0g(QS0), (30)

where

g(a) = 1

2
(1 + a−2)−1/2

[
1 + (1 + a−2)−1/2

]
. (31)

Note that g(a) → 1 when a → ∞. Hence, the input properties to
the modelling program are ρ, v P0, v S0, Q P0 and Q S0.

5 B O U N DA RY C O N D I T I O N S A N D
D O M A I N - D E C O M P O S I T I O N

The solution on each grid is obtained by using a fourth-order
Runge–Kutta method as time stepping algorithm, the Chebyshev
differential operator (Carcione 1996, 2007) to compute the spa-
tial derivatives along the radial direction and the Fourier differ-
ential operator (Carcione 2007) along the vertical direction. The
Gauss–Lobatto collocation points are defined as r i = −cos[π (i −
1)/(nr − 1)], i = 1, . . . , nr , where nr is the number of radial grid
points. An analysis of the stability and accuracy of the algorithm due
to the use of the Kelvin–Voigt stress–strain relation and the Runge–
Kutta method has been performed in Carcione et al. (2004), where
the numerical approximation of the phase velocity and quality fac-
tor were obtained. These quantities depend on the time step, which
is determined to satisfy the accuracy requirements by comparison
to the exact phase velocity (7) and quality factor (8).

To combine the grids, the wave field is decomposed into incom-
ing and outgoing wave modes at the interface between the media
(Carcione 1991, 2007). The algorithm can be outlined as follows.
Let us consider the solid material. Eqs (1) and (13)–(18) can be
expressed in matrix notation as v̇ = Hv ≡ A∂r v + B∂zv, where H
is the differential–operator matrix and v is the unknown wave field
(particle velocities and stresses), and we have omitted the sources
for simplicity. The Runge–Kutta method computes the operation
Hv ≡ (v)old. The vector (v)old is then updated to give a new vector
(v)new that takes into account the boundary conditions. Consider a
boundary parallel to the z-axis (e.g. the borehole wall). Compute the
eigenvalues of matrix A. Compute the right eigenvectors of matrix
A, such that they are the columns of matrix R, where A = R�R−1,
with � the diagonal matrix of the eigenvalues. The characteristics
vector is c = R−1 v, and the above equation of motion corresponding
to the r-direction becomes ċ = �∂r c, where the incoming and out-
going waves are decoupled. Similarly, a characteristics vector can
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be obtained for the fluid medium: c′ =R′−1 v′. The outgoing charac-
teristics satisfy (c)new = (c)old and (c′)new = (c′)old. These equations
complemented with the boundary conditions yield the following
equations for updating the field variables at the grid points defining
the interface between media 1 (the fluid) and 2 (the solid):

v(new)
r (1, 2) = 1

Z P (1) + Z P (2)

[
Z P (1)v(old)

r (1) + Z P (2)v(old)
r (2)

± σ (old)
rr (1) ∓ σ (old)

rr (2)

]
, (32)

v
(new)
θ (2) = v

(old)
θ (2) ∓ 1

ZS
σ

(old)
rθ (2), (33)

v(new)
z (2) = v(old)

z (2) ∓ 1

ZS
σ (old)

r z (2), (34)

σ (new)
rr (1, 2) = Z P (1)Z P (2)

Z P (1) + Z P (2)

[
± v(old)

r (1) ∓ v(old)
r (2)

+ 1

Z P (1)
σ (old)

rr (1) + 1

Z P (2)
σ (old)

rr (2)

]
, (35)

σ
(new)
θθ (2) = σ

(old)
θθ (2) + λ0

E0

[
σ (new)

rr (2) − σ (old)
rr (2)

]
, (36)

σ (new)
zz (2) = σ (old)

zz (2) + λ0

E0

[
σ (new)

rr − σ (old)
rr (2)

]
, (37)

σ
(new)
rθ (2) = σ (new)

r z (2) = 0, (38)

where Z P = ρv P0, Z S = ρv S0, λ0 = ρ(v2
P0 − 2v2

S0) and E 0 =
ρv2

P0. The upper signs correspond to the fluid–solid boundary and
the lower signs to the solid/fluid boundary. We have considered
the characteristics at the central frequency of the source. That is,
velocities and impedances are taken at ω = ω0 (see Section 4).

We choose the inner radius of the inner grid to be equal to the
radius of the logging tool. The tool–fluid interface satisfies rigid
boundary conditions:

v(new)
r = 0, (39)

σ (new)
rr = σ (old)

rr − Z Pv(old)
r . (40)

The non-reflecting conditions at the outer boundary of the outer
grid are

v(new)
r = 0.5

[
v(old)

r + 1

Z P
σ (old)

rr

]
, (41)

v
(new)
θ = 0.5

[
v

(old)
θ + 1

ZS
σ

(old)
rθ

]
, (42)

v(new)
z = 0.5

[
v(old)

z + 1

ZS
σ (old)

r z

]
, (43)

σ (new)
rr = 0.5[σ (old)

rr + Z Pv(old)
r ], (44)

σ
(new)
rθ = 0.5[σ (old)

rθ + ZSv
(old)
θ ], (45)

σ (new)
r z = 0.5[σ (old)

r z + ZSv
(old)
z ], (46)

σ
(new)
θθ = σ

(old)
θθ + λ0

E0

[
σ (new)

rr − σ (old)
rr

]
, (47)

σ (new)
zz = σ (old)

zz + λ0

E0

[
σ (new)

rr − σ (old)
rr

]
. (48)

In addition to the non-reflecting conditions, absorbing strips are
used to further attenuate the wave field at the outer radial boundary
and top and bottom of the grids (Carcione 1996).

6 S I M U L AT I O N S

The geometry of a logging tool embedded in a borehole is shown
in Fig. 1, where the tool is the inner cylinder. Then follows the fluid
annulus, a solid (the casing in the example) and an unbounded solid
(the formation). The bi-mesh is shown in Fig. 2, where the location
of the grid points in the radial direction can be appreciated.

First, we consider a homogeneous formation (without casing)
and the following data to run the simulation. Fluid: nr = 31, nz =
125, dz = 0.04 m, r min = 5 cm, r max = 12.4 cm, ρ = 1 g cm−3,
v P0 = 1.5 km s−1 (the minimum radial grid spacing is 0.46 mm);
Solid: nr = 121, nz = 125, dz = 0.04 m, r min = 12.4 cm, r max =
2 m (the minimum radial grid spacing is 1.5 mm); Hard formation:
ρ = 2.5 g cm−3, v P0 = 4 km s−1, v S0 = 2.3 km s−1, Q P0 = 50,
Q S0 = 40; Soft formation: ρ = 1.3 g cm−3, v P0 = 2.5 km s−1,
v S0 = 1.17 km s−1, Q P0 = 30, Q S0 = 20. The material properties
correspond to a reference frequency of f 0 = 9 kHz. Fig. 3 shows
the P-wave phase velocity and dissipation factor (1/Q P ) versus
frequency, corresponding to the hard formation. The phase velocity
and dissipation factor increase with frequency and tend to infinity
for infinite frequency. Note that at 9 kHz the quality factor is equal
to 50.

The source ( f rr ) and the receivers are located in the fluid at the
centre of the grid. The source emits a pulse of peak frequency f 0 =
9 KHz with a duration of approximately 0.25 ms, and the solution is

Figure 1. Geometry of an idealized logging tool and borehole. The radii
correspond to the tool and borehole. The inner surface satisfies rigid bound-
ary conditions to model the fluid–tool interface. An example with casing is
shown.
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z

Figure 2. Detail of the meshes in the radial direction. Eight points of the
formation mesh can be seen at the right side. The left boundary satisfies
rigid boundary conditions to model the logging tool.
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Figure 3. P-wave phase velocity (a) and dissipation factor (b) (1/Q P ) versus
frequency. At 9 kHz the velocity is 4 km s−1 and the quality factor is 50.

propagated to 2.5 ms with a time step of 0.04 μs. The source time-
history used in the simulations is a Ricker wavelet whose spectrum
is a Gaussian centred at the peak frequency. Its expression can be
found in Carcione (2007) (eqs 2.233 and 2.234).

The low-frequency limit velocity of the tube wave, also called
Stoneley wave, in a lossless medium, is, approximately (White 1965;
Norris 1990)

vT =
{
ρ f

[
1

K f
+ 1

1 − η

(
1

μs
+ η

μt

)]}−1/2

, (49)

where K f is the bulk modulus of the fluid, ρ f is the fluid density, μs

is the shear modulus of the formation, μt is the shear modulus of the
logging tool, and η is the volume fraction of the tool relative to the
borehole: η = r 2

min/r 2
max. The rigid condition at the tool implies μt

= ∞. At the reference frequency, we may assume that K f = ρ f v2
P0

(fluid) and μs = ρ s v2
S0 (formation). We obtain η = 0.16, vT = 1367

m s−1 (hard formation) and vT = 946 m s−1 (soft formation).
The velocity of the Stoneley wave without tool in the presence of

casing is

vT =
[
ρ f

(
1

K f
+ 1

N

)]−1/2

, (50)

N = 2(1 − ν)μs + (μ − μs)(1 − a2)

2(1 − ν) − (1 − μs/μ)(1 − 2ν)(1 − a2)
, (51)

where a = r c/r ′
c, with r c and r ′

c the inner and outer radii of the
casing, and μ and ν the shear modulus and Poisson ratio of the steel
casing. This equation has been obtained by Marzetta & Schoenberg
(1985) and is a correction of a similar expression obtained by White
(1965). Let us assume that r c = 0.124 m, r ′

c = 0.134 m, and that the
casing properties are ρ = 7.85 g cm−3, v P0 = 5.9 km s−1 and v S0 =
3.19 km s−1. We obtain vT = 1357 m s−1 for a soft formation.

Fig. 4 shows the velocity of the Stoneley wave as a function of
the shear wave velocity of the formation for different cases. We
have assumed ρ[kg m−3] = 397 (v S0 [m s−1])1/4. As can be seen,
the presence of casing increases the tube-wave velocity for soft
formations. This has a consequence on the visibility of the tube
wave, which is masked by the water wave (see Fig. 9 below).

Figs 5 and 6 shows the σ rr waveforms due to a monopole source,
corresponding to the soft and hard formations, respectively, where
the dashed line is the lossless case. In the first picture, we see

Figure 4. Tube-wave velocity as a function of the S-wave velocity of the
formation. The dotted line represents the case with tool and casing.
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Figure 5. σ rr waveforms due to a monopole source, corresponding to the
soft formation, where the dashed line is the lossless case. The source is an
f rr ring of 5.5 cm radius, and the receivers are located at the same radial
position. The offset of trace 1 is 40 cm and the distance between traces is
16 cm.
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Figure 6. σ rr waveforms due to a monopole source, corresponding to the
hard formation, where the dashed line is the lossless case.

a weak P wave arriving first, followed by a water wave and the
Stoneley wave. The identification of the latter is based on eq. (49).
The distance between traces 1 and 11 is 160 cm. Considering that
the traveltime difference between the peaks of the latter event is
roughly 1.7 ms, we obtain a velocity of 941 m s−1, very close to the
one obtained from eq. (49) for a soft formation, that is, 946 m s−1.
Similarly, the approximate peak differences of the first and second
events are 0.64 and 1.05 ms, giving velocities of 2500 and 1520
m s−1, corresponding to the P waves in the formation and the fluid,
respectively. The intrinsic attenuation of the formation affects the
Stoneley wave in the soft-formation case. Figs 7 and 8 correspond
to the dipole and the quadrupole in a soft formation, respectively.
In these cases, according to Chen (1988, 1989), trains of S waves
are more significant than in the monopole case.

Fig. 9 corresponds to Fig. 5 but including the casing. It resembles
that of the hard formation (see Fig. 6), where the water wave is dom-
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Figure 7. σ rr waveforms due to a dipole source, corresponding to the soft
formation, where the dashed line is the lossless case.
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Figure 8. σ rr waveforms due to a quadrupole source, corresponding to the
soft formation, where the dashed line is the lossless case.

inant. As found above, the Stoneley velocity for the soft formation
with casing is similar to that of the hard formation. The Stoneley
wave is much weaker than the water wave.

Fig. 10 corresponds to Fig. 5, including a layer with a thickness
of 56 cm with the properties of the hard formation. The Stoneley
wave has disappeared due to the presence of the layer.

The microseismograms are scaled with respect to the maximum
amplitude. The relative scales corresponding to Figures, 5–10 are
1, 6, 3, 1, 6 and 1, respectively.

7 C O N C LU S I O N S

We have developed a modelling algorithm for wave simulation due
to multipole sources in boreholes in the presence of the logging
tool. The spatial derivatives are computed by using the Fourier
and Chebyshev methods along the vertical and radial directions,
respectively. The media is uniform along the azimuthal direction,
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Figure 9. σ rr waveforms due to a monopole source and a soft formation,
in the presence of casing.
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Figure 10. σ rr waveforms due to a monopole source and a soft formation,
in the presence of a high-velocity horizontal layer.

but there are no restrictions along the vertical and radial directions,
where any type of inhomogeneity can be modelled. The stress–
strain relation is based on the Kelvin–Voigt mechanical model,
which describes dissipation involving minimum requirements of
computer storage.

We show examples of propagation in hard and soft formations
for monopole, dipole and quadrupole sources, including casing and
an inhomogeneous formation. The modelling simulates the train of
waves involved in acoustic logging, namely, the P and S waves, the
Stoneley wave, and the dispersive S waves in the case of dipole and
quadrupole sources. The simulations include all the modes observed
in real data; the assumed axisymmetry does not pose any limitation
in this sense, and it is generally a good approximation for sonic
logging.
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